V.A. Smirnov

Grobner bases as a tool to solve
reduction problems
for Feynman integrals:

a review of recent results

V.A. Smirnov

Nuclear Physics Institute of Moscow State University

Eisenach, April 25, 2006 — p.1



Reduction problem for Feynman integrals

A review of algorithmic approaches

Grobner bases and Buchberger algorithm
Solving reduction problem using Grobner bases
Examples and results

e o o o 0 @

Perspectives

Work done in collaboration with A.V. Smirnov
[A.V. Smirnov & V.A. Smirnov, JHEP 0601 (2006) 001;

A.V. Smirnov, JHEP 0604 (2006) 026;

V.A. Smirnov, hep-ph/0601268 (a short review);

A.G. Grozin, A.V. Smirnov and V.A. Smirnov, in preparation]
see also

http://www.srcc.msu.ru/nivc/about/lab/lab4 _2/index_eng.htm
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Reduction problem for Feynman integrals

A given Feynman graph I' — tensor reduction — various
scalar Feynman integrals that have the same structure of
the integrand with various distributions of powers of
propagators

d%; ... d%,
Flai,...,ap) = // o el
E& . L

d = 4 — 2¢, the denominators E, are either quadratic or
linear with respect to the loop momentap;, =k;, i =1,...,h
or to the independent external momenta

Ph+1 = q1,---, PN = qn Of the graph.
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Methods: analytical, numerical, semianalytical ...

An old analytical strategy:
to evaluate, by some methods, every scalar Feynman

iIntegral generated by the given graph.
A traditional strategy:

to derive, without calculation, and then apply integration by

parts (IBP) relations
between the given family of Feynman integrals as

recurrence relations.

A general integral from the given family is expressed as a
linear combination of some basic (master) integrals.
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The whole problem of evaluation—

# constructing a reduction procedure
# evaluating master integrals

No common definition of the master integrals.

After solving the reduction problem for a given family, we
know that these are master integrals because we see them.
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F(a1,...,ay) are functions of integer variables
ai,...,a, € N

F Is an infinitely dimensional linear space.
The simplest basis:

/ I\
Ha,l,...,an (Cbl, SR ,Cln) — 5a1,a’1 SR 50%,0,41

IBP:

Z&Z a1+b217-~~ an"‘bz,n): ;

Lorentz-invariance (LI) identities

V.A. Smirnov Eisenach, April 25, 2006 — p.6



symmetry relations, e.g.,
F(Cbl, Ce ,an) = (—1)d1a1+'“d”a”F(aa(1), Ce ,a(,(n)),
Boundary conditions:
F(ai,az,...,ap) =0whena;, <0,...q; <0

for some subset of indices i;;
parity conditions,. ..
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All these relations can be described as elements of the
adjoint vector space F*, i.e. the linear functionals on F:

reFr, feF —{(rf)

The simplest basis consists of 1

N 7y

<Hc>lz,<1,...,an7 f> — f(CL1, s ,CLn) '

IBP, LI, symmetry and boundary relations,. .. —
an infinitely dimensional vector subspace R C F*.
The set of solutions of all those relations:

S={feF:{r,fy=0VreR}
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The dimension of S might be infinite but, practically, it
appears to be finite.

An integral F'(ay,...,ay,) can be expressed via some other
integrals F(al,...,al), ..., F(a},..., a") if there exists an
element » € R such that

<7°,F>:FCL1,... —|—Zl€a1’ 7/FCL1,...CL/).
The notion of the master (irreducible) integral — a priority
between the points (aq,...,a,) — ordering.
(af,...,al) is lower than the sector of (aq,...,a,)

Feynman integrals are simpler, from the analytic point of
view, If they have more non-positive indices.
Solving IBP relations by hand — reducing indices to zero
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Sectors (‘topologies’):

2" regions labelled by subsets v C {1,...,n}:

oy ={(ar,...,an):a; >0 1f i€v, a; <0 If i & v}
Sector — direction {dy,ds,...,d,};
alld;arel1or—-1,and 1+ a; >0, -1+ a; <0

A direction {dy, ...d,} is lower than {d},...d} } if

dy <dy,...,d, <d

F(ai,...,an) > F(a},...,a,) if the sector of (a},...,a)) IS
lower than the sector of (ay,...,ay).

To define an ordering completely introduce it in some way
Inside the sectors. At least the corner point with a; = 1 and
a; = 0 IS lower than any other point in the given sector.
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F(ay,...,a,) 1S a master integral if there is no element
r € R acting on F' as

(r,F') = F(ai,...,a +Zka17 o Flay,....a})

where all the points (d,...,a’ ) are lower than (aq, ..., a,).
1 n
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A review of algorithmic approaches
Solving reduction by hand and in an algorithmic way.

