Automated Evaluation of the α^5 Term of Lepton g - 2: Progress Report

presented at

Loops and Legs in Quantum Field Theory 2006

Eisenach, Germany, April 23-28, 2006

Toichiro Kinoshita Laboratory of Elementary-Particle Physics Cornell University, Ithaca, New York U. S. A. 14853 in collaboration with T. Aoyama, M. Hayakawa, and M. Nio Theoretical Physics Laboratory, RIKEN Wako, Saitama, Japan 351-0198

1. Introduction

- This is a progress report of our work on the α^5 term of lepton g-2 which began more than two years ago.
- In this talk I will focus on the 10th-order diagrams that have no closed lepton loop (called *q-type*).
- These diagrams are extremely large and complicated and hardest to evaluate of all 10th-order diagrams.
- It would be practically impossible to evaluate them without highly automated algorithm.
- Initial reports on automation are given in

T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Nucl. Phys. B 740, 138 (2006).

T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio,

Nucl. Phys. B (Proc. Suppl.) xxx, yyy (2006).

T. Kinoshita, Nucl. Phys. B (Proc. Suppl.) xxx, yyy (2006).

- **2.** Electron g 2: Measurement.
 - In 1987 the value of electron g-2 was improved over previous best value by three orders of magnitude in a Penning trap experiment by Dehmelt et al. at U. of Washington.

Van Dyck et al., PRL 59, 26 (1987)

• Their final results were:

 $\mathbf{a_{e^-}} = 1\ 159\ 652\ 188.4\ (4.3) imes\ 10^{-12}$

 ${f a_{e^+}}=1\;159\;652\;187.9\;(4.3) imes\;10^{-12}$

• Reanalysis of these data and their combination assuming CPT invariance leads to

 ${f a_e}[{f UW87}] = 1\;159\;652\;188.3\;(4.2) imes\;10^{-12}$

Mohr and Taylor, RMP 77, 1 (2005)

- Measurement uncertainty was dominated by cavity shift due to interaction of electron with hyperboloid cavity which has complicated resonance structure.
- Several ways to reduce this error examined: (a) Use cavity with smaller Q.

van Dyck, et al., 1991, unpublished.

(b) Study cavity shift of many (~ 1000)-electron cluster.

Mittleman, et al., PRL 75, 2839 (1995)

(c) Use cylindrical cavity, whose property is known analytically.

Brown, Gabrielse, RMP 58, 233 (1986)

- Gabrielse's new measurement of a_e is based on (c).
 - A preliminary result was reported:

 $a_{e^{-}}[HV05] = 1\ 159\ 652\ 180.86\ (0.57) \times\ 10^{-12}$ (0.49 ppb)

B. Odom, PhD thesis, Harvard University, 2005

- 7.5 times more precise than the Seattle result.
- Another set of measurements has just been finished.
- The new result ?

3. Theory of Electron g - 2 up to Order α^4

$$\begin{split} \mathbf{a}_{e}(\mathbf{QED}) &= \mathbf{A}_{1} + \mathbf{A}_{2}(\mathbf{m}_{e}/\mathbf{m}_{\mu}) + \mathbf{A}_{2}(\mathbf{m}_{e}/\mathbf{m}_{\tau}) + \mathbf{A}_{3}(\mathbf{m}_{e}/\mathbf{m}_{\mu},\mathbf{m}_{e}/\mathbf{m}_{\tau}) \\ \mathbf{A}_{i} &= \mathbf{A}_{i}^{(2)}\left(\frac{\alpha}{\pi}\right) + \mathbf{A}_{i}^{(4)}\left(\frac{\alpha}{\pi}\right)^{2} + \mathbf{A}_{i}^{(6)}\left(\frac{\alpha}{\pi}\right)^{3} + \dots, \ \mathbf{i} = \mathbf{1},\mathbf{2},\mathbf{3} \\ \mathbf{A}_{1}^{(2)} &= \mathbf{0}.\mathbf{5} & \mathbf{1} \ \mathbf{diagram} \ (\mathbf{analytic}) \\ \mathbf{A}_{1}^{(4)} &= -\mathbf{0}.328 \ \mathbf{478} \ \mathbf{965} \ \dots & \mathbf{7} \ \mathbf{diagrams} \ (\mathbf{analytic}) \\ \mathbf{A}_{1}^{(6)} &= \mathbf{1}.181 \ \mathbf{241} \ \mathbf{456} \ \dots & \mathbf{72} \ \mathbf{diagrams} \ (\mathbf{numerical}, \mathbf{analytic}) \\ &\qquad \mathbf{Kinoshita}, \ \mathbf{PRL} \ \mathbf{75}, \ \mathbf{4728} \ (\mathbf{1995}) \\ \mathbf{Laporta}, \ \mathbf{Remiddi}, \ \mathbf{PLB} \ \mathbf{379}, \ \mathbf{283} \ (\mathbf{1996}) \\ \mathbf{A}_{1}^{(8)} &= -\mathbf{1}.\mathbf{728} \ \mathbf{3} \ (\mathbf{35}) & \mathbf{891} \ \mathbf{diagrams} \ (\mathbf{numerical}) \\ &\qquad \mathbf{Kinoshita}, \ \mathbf{Nio}, \ \mathbf{Phys}. \ \mathbf{Rev.} \ \mathbf{D} \ \mathbf{73}, \ \mathbf{0}\mathbf{13003} \ (\mathbf{2006}) \end{split}$$

- Error of $A_1^{(8)}$ reduced to one-tenth of old one.
- $ullet \mathbf{A}_2 \ ext{term is small} :\sim 2.72 imes 10^{-12}.$
- •A $_3$ term is even smaller :~ 2.4×10^{-21} .
- $\bullet Non-QED \ term \ (Standard \ Model) \ is \ small, \ too: 1.70(2)\times 10^{-12}.$
- This is why a_e provides a very good test of QED.

- To compare theory with measurement we need α .
- At present best α available are

$$lpha^{-1}(\mathbf{h}/M_{Rb}) = \mathbf{137.035} \ \mathbf{998} \ \mathbf{78} \ (\mathbf{91}) \qquad [\mathbf{6.7 \ ppb}]$$

P. Cladé et al., PRL 96, 033001 (2006)

$$\begin{split} &\alpha^{-1}(\mathbf{h}/M_{Cs}) = 137.036\ 000\ 1\ (11) & [7.7\ \mathrm{ppb}] \\ & \text{Wicht, Hensley, Sarajlic, Chu, Physica Scripta T102, 82-88 (2002)} \\ \bullet \ \mathrm{Assuming}\ \mathbf{A}_1^{(10)} = 0.0(3.8)\ (\text{pure guess by Mohr-Taylor})\ \text{we obtain} \\ & \mathbf{a}_{\mathrm{e}}(\mathbf{h}/\mathbf{M}_{\mathrm{Rb}}) = 1\ 159\ 652\ 188.70\ (0.10)(0.26)(7.71)\times\ 10^{-12} \\ & \mathbf{a}_{\mathrm{e}}(\mathbf{h}/\mathbf{M}_{\mathrm{Cs}}) = 1\ 159\ 652\ 177.55\ (0.10)(0.26)(9.32)\times\ 10^{-12} \\ & (8\mathrm{th})(10\mathrm{th})(\alpha(h/M)) \end{split}$$

and

$$egin{aligned} \mathbf{a_e}[\mathbf{HV05}] - \mathbf{a_e}(\mathbf{h}/\mathbf{M_{Rb}}) &= -7.8~(7.8) imes~10^{-12} \ \mathbf{a_e}[\mathbf{HV05}] - \mathbf{a_e}(\mathbf{h}/\mathbf{M_{Cs}}) &= -3.3~(9.4) imes~10^{-12} \end{aligned}$$

- Striking feature of $a_e(h/M_{Rb})$ and $a_e(h/M_{Cs})$ is that their errors come predominantly from measurements of α .
- This means that non-QED α , even the best ones, is too crude to test QED to the extent made possible by the progress of theory and measurement of a_e .
- Instead we can turn the argument around and calculate α assuming that QED is still valid.
- This yields very precise values:

 $\alpha^{-1}(a_e[UW87]) = 137.035\ 998\ 834\ (12)(31)(502)\ [3.7\ ppb]$

 $\alpha^{-1}(a_e[HV05]) = 137.035\ 999\ 708\ (12)(31)(68)\ [0.55\ ppb]$

- Fig. 1 gives graphic comparison of some α 's.
- To show finer details of lower half the horizontal scale is enlarged by 10 in Fig. 2.

Figure 1: Comparison of various α^{-1} . $\alpha(h/m_{Cs})$ may be improved by factor 2. The superscript * on a_e HV05* means that the corresponding α is still tentative.

Figure 2: Magnification of the lower half of Fig. 4 by factor 10.

- 4. Tenth-order term: Why needed ?
 - Uncertainty in $\alpha(a_e[HV05])$ is only factor 2 larger than that of theory, which is mostly from the α^5 term.
 - Thus, when measurement improves by just factor 2, an actual value of α^5 term becomes necessary to improve $\alpha(a_e)$ further.
 - This is why the α^5 term deserves serious investigation.
 - 12672 Feynman diagrams contribute to the α^5 term.
 - Real challenge to tackle such a gigantic problem.
 - First step: Classify all diagrams into gauge-invariant sets.
 - There are 32 g-i sets within 6 supersets as shown next.

Figure 3: Self-energy-like diagrams representing 208 vertex dgrms of set I.

Figure 4: Diagrams of Set II which consists of 600 vertex diagrams.

Figure 5: Diagrams of Set III which consists of 1140 vertex diagrams.

Figure 6: Diagrams of Set IV which consists of 2072 vertex diagrams.

 $_{\rm Figure 7:}$ Diagrams of Set V which consists of 6354 vertex diagrams.

Figure 8: Diagrams of Set VI which consists of 2298 vertex diagrams.

- Largest and most difficult is the Set V, which consists of 6354 Feynman diagrams of "q-type".
- We are thus focused on Set V since others, being less complicated, are easier to handle.
- Set V has a simplifying feature that sum of nine vertex diagrams can be related to one self-energy diagram by

$$\Lambda^{
u}(\mathbf{p},\mathbf{q})\simeq -\mathbf{q}_{\mu}[rac{\partial\Lambda_{\mu}(\mathbf{p},\mathbf{q})}{\partial\mathbf{q}_{
u}}]_{\mathbf{q}=\mathbf{0}}-rac{\partial\Sigma(\mathbf{p})}{\partial\mathbf{p}_{
u}}$$

derived from the Ward-Takahashi identity.

- This enables us to reduce number of diagrams to 706.
- Time-reversal invariance reduces it further to 389 shown in the next page.