‘Laporta’s algorithm’
[S. Laporta and E. Remiddi’'96; S. Laporta’00; T. Gehrmann and E. Remiddi’'01]

‘When increasing the total power of the denominator and
numerator, the total number of IBP equations grows faster
than the number of independent Feynman integrals.
Therefore this system of equations sooner or later becomes
overdetermined, and one obtains the possibility to perform
a reduction to master integrals’
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Let F; C F be the subspace of F generated by H,, .. .,
where | a; |[< t and R; be the intersection of R with the
subset of 7* generated by H;, ., where|a; |[<t.

The limit of the difference between the dimensions of F;
and R; equals the dimension of S, so that there is ¢t such
that R; has ‘enough’ relations to express any given integral
Fl(ay,...,ay) With | a; |[< t In terms of master integrals.

Various implementations:
#® one public version AIR
# several private versions

A lot of applications!
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V.A. Smirnov

Baikov’s method
The basic ingredient:

/ / s dwn (51317 e 7$n)](d_h_1)/2 ;

where P Is constructed for a given family of integrals
according to some rules and h Is the number of loops.
This representation is used to understand which integrals
are master integrals and to construct the corresponding
coefficient functions c¢;(ay, ..., a,)

Flai,...,ay) = Zci(al,...,an)li ,
)
[7; = F(ail, c .. ,am).

Eisenac h, April 25, 2006 — p.14



V.A. Smirnov

For a candidate for a master integral with a;1,...,a;, = 0 Or
1, use the basic parametric representation to construct a
function that satisfies the relations R and that vanishes if
(a1,...,an) 1S lower than (a1, ..., a;,) (in particular, If it
belongs to a lower sector).

Suppose that we know that the integrals with the indices
Al = (ai,...,a)), ..., A¥ = (a¥,...,af) are master integrals
and we constructed the correspondlng solutions of this type.

These functions form a basis of the solution space S:

F:Z/@CZ-.
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Substitute all A; and solve an upper-triangle system of
linear equations

F(Aj) =) kCi(Aj) fori <.

so the coefficients k; are expressed in terms of F/(A;).
k; and C; —
evaluation of any Feynman integral of the given class.

Applications:
[K.G. Chetrykin, talk at LL06; V.A. Smirnov and M. Steinhauser’'03; B.A. Kniehl, A.
Onishchenko, J.H. Piclum and M. Steinhauser’'06]
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V.A. Smirnov

Reduction using Grobner bases
Historically, suggested by O.V. Tarasov [0.V. Tarasov'98]

Reduce the problem to differential equations by introducing
a mass for every line,

CLii_I_ —> 87(312
Applications:
# Two-loop self-energy diagrams with five general
MasSes [O.V. Tarasov'04]
(the previous solution was reproduced [0.V. Tarasov'97])

#® Massless two-loop off-shell vertex diagrams
[F. Jegerlehner and O.V. Tarasov’'05]
(in agreement with the solution of
[T.G. Birthwright, E.W.N. Glover and P. Marquard’04] by Laporta’s

algorithm)
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Janet bases

This algorithm works (at the moment) only for Feynman
graphs with two lines.

One more approach based on Grobner bases
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Grobner bases and Buchberger algorithm

(classical definitions)

Let A =Clzy,...,z,| be the ring of polynomials of n
variables x1,....z, and Z C A be an ideal.

A classical problem: to construct an algorithm that shows
whether a given element g € A is a member of 7 or not.

This problem is solved easily if we have a Grobner basis
Ordering — reduction modulo basis

(a generalization of division of polynomial in the case of one
variable)
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A basis {fi, f2,..., fr} Is called a Grobner basis of Z if any

g

€ 7 I1s reduced by the reduction procedure to zero.

Grobner basis — an algorithm to verify whether an element

g

If
a
T
e

c A1s a member of Z.

a given basis is not a Grobner basis, use Buchberger
gorithm to construct it.

ne main procedure: taking S-polynomials of pairs of

ements of the given basis.

Let f; = wq; and f; = wq; where f; ; are highest terms; w, ¢;
and ¢; are monomials and w Is not a constant.