The same same same لمصا _____ ((Lan) 65 (Δ) 6 (ATA) (A) (ARM) (A) (m)600 and a the (Am) (AD) to m an (Δ) (MM) ((A)) (m)()(CAD) 600 (Δ) (AD) $t \propto$ (AD) $\overline{\mathbf{A}}$ ÆS. $\int d\hat{C}$ to tota (\square) (A) 60 $l \alpha$ (The (A) tan (A) and a tan (And) (A)(A) (d m)((ത്ത)) da la 600 ത്തി d d ക്കി MK. (a)ത്തി (m) ഹ്ത tan (\mathcal{A}) (11)s $\widehat{}$ (m)ഹ de An (m)tom \square $\widehat{}$ tro (The based of the second secon (((____)))) . M ക്രി (\mathcal{A}) (AM) (m)6 (\mathcal{A}) do h tan (\mathcal{A}) lad ((m) 6.00 (AR ത് (\mathcal{A}) 60 ton đК (\overline{A}) \bigcirc tab de ((Tà (m)_____ tra (Δ) \mathcal{A} m KM đК \mathcal{A} (a)()(Am) (a)to (A) toot ക്രി (\bigcirc) (\overline{m}) (ARM) (a)and a and the 60 6 \mathcal{A} (CM) 15 and (m) llan ക്കി (a)(m) \mathcal{K} (man) toon a la da ഹ്ത കക A D (D (m)16 (C) (AB)) \mathcal{A} ക്ക (A (m) α ത്ര t the <u>da</u> $\overline{\mathcal{A}}$ ക്ക (\square) $\overline{\mathcal{M}}$ ((a))ക്കി de la comoción de la and the second s (m)a taba A. lland (a)to a too ton A M (Fr A (a) $\overline{}$ (A) (AM) (The second and (\bigcirc) (m)(m)the lad (m) \mathcal{A} 6 A AM (A) (m)(H) ()(A) $(\widehat{})$ 6 തി dhthe (m (ATA) AN) (m à ക്ര (a) (\mathcal{A}) (m)62 $\overline{\mathcal{A}}$ (A) (\square) 600 (m)(and M - alla ന്ത

Figure 9: Overview of all diagrams contributing to Set V.

- Analytic integration is likely to be far in the future.
- Numerical integration is the only viable option at present.
- Fortunately, algebraic part of manipulation developed for α^3 case and extended for α^4 applies to α^5 , too.
- For α^5 , however, every step must be fully automated.
- Also, master code is needed to run all steps automatically.
- Let us now sketch these steps.

- Step I: Diagram generation
 - Each (q-type) diagram is expressed by a single-line code which specifies pattern of pairing of vertices by photon propagators.
 - Algorith implemented by C++.
 - Diagrams are named X001,..., X389 and stored as plaintext file.
 - This file enables us to identify all UV divergent subdiagrams according to certain algorithm.
 - Implemented by both Perl and C++.
 - Step I is crucial for automatic control of all subsequent steps.
 - It was not needed in α^3 and α^4 cases which were simple enough to go without it.

- Step II: Construct unrenormalized integrand
 - Translate one-line rep. of diagram into integrand.
 - Carry out momentum integration analytically and express result as integral over Feynman parameters z_1, z_2, \dots, z_N , and "symbols" B_{ij}, A_i, U, V :

$$/(dz)_G J_G,$$

where

$$(dz)_G \equiv \prod_{i=1}^N dz_i \delta(1 - \sum_{i=1}^N z_i), \qquad J_G = \frac{F_0(B_{ij}, A_i)}{U^2 V^{n-1}} + \frac{F_1(B_{ij}, A_i)}{U^3 V^{n-2}} + \cdots.$$

- Previously J_G was obtained by FORM using home-made integration table written in FORM.
- Now automation of Step II proceeds as follows:
 Diagram info. → input for FORM, obtained by Perl
 → analytic integration using integration table in FORM.

- Step III: Construct building blocks
 - Get $B_{ij}, C_{i,j}, A_i, U, V$ as homog. polynomials of z_1, z_2, \ldots, z_N .
 - * U, B_{ij} are related to loop momenta, and determined by the topology of diagram.
 - $\star A_i$ are related to flow of external momenta, and satisfy Kirchhoff"s laws for "currents".
 - Easy to obtain B_{ij} , U, etc. by hand in 6th- and 8th-orders. Much harder in 10th-order.
 - We now calculate them automatically:

input info. $\rightarrow B_{ij}, C_{i,j}, U, \dots$ by MAPLE and FORM.

- They are also derived in C++.
- V has form common to all diagrams:

$$V = \sum_{i}^{electrons} z_i(1 - A_i) + \sum_{i}^{photons} z_i\lambda^2,$$

where electron mass is put to one and λ is infrared cutoff.

- Step IV: Construct UV subtraction terms
 - Most difficult part is renormalization.
 - Textbook renormalization is not suitable for putting on computer and known only to lowest order anyway.
 - We start from subtractive regularization.
 - Subtraction integrand is derived from original integrand by applying K-operation, defined for each divergent subdiagram based on simple power-counting rule.
 - Properties of *K*-operation:
 - \star Subtraction of UV divergence is pointwise.
 - \star It is built so that it factorize analytically into product of lower-order quantities, an important feature for cross-checking with other diagrams.
 - * It contains only UV-divergent part of renormalization constant. Thus additional (finite) renormalization is required.

• This subtraction scheme applied to all subdiagram divergences regularizes the original integral, yielding

$$\Delta M_G = M_G - \sum_{f \in \mathcal{F}} X_f$$
$$= \int (dz)_G [J_G - \sum_{f \in \mathcal{F}} K_f J_G]$$

where \mathcal{F} is the set of Zimmermann's forest f of divergent subdiagrams.

- IR-divergence can be handled similarly by IR power-counting rule.
- These procedures had been developed for α^3 and α^4 cases by partly-automatic means using FORM.
- Now they are fully automated:

input info. \rightarrow subtraction terms in FORTRAN

implemented by Perl with help by MAPLE and FORM.