Define S(fi, fj) = fig; — fiq-

V.A. Smirnov
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Solving reduction problem using Grébner bases

Our algorithm: ordering on master integrals < ordering on
the algebra of shift operators appearing in IBP relations

8 1
d d .
/ e o o / d k‘ld k2 e o o 5k‘i (p] ]C.l,l o j‘\,]]v) O

ZC@F(CLl ‘|‘bi,17-~7@n‘|‘bi,n) =0

The left-hand sides of IBP relations fi-F=0
are determined by some operators f; expressed in terms of
the operators of multiplication by the indices «; and

operators Y; =itV =i:

(Y- F)(ay,...,an) = Flar,...,a; £ 1,... ay)
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Ordering with two additional conditions:
) for any a € N” not equal to (0,...0) one has a < (0,...0)
) forany a,b,c e N*onehasa <bifandonlyifa+c < b+ec.

E.g., lexicographical ordering:

A set (iq,...,i,) IS higher than a set (j1,...,Jn),

(il,...,in) — (]177]77,)

If there is | < n such that iy = j1, io = jo, ..., 4j_1 = j;—1 and
0> 1

Degree-lexicographical ordering: (i1,...,i,) = (j1,...,jn) If

DUk > D Jk O D i = jpand (i1, ....0n) > (J1,.--,Jn) IN
the sense of the lexicographical ordering.
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An ordering can be defined by a matrix.

Lexicographical, degree-lexicographical and reverse
degree-lexicographical ordering for n = 5:

(1 0 0 0 0) (1 1 1 1 1) (11 1 1 1)
0 1 0 0 0 1 0 0 0 0 1 1 1 1 0
o 0 1 0 of, Jo 1 0 o of, [1 1 1 0 o
0 0 0 1 0 0 0 1 0 0 1 1 0 0 0

\0 0 0 0 1/ \0 0 0 1 0 \1 0 0 0 o0

V.A. Smirnov Eisenach, April 25, 2006 — p.23



The ideal Z of IBP relations generated by the elements f;.
Let us think of a; > 0,

F(ay,a,...,a,) =Y Yo P11, 1)

In this case it is reasonable to get rid of the operators Y;—
by multiplying (from the left) the operators f; by sufficiently
large powers of the operators Y.

variables z; — shift operators Y;
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Ordering of points (ay,...,a,) IN N* —
ordering of monomials of operators Y;

For two monomials M; = Y* ' ... Y»~! and
My =Yyt
(My-F)(1,...,1) = (My- F)(1,...,1) ifand only If M} >~ M>

The reduction problem —

reduce the monomial Y7 ~*...Y;%~! modulo the ideal of
the IBP relations

a1—1 an—1 11—1 1n—1
Yl LY, = E ri fi + E Ci1,...,inY11 LY,
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Applyto Fata; =1,...,a, = 1to obtain

F(CLl,CLQ, S 7an) — ZCZL,ZTLF(217227 s 7/[’77/) )

where integrals on the right-hand side are master integrals.

Our algorithm: to build a set of special bases of the ideal of
IBP relations (Grobner-type bases)

Building elements with lowest possible degrees

<

master integrals with minimal possible degrees.
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Our algorithm

o sectors
oy ={(ar,...,an):a; >0 1f i€v, a; <0 If i & v}

# Inthe sector oy; 3, consider Y; as basic operators.

In the sector o, consider Y; for ¢ € v and Y~ for other ;
as basic operators.

# Construct sector bases (s-bases), rather than Grobner
bases for all the sectors.
An s-basis for a sector o, Is a set of elements of a basis
which provides the possibility of a reduction to master
Integrals and integrals whose indices lie in lower
sectors, i.e. o,» for v/ C v. (It is most complicated to
construct s-bases for minimal sectors.)
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# The construction can be terminated when the Grobner
basis Is not yet constructed but the ‘current’ basis
already provides us the needed reduction.

#® The basic operations are the same, i.e. calculating

S-polynomials and reducing them modulo current basis,
with a chosen ordering.

After constructing s-bases for all non-trivial sectors one
obtains a recursive (with respect to the sectors) procedure

to evaluate F'(aq,...,a,) at any point and thereby reduce a
given integral to master integrals.