- Step V: Residual renormalization
 - Output of Steps I IV are UV- (and IR-) finite integral.
 - However, it is not standard renormalized amplitude (although it is on-shell).
 - Finite residual renormalization must be carried out to get observable g-2.
 - Residual renormalization was easy for α^3 case and still manageable by hand for α^4 .
 - For α^5 , however, number of UV subtraction terms (each being integral of up to 8th-order) is 13150 so that summing up residual renormalization terms becomes a huge operation.
 - Number of IR subtraction terms is large, too.
 - Thus Step V must be fully automated, achieved by Perl, MAPLE, and FORM.

- Controling whole steps:
 - Each step of code generation is achieved by individual Perl program helped by MAPLE and FORM.
 - Flow of entire process governed by shell script.
 - It takes the name of diagrams (X001,...,X389) as input and performs following operations:
 - (a) Find the input information from data file prepared in Step I.
 - (b) Construct components of integration code in FORTRAN.
 - (c) Gather all FORTRAN codes in the end.
 - Step V can be attached at the end of Step IV to make the entire process automatic.
 - But we are treating Step V separately for the moment.

- Thus far we completed Steps I, II, III, IV for 135 diagrams which have only UV-divergent vertex subdiagrams.
- For 254 diagrams containing self-energy subdiagrams Steps I III have been completed.
- But Step IV requires more work because these diagrams have also logarithmic IR divergence and, in some cases, linear IR-divergence.
- Linear IR divergence is caused by our approach which splits selfmass counterterm into UV-div. and UV-finite parts and subtracts UV-divergent part only:

$$\cdots \frac{1}{\not p - m} \left((\delta m - \delta m^{UV}) + B(\not p - m) \right) \frac{1}{\not p - m} \cdots$$

- In second order case we have $\delta m \delta m^{UV} = 0$.
- However, $\delta m \delta m^{UV} \neq 0$ in other cases, which causes an extra pole in the IR limit.
- While waiting for full automation code, we decided to deal with IR problem temporarily by giving a finite cutoff to photon mass.
- To obtain better result for numerical integration it is important to subtract linear IR pole explicitly.
- At present this is done by hand, but is being automated.
- Once linear divergence is removed, logarithmic divergence can be handled easily by photon mass cutoff.

• As warm-up, we have tested this approach for sixth-order and eighth-order cases.

• α^3 case:

 q-type only
 Photon cutoff $\lambda^2 = 10^{-6}$ Exact treatment

 0.8941 (272)
 0.904979...

* All diagrams generated in 39 seconds on DEC α . * 10⁷ sampling points 50 iterations took 25 - 45 min on DEC α .

- Effect of cutoff seems to be within errorbars.
- Good agreement shows that our automating algorithm is bug-free and gives good approximate answer.

• α^4 case:

q-type onlycutoff
$$\lambda^2 = 10^{-4}$$
numerical with $\lambda = 0$ -2.1005 (1216)-1.9931 (35)

- \star All 47 diagrams generated in 1240 seconds on DEC $\alpha.$
- * 10^7 sampling points 50 iterations using 64 CPU took 8 min to 100 min.
- \star Final results required up to 150 iterations.
- Good agreement provides the confirmation of previous eighth-order code.
- This is the first independent check of the eighth-order code.

- Current status of numerical integration:
 - Crude evaluation by VEGAS of all 389 integrals has been carried out.
- Table 1 lists all diagrams with only vertex renormalization terms. Photon mass is set equal to 0.
- Tables 2 and 3 list diagrams with at least one self-energy renormalization terms, evaluated with photon mass set equal to $10^{-2}m_e$.

Table 1: 135 diagrams which have at the vertex corrections only. Phton mass is set to be zero.

X001 X015 X031	$\begin{array}{c} 47\\2\\2\end{array}$	-0.2981 2.1020 2.2932	$\begin{array}{c} 0.0327 \\ 0.0019 \\ 0.0029 \end{array}$	X003 X016 X032	$ \begin{array}{c} 19 \\ 2 \\ 2 \end{array} $	-0.1142 -0.9609 -0.2426	$\begin{array}{c} 0.0094 \\ 0.0019 \\ 0.0013 \end{array}$	X013 X019 X033	$\begin{array}{c} 7\\31\\2 \end{array}$	-1.3540 1.2183 -1.3771	$\begin{array}{c} 0.0038 \\ 0.0140 \\ 0.0014 \end{array}$	X014 X021 X034	${31 \\ 11 \\ 2}$	$0.7833 \\ -0.2967 \\ 1.2539$	$\begin{array}{c} 0.0141 \\ 0.0049 \\ 0.0021 \end{array}$
$\begin{array}{c} \mathrm{X035} \\ \mathrm{X048} \end{array}$	$\frac{2}{2}$	-0.5838 -0.8051	$\begin{array}{c} 0.0014 \\ 0.0016 \end{array}$	$\begin{array}{c} \mathrm{X037} \\ \mathrm{X049} \end{array}$	$\frac{2}{2}$	$-0.7416 \\ -0.0295$	$\begin{array}{c} 0.0020 \\ 0.0013 \end{array}$	X039 X050	$\frac{11}{2}$	$0.3164 \\ -1.2222$	$\begin{array}{c} 0.0044 \\ 0.0018 \end{array}$	X047 X051	$\frac{2}{2}$	-4.4551 -0.1733	$\begin{array}{c} 0.0033 \\ 0.0020 \end{array}$
X053 X078	$\frac{2}{39}$	$\begin{array}{c} 0.3646 \\ 0.9403 \end{array}$	$\begin{array}{c} 0.0015 \\ 0.0453 \end{array}$	$\begin{array}{c} \mathrm{X055} \\ \mathrm{X091} \end{array}$	$\frac{2}{39}$	$-0.3634 \\ -1.8168$	$\begin{array}{c} 0.0014 \\ 0.0486 \end{array}$	$\begin{array}{c} \mathrm{X076} \\ \mathrm{X093} \end{array}$	$ \frac{19}{7} $	$-5.2424 \\ -1.7604$	$\begin{array}{c} 0.0230 \\ 0.0050 \end{array}$	X077 X094	$\frac{39}{15}$	$3.2616 \\ -1.0460$	$\begin{array}{c} 0.0443 \\ 0.0099 \end{array}$
X095	7	0.5791	0.0043	X096	31	1.2849	0.0179	X101	15	-0.2625	0.0093	X102	31	-1.3912	0.0312
X103 X118	$\frac{31}{15}$	$0.8229 \\ -3.2225$	$\begin{array}{c} 0.0193 \\ 0.0106 \end{array}$	X115 X119	$\frac{7}{15}$	-0.5947 -0.1055	$\begin{array}{c} 0.0065 \\ 0.0113 \end{array}$	X116 X120	$\frac{7}{31}$	$1.8059 \\ 1.7913$	$\begin{array}{c} 0.0050 \\ 0.0158 \end{array}$	X117 X121	$\frac{7}{7}$	$0.3232 \\ -0.8630$	$\begin{array}{c} 0.0045 \\ 0.0044 \end{array}$
X122	7	-0.7414	0.0042	X123	15	-3.3339	0.0075	X125	31	0.7481	0.0189	X127	15	1.1349	0.0059
X128 X172	$\frac{31}{31}$	$\begin{array}{c} 0.5916 \\ 1.4301 \end{array}$	$\begin{array}{c} 0.0129 \\ 0.0225 \end{array}$	X129 X178	$^{31}_{5}$	$1.4312 \\ 0.7079$	$\begin{array}{c} 0.0123 \\ 0.0038 \end{array}$	$\begin{array}{c} { m X165} \\ { m X179} \end{array}$	$^{15}_{2}$	-2.1380 -0.4378	$\begin{array}{c} 0.0114 \\ 0.0034 \end{array}$	X166 X180	$\begin{array}{c} 15\\11 \end{array}$	$-2.2856 \\ 0.0242$	$\begin{array}{c} 0.0121 \\ 0.0044 \end{array}$
X185 X197	$\frac{5}{2}$	-0.1313 -0.3870	$\begin{array}{c} 0.0050 \\ 0.0022 \end{array}$	X186 X198	$23 \\ 5$	$1.1634 \\ -2.3452$	$\begin{array}{c} 0.0049 \\ 0.0027 \end{array}$	X195 X199	$\frac{2}{5}$	$-1.0665 \\ 1.0493$	$\begin{array}{c} 0.0045 \\ 0.0038 \end{array}$	X196 X200	$\begin{array}{c} 2\\ 11 \end{array}$	$-2.0375 \\ 0.0092$	$0.0029 \\ 0.0042$
X201	2	-0.3870 -0.4877	0.0022 0.0037	X198 X202	2	1.9243	0.0027 0.0030	X199 X203	2	0.9037	0.0038 0.0023	X200 X204	$11 \\ 11$	-1.9324	0.0042 0.0038