Description of the algorithm (implemented Iin
Mathematica):
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Examples and results

P—————— s

3 4
S I
sa1YT = a1 +2ax+az+as—d+ (a1Y1 +a3Ys+asYs)Yy, =0,
sagYs = 2a1+az+az+as—d+ (a2Yo+azYs+asYs)Y] =0,
tagYs = a1 +ag+az+2a4—d+ (a1Y1 +a2Ye +a3Y3)Y, =0,
taaYs = ar+az+2a3+as—d+ (a1Y1 +aYa+asaYs)Y; =0,

where s = (p1 +p2)? and t = (p1 + p3)?
Other examples can be found In [A.V. Smirnov & V.A. Smirnov'06;

http://www.srcc.msu.ru/nivc/about/lab/lab4_2/index_eng.htm]
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boxla.nb

In[7]:= £1l= (a[l] +2 **a[2] +a[3] +a[4] -4d) +
(a[l] »* Y[1] +a[3] #*Y[3] +a[4] **Y[4]) *»*» Ym[2] - s **xa[l] »*»Y[1];
f2 = (2%x*a[l] +a[2] +a[3] +a[4] -4d) +
(a[2] *»*Y[2] +a[3] #*Y[3] +a[4] **Y[4]) *»*» ¥Ym[1l] -s**xa[2] »*»Y[2];
£3 = (a[l] +a[2] +a[3] +2**xa[4] -4d) +
(a[l] »* Y[1] +a[2] #*Y[2] +a[3] **Y[3]) *»*» Ym[4] -t **xa[3] »*»Y[3];
f4 = (a[l] +a[2] +2**xa[3] +a[4] -4d) +
(a[l] »* Y[1] +a[2] #*Y[2] +a[4] **Y[4]) »*» ¥Ym[3] -t **xa[4] »*»Y[4];

In[11] := RESTRICTIONS = {{-1, 0, -1, 0}, {-1, 0, 0, -1}, {0, -1, -1, 0}, {0, -1, 0, -1}}

out[11]= {{-1, O, -1, 0}, {-1, 0, O, -1}, {0, -1, -1, O}, {0, -1, O, -1}}

In[12] := startinglist = {£f1, £2, £3, £4}

out[12]= {-d+a[l] +2a[2] +a[3] +a[4] -sa[l]Y[1l]+a[l]Y¥Y[1l]¥Ym[2] +
a[3] Y[3] Ym[2] +a[4] Y[4] Ym[2], -d+2a[l] +a[2] +a[3] +a[4] -
sal[2] Y[2] +a[2] Y[2] Ym[1] +a[3] Y[3] Ym[1l] +a[4] Y[4] Ym[1],
-d+a[l] +a[2] +a[3] +2a[4] -ta[3]Y[3]+a[l] Y[1] Ym[4] +
al[2] Y[2] Ym[4] +a[3] Y[3] Ym[4], -d+a[l] +a[2] +2a[3] +a[4] -
tal[4] Y[4] +a[l] Y[1] ¥Ym[3] +a[2] Y[2] Ym[3] +a[4] Y[4] Ym[3]}

In[13] := SYMMETRIES = {{2, 1, 3, 4}, {1, 2, 4, 3}, {2, 1, 4, 3}}

out[13]= {{2,1, 3, 4}, {1, 2, 4, 3}, {2, 1, 4, 3}}



boxla.nb

Tn[14]:= BuildBasis[{1, 1, 1, 1},

N
oRr KRR
coRr R
o o o
.

No even restrictions set
No regularized lines
Initial data protected. Use ClearBasis to clear it and the basis from memory.
Dimension = 4

Using the code 76 search style (MinimizingLengthWhenSearchingQ = -1)
Evaluation limit is 200000
New element of length 9
Degree is {1, 0, 0, 0}

New element of length 9
Degree is {0, 1, 0, 0}

New element of length 9
Degree is {0, 0, 1, 0}

New element of length 9
Degree is {0, 0, 0, 1}

Saved element 1 of length 9
Saved element 2 of length 9
Saved element 3 of length 9
Saved element 4 of length 9
All tests done

Sorting

Permutation = {4, 3, 2, 1}
Sorting over

Evaluation time: 0.048991



boxla.nb

Tn[15]:= BuildBasis[{-1, 1, 1, 1},

R R R R
oRr KRR
coRr R
o O o R
-

No even restrictions set
No regularized lines
Dimension = 4

Using the code 76 search style (MinimizingLengthWhenSearchingQ = -1)
Evaluation limit is 200000
New element of length 9
Degree is {0, 0, 0, 0}

New element of length 9
Degree is {1, 1, 0, 0}

New element of length 9
Degree is {0, 0, 1, 0}

New element of length 9
Degree is {0, 0, 0, 1}

Saved element 1 of length 9
Saved element 2 of length 9
Saved element 3 of length 9
Saved element 4 of length 9
All tests done

Sorting

Permutation = {1, 4, 3, 2}
Sorting over

Evaluation time: 0.051992

11 1 1
In(16]:= BuildBasis[{1, 1, -1, 1}, i i 3 g ]
1 0 0 O
No even restrictions set
No regularized lines
Dimension = 4
Using the code 76 search style (MinimizingLengthWhenSearchingQ = -1)