X205 X209	$\frac{5}{5}$	-0.9038 0.1444	$0.0049 \\ 0.0040$	X206 X210	$\frac{23}{23}$	$1.6447 \\ 0.7653$	$\begin{array}{c} 0.0065 \\ 0.0049 \end{array}$	$\begin{array}{c} \mathrm{X207} \\ \mathrm{X225} \end{array}$	$\frac{5}{23}$	$0.2894 \\ 0.2928$	$0.0042 \\ 0.0098$	X208 X231	11 11	$0.5215 \\ -0.7467$	$\begin{array}{c} 0.0040 \\ 0.0058 \end{array}$
X232	23	0.4010	0.0116	X235	23	0.7040	0.0100	X259	5	0.0160	0.0049	X260	5	-0.4007	0.0036
$\begin{array}{c} { m X265} \\ { m X275} \end{array}$	$\frac{5}{2}$	$-0.6741 \\ -0.7434$	$\begin{array}{c} 0.0034 \\ 0.0045 \end{array}$	X266 X276	$\frac{11}{2}$	$0.1179 \\ -0.5545$	$0.0048 \\ 0.0028$	X271 X277	$\frac{11}{2}$	$0.2415 \\ 2.7843$	$\begin{array}{c} 0.0053 \\ 0.0015 \end{array}$	X272 X278	$23 \\ 5$	-0.7339 -0.1559	$0.0093 \\ 0.0044$
X279	5	0.8231	0.0038	X280	2	-1.0096	0.0046	X281	5	-1.3724	0.0041	X282	5	0.4841	0.0034
X283 X287	$\frac{11}{23}$	$-0.0505 \\ 0.1874$	$0.0042 \\ 0.0068$	X284 X296	$\frac{2}{5}$	$-0.2711 \\ 0.5448$	$\begin{array}{c} 0.0032 \\ 0.0046 \end{array}$	X285 X297	$\frac{5}{5}$	$0.0169 \\ -0.4792$	$\begin{array}{c} 0.0039 \\ 0.0047 \end{array}$	X286 X303	$\frac{11}{2}$	$\begin{array}{c} 0.7775 \\ 0.3213 \end{array}$	$\begin{array}{c} 0.0038 \\ 0.0025 \end{array}$
X304	5	-0.3422	0.0049	X305	5	0.4619	0.0040	X313	11	0.9513	0.0043	X314	23	0.7992	0.0070
X320 X344	$\frac{11}{2}$	$\begin{array}{c} 0.5585 \ 3.4147 \end{array}$	$\begin{array}{c} 0.0045 \\ 0.0037 \end{array}$	$\begin{array}{c} { m X321} \\ { m X345} \end{array}$	$23 \\ 2$	$-0.9154 \\ -1.0015$	$\begin{array}{c} 0.0078 \\ 0.0024 \end{array}$	X322 X346	$\frac{23}{2}$	$\begin{array}{c} 0.9205 \\ 0.2844 \end{array}$	$\begin{array}{c} 0.0032 \\ 0.0037 \end{array}$	X343 X347	$\frac{2}{2}$	$3.8805 \\ -2.6792$	$\begin{array}{c} 0.0029 \\ 0.0028 \end{array}$
$\begin{array}{c} { m X348} \\ { m X352} \end{array}$	$\frac{2}{2}$	-0.4859 -0.1319	$\begin{array}{c} 0.0038 \\ 0.0025 \end{array}$	X349 X353	$\frac{5}{5}$	$2.0816 \\ 0.1884$	$\begin{array}{c} 0.0043 \\ 0.0025 \end{array}$	$\begin{array}{c} { m X350} \\ { m X354} \end{array}$	$\frac{2}{5}$	$1.4548 \\ -2.0375$	$\begin{array}{c} 0.0023 \\ 0.0025 \end{array}$	$\begin{array}{c} { m X351} \\ { m X355} \end{array}$	$\frac{5}{11}$	$0.2449 \\ -1.0637$	$\begin{array}{c} 0.0034 \\ 0.0031 \end{array}$
X356	5	2.0708	0.0049	X357	5	0.3634	0.0037	X358	5	0.0332	0.0042	X359	11	-0.1515	0.0046
X360 X364	$\frac{11}{2}$	$-0.4709 \\ 2.3900$	$\begin{array}{c} 0.0042 \\ 0.0021 \end{array}$	X361 X367	$23 \\ 5$	$2.5319 \\ -0.7180$	$0.0064 \\ 0.0049$	X362 X370	$\frac{2}{5}$	$-0.5660 \\ -1.4791$	$\begin{array}{c} 0.0036 \\ 0.0045 \end{array}$	X363 X371	$\frac{2}{5}$	-2.3416 -0.0074	$\begin{array}{c} 0.0022 \\ 0.0042 \end{array}$
X372	11	-1.2875	0.0025	X373	23	0.5684	0.0039	X376	5	1.0369	0.0034	X377	11	0.4192	0.0042 0.0036
X378	11	1.3082	0.0034	X379	23	-0.3402	0.0052	X381	23	1.0677	0.0038				

Table 2: diagrams which have at least one self-energy diagrams as a subdiagram. Photon mass is set to be $10^{-2}m_e$.

X002	31	-33.9820	0.1052	X004	47	-2.3118	0.0458	X005	39	3.5780	0.0220	X006	31	35.4529	0.1246
X002 X007	$\frac{31}{31}$	-33.9820 -19.3318	0.1052 0.0601	X004 X008	$\frac{47}{15}$	-2.3110 -125.3216	$0.0458 \\ 0.2421$	X005 X009	$\frac{39}{11}$	-6.1573	0.0220 0.0293	X010	$\frac{31}{23}$	4.6521	0.1240 0.2299
X011	$\frac{31}{23}$	-19.3318 28.2746	0.0001 0.1214	X012	$15 \\ 15$		1.0710	X009 X017			0.0293 0.0048	X010		0.5155	0.2299 0.0053
			0			465.3961			5	0.4079	0.00-0		5	0.0-00	0.0000
X020	35_{11}	-0.2799	0.1400	X022	$\frac{39}{15}$	0.1790	0.0048	X023	23	0.9465	0.0105	X024	31	0.6635	0.0258
X025	31	-5.3173	0.0256	X026	15_{-15}	-587.1377	1.2820	X027	11	-4.3023	0.0166	X028	23	-11.7051	0.0312
X029	$\frac{23}{22}$	17.0434	0.0430	X030	$15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\$	18.8327	0.1307	X036	5	2.1506	0.0030	X038	5	-0.9682	0.0022
X040	23	0.5362	0.0036	X041	47	1.9855	0.0046	X042	31	3.1772	0.0066	X043	11	-2.3724	0.0124
X044	23	-8.8044	0.0232	X045	23	-0.2881	0.0294	X046	15	-8.9793	0.0909	X052	5	-5.7255	0.0081
X054	5	2.5318	0.0025	X056	5	-1.8669	0.0028	X057	17	-1.0600	0.0047	X058	11	-4.8284	0.0063
X059	17	1.6964	0.0040	X060	35	3.6874	0.0060	X061	35	2.6364	0.0084	X062	23	-0.6353	0.0133
X063	5	2.3682	0.0079	X064	5	0.1314	0.0060	X065	5	0.1766	0.0052	X066	11	4.5730	0.0120
X067	35	0.8282	0.0112	X068	23	4.4112	0.0123	X069	11	2.3579	0.0088	X070	23	6.8804	0.0174
X071	23	2.0306	0.0220	X072	15	0.4432	0.0439	X073	39	16.4023	0.0752	X074	39	21.2656	0.0737
X075	31	-52.8861	0.2211	X079	47	-2.4794	0.1004	X080	39	6.3429	0.0408	X081	31	38.9858	0.2133
X082	31	-50.9633	0.1835	X083	23	136.0695	0.4597	X084	15	10.9480	0.0359	X085	31	8.0807	0.0500
X086	31	11.1642	0.0406	X087	35	-0.5154	0.2684	X088	31	-29.2579	0.1473	X089	23	-365.8571	0.9782
X090	15	5.2876	0.0470	X092	31	8.7444	0.0435	X097	15	4.3940	0.0259	X098	31	0.2886	0.0190
X099	31	8.0924	0.0526	X100	35	-0.6524	0.2547	X104	47	5.1315	0.0366	X105	31	4.9794	0.0372
X106	35	17.6100	0.0920	X107	31	-24.2167	0.1383	X108	23	-355.2919	0.9930	X109	15	1.0280	0.0226
X110	31	4.0436	0.0294	X111	31	4.8049	0.0207	X112	35	17.3563	0.1231	X113	31	-16.7136	0.0789
X114	$2\overline{3}$	-29.3829	0.3151	X124	$1\overline{7}$	-12.3978	0.0386	X126	$\tilde{35}$	5.9229	0.0350	X130	$\overline{35}$	5.9115	0.0264
X131	47	-0.1667	0.0363	X132	35	10.9981	0.0823	X133	15	2.6032	0.0226	X134	31	1.0672	0.0185
X135	31	1.9125	0.0213	X136	$\tilde{35}$	10.4033	0.0764	X137	$\bar{3}1$	11.5523	0.0764	X138	$2\overline{3}$	25.8442	0.2066
X139	$\tilde{23}$	99.1386	0.3072	X140	31	4.3251	0.0277	X141	$\tilde{35}$	-7.0427	0.2114	X142	$\overline{31}$	-17.7118	0.0789
X143	$\bar{23}$	-195.7388	0.5629	X144	23	9.3855	0.5761	X145	15	929.8793	2.3470	X146	$2\overline{3}$	-20.0316	0.0750
X147	11	2.0161	0.0020 0.0135	X148	$\bar{23}$	1.9408	0.0161	X149	11	-11.1951	0.0424	X150	$\bar{23}$	-5.4652	0.0316
X151	31	15.0203	0.1025	X152	$\bar{2}3$	-85.7328	0.2294	X153	$\overline{23}$	-85.8868	0.2188	X154	$\overline{15}$	-46.4777	0.7341
X155	11	4.1684	0.0107	X156	$\bar{23}$	3.1170	0.0141	X157	11	-21.8604	0.0753	X158	$\frac{10}{23}$	31.6657	0.0711
X159	$\overline{23}$	31.5837	0.0594	X160	$\bar{23}$	-122.0564	0.2747	X161	$\overline{23}$	$\frac{21.0001}{31.7185}$	0.1918	X162	15^{-10}	-225.8251	0.7195
X163	$\frac{20}{15}$	8.0473	0.0369	X164	$\frac{20}{11}$	-21.1957	0.1058	X167	$\frac{20}{17}$	3.9551	0.0526	X162	$15 \\ 15$	2.8872	0.0232
X169	11	34.6371	0.0309 0.1479	X170	$\overline{31}$	5.5015	0.0426	X171	$\frac{1}{23}$	-30.9698	0.0020 0.1136	X173	35^{10}	-3.9492	0.0252 0.0519
X103 X174	$\frac{11}{31}$	4.5300	0.0255	X175	23^{11}	22.2731	0.0420 0.1129	X176	5	0.9735	0.0168	X175 X177	11	1.8449	0.0313 0.0237
X181	5	-3.0563	0.0233 0.0117	X182	$\frac{23}{11}$	1.9156	0.0082	X183	$\frac{5}{5}$	2.4473	0.0103 0.0164	X184	$\frac{11}{23}$	6.0180	0.0237 0.0217
X181 X187	$\frac{5}{5}$	1.6021	0.00117 0.0098	X182 X188	$\frac{11}{23}$	2.3760	0.0082 0.0086	X185 X189	11	-6.8526	0.0104 0.0697	X190	$\frac{23}{23}$	-12.6108	0.0217 0.0615
X191	11^{-3}	0.6596	0.0098 0.0140	X192	$\frac{23}{23}$	2.3700 2.8687	0.0080 0.0160	X109 X193	11	-6.3484	0.0097 0.0579	X190 X194	$\frac{23}{23}$	-12.0108 -4.6499	0.0013 0.0423
V131	11	0.0090	0.0140	A192	20	2.0007	0.0100	A199	ΤT	-0.3484	0.0579	A194	20	-4.0499	0.0423

Table 3: diagrams which have at least one self-energy diagrams as a subdiagram. Photon mass is set to be $10^{-2}m_e$.

X211 X215 X219 X223 X228 X234	$17 \\ 5 \\ 23 \\ 23 \\ 31 \\ 31$	$3.1841 \\ 0.4671 \\ -24.8150 \\ 64.7598 \\ 4.0965 \\ 2.1198$	$\begin{array}{c} 0.0150\\ 0.0119\\ 0.1232\\ 1.0760\\ 0.0253\\ 0.0122 \end{array}$	X212 X216 X220 X224 X229 X236	$35 \\ 23 \\ 35 \\ 23 \\ 23 \\ 31$	$\begin{array}{r} -1.1120 \\ -0.4904 \\ -3.9293 \\ 5.0092 \\ -12.2259 \\ 0.9006 \end{array}$	$\begin{array}{c} 0.0164 \\ 0.0092 \\ 0.0650 \\ 0.0269 \\ 0.0667 \\ 0.0081 \end{array}$	X213 X217 X221 X226 X230 X237	$5 \\ 11 \\ 31 \\ 11 \\ 23 \\ 35$	$\begin{array}{r} -2.4731 \\ 6.8885 \\ 3.8682 \\ 1.4026 \\ -17.1385 \\ 4.3510 \end{array}$	$\begin{array}{c} 0.0138\\ 0.0383\\ 0.0258\\ 0.0132\\ 0.1040\\ 0.0318 \end{array}$	X214 X218 X222 X227 X233 X238	$ \begin{array}{r} 11 \\ 23 \\ 23 \\ 23 \\ 15 \\ 23 \end{array} $	$\begin{array}{c} 0.6360 \\ 0.4525 \\ 10.4062 \\ 0.9139 \\ -1.2406 \\ 1.3740 \end{array}$	$\begin{array}{c} 0.0092 \\ 0.0292 \\ 0.1213 \\ 0.0102 \\ 0.0087 \\ 0.0106 \end{array}$
X234 X239	$\frac{31}{31}$	-2.7690	$0.0122 \\ 0.0253$	X230 X240	$\frac{31}{23}$	19.1264	$0.0001 \\ 0.0818$	X241	$\frac{33}{23}$	69.1008	0.0318 0.1873	X238 X242	$\frac{25}{35}$	-2.2962	0.0100 0.0969
X243	$\tilde{23}$	-124.1828	0.2690	X244	$\overline{23}$	-17.1150	0.0547	X245	$\frac{-3}{23}$	1.9927	0.0101	X246	$\tilde{23}$	-4.8722	0.0267
X247	23	46.2950	0.1284	X248	23	-8.1875	0.0359	X249	11	2.9287	0.0083	X250	23	0.6967	0.0122
X251	23	0.0271	0.0083	X252	35	-8.4378	0.0548	X253	23	-4.9590	0.1141	X254	23	-0.4380	0.0229
X255	23	-45.7515	0.1178	X256	15	-52.4348	0.2768	X257	5	2.5577	0.0247	X258	5	0.5495	0.0124
X261	5	5.7366	0.0157	X262	5	-2.7083	0.0099	X263	5	-0.7775	0.0123	X264	11	4.1991	0.0145
X267	5	-0.3523	0.0066	X268	11	0.5996	0.0094	X269	11	0.1485	0.0173	X270	23	2.2180	0.0225
X273	11	-1.7410	0.0120	X274	23	1.1915	0.0119	X288	5	4.2431	0.0138	X289	5	-0.9758	0.0094
X290	5	-3.6025	0.0098	X291	11	0.7041	0.0083	X292	11_{-}	0.7999	0.0068	X293	23	-0.3417	0.0090
X294	5	-1.3798	0.0134	X295	5	3.6416	0.0140	X298	5	-1.7040	0.0075	X299	5	0.5191	0.0067
X300	11	12.0268	0.0223	X301	23	1.2879	0.0202	X302	23	-1.6356	0.0212	X306	11	-1.9796	0.0095
X307	23	0.5661	0.0067	X308	5	2.0384	0.0093	X309	11	10.0127	0.0245	X310	23	-1.8687	0.0166
X311	11	0.2001	0.0160	X312	23	1.5270	0.0152	X315	11	-0.8510	0.0085	X316	$\frac{23}{23}$	0.3150	0.0077
X317	23	-4.7085	0.0185	X318	$\frac{35}{22}$	-11.7594	0.0522	X319	35_{11}	-1.1479	0.0118	X323	$\frac{23}{23}$	0.0986	0.0076
X324	35_{11}	2.3411	0.0196	X325	23	0.9085	0.0356	X326	11	-11.7344	0.0539	X327	23	-3.4117	0.0372
X328	11	0.1028	0.0070	X329	23	-0.6780	0.0062	X330	11	-4.7766	0.0207	X331	23	0.6541	0.0198
X332	23	-5.3999	0.0410	X333 X227	23	-12.5433	0.0390	X334	23	-81.8098	0.1516	X335	23	6.5450	0.0174
X336	5	-0.9022	0.0049	X337	11	-0.9572	0.0057	X338	11	-1.7703	0.0094	X339	23	0.6676	0.0079
X340	23	-2.0538	0.0186	X341	23	1.8776	0.0037	X342	23	0.1372	0.0216	X365	5	6.9251	0.0075
X366	11	-0.5526	0.0052	X368	11	1.2622	0.0069	X369	23	-1.5311	0.0078	X374	35	2.1049	0.0080
X375	23	6.0401	0.0106	X380 X285	23	1.4643	0.0055	X382	$\frac{35}{23}$	-2.0761	0.0071	X383 V287	5	-4.0400	0.0103
X384 X388	$\frac{11}{23}$	$1.3371 \\ -0.0936$	$\begin{array}{c} 0.0102 \\ 0.0056 \end{array}$	$\begin{array}{c} { m X385} \\ { m X389} \end{array}$	$\frac{11}{23}$	$-0.7888 \\ -0.5507$	$\begin{array}{c} 0.0066 \\ 0.0127 \end{array}$	X386	20	1.3032	0.0094	X387	23	-7.8607	0.0162

- Statistics of running α^5 code:
 - \star 10 20 minutes for generation of a FORTRAN code for each diagram on DEC $\alpha.$
 - \star Typical integral consists of 90,000 lines of FORTRAN code occupying more than 6 Megabytes.
 - * 10^6 sampling points × 20 iterations takes 5 7 hours on 32 CPU PC cluster.
 - Step V for residual renormalization is being carried out.
 - We will soon have a crude value of Set V.

5. Remaining task

- Next on schedule is treatment of IR divergence by IR div. subtraction method, which enables us to put $\lambda = 0$.
- The method developed for Set V enables us to evaluate Set III(a), Set III(b), and Set IV very quickly.
- Sets I(a, b, c, d, e, f), II(a, b, f), VI(a, b, c, e, f, i, j, k) had been evaluated previously.

T. Kinoshita and M. Nio, Phys. Rev. D 73, 053007 (2006)

- Remaining sets I(g, h, i, j), II(c, d, e), III(c), and VI(d, g, h) do not seem to present particular complication except possibly for I(i), I(j), II(e).
- We will have a complete α^5 term within few years.