Evaluation limit is 200000



boxla.nb

New element of length 9

Degree is {1, 0, 0, 0}

New element of length 9

Degree is {0, 1, 0, 0}

New element of length 10

Degree is {1, 0, 0, 0}

New element of length 9

Degree is {1, 0, 1, 0}

Saved element 1 of length 9

Saved element 2 of length 9

Test results: {True, True, False, False}
Sorting

Permutation = {2, 1, 3, 4}

Sorting over

Trying to reduce elements

Reducing basis element 4 of length 9
{1, 0, 1, 0}

{4, 1, 10, 3, 10}

{o, 1,1, 0}

Reduction over

Degree is {0, 0, 1, 1}

Element reduced. New length: 21

Test results: {True, True, False, False}
Sorting

Permutation = {1, 2, 3, 4}

Sorting over

Reducing basis element 2 of length 9
{1, 0, 0, 0}

{d, 3, 10, 1, 11}

{o, 1, 0, 0}



boxla.nb

same degree

{d, 1, 18, 1, 10}

{0, 0, 0, 0}

Reduction over

Degree is {0, 0, 0, 0}
Element reduced. New length: 21
Saved element 3 of length 21
Saved element 4 of length 21
All tests done

New element of length 9
Degree is {1, 0, 0, 0}
Sorting

Permutation = {2, 1, 3, 5, 4}
Sorting over

Evaluation time: 0.162975

11 1 1
Tn[17]:= BuildBasis[{-1, -1, 1, 1}, i i 3 g ]
1 0 0 O
No even restrictions set
No regularized lines
Dimension = 4
Using the code 76 search style (MinimizingLengthWhenSearchingQ = -1)

Evaluation limit is 200000
New element of length 9
Degree is {0, 1, 1, 0}

New element of length 9
Degree is {1, 0, 1, 0}

New element of length 9
Degree is {0, 0, 1, 0}

New element of length 9
Degree is {0, 0, 0, 1}

Saved element 3 of length 9



boxla.nb

Saved element 4 of length 9

Test results: {False, False, True, True}
Sorting

Permutation = {4, 3, 1, 2}

Sorting over

Trying to reduce elements

Reducing basis element 4 of length 9
{1, 0, 1, 0}

{4, 1, 10, 3, 10}

{1, 0, 0, 1}

Reduction over

Degree is {1, 0, 0, 1}

Element reduced. New length: 18

Test results: {False, False, True, True}
Sorting

Permutation = {1, 2, 4, 3}

Sorting over

Reducing basis element 4 of length 9
{0, 1,1, 0}

{d, 1, 10, 3, 10}

{0, 1, 0, 1}

Reduction over

Degree is {0, 1, 0, 1}

Element reduced. New length: 18

Test results: {False, False, True, True}
Sorting

Permutation = {1, 2, 4, 3}

Sorting over

RN O
NN O N
N O N R
oN N B

{1, 3}



boxla.nb

{0, 1,1, 0}

{d, 1, 24, 3, 10}

{0, 1, 0, 0}

New element of length 30
Degree is {0, 1, 0, 0}

Saved element 2 of length 30
Testing element 1

Testing element 2

Testing element 3

Testing element 4

Testing element 5

Test results: {False, True, True, True}
Sorting

Permutation = {1, 2, 5, 3, 4}
Sorting over

Trying to reduce elements

No elements reduced

B O NN O
N DN ON
N B O NN
N O N O
o N NN

{3, 4}

{0, 1, 0, 2}

New element of length 94

Degree is {0, 1, 0, 2}

Testing element 6

Test results: {False, True, True, True}
Sorting

Permutation = {1, 2, 3, 4, 5, 6}
Sorting over

Trying to reduce elements

No elements reduced



boxla.nb

o 2 0 0 1 1

2 0 2 2 2 2

0o 2 0 0 2 1

o 2 0 0 2 1

1 2 2 2 0 2

1 2 1 1 2 0
{1, 5}

{1, 0, 1, 0}

{d, 1, 24, 3, 10}

{1, 0, 0, 0}

New element of length 30
Degree is {1, 0, 0, 0}
Testing element 7

Saved element 1 of length 30
All tests done

Sorting

Permutation = {1, 2, 3, 7, 4, 5, 6}
Sorting over

Evaluation time: 0.6679

11 1 1
In(18]:= BuildBasis[{1, 1, -1, -1}, g (1J 1 i ]
0 0 0 1
No even restrictions set
No regularized lines
Dimension = 4
Using the code 76 search style (MinimizingLengthWhenSearchingQ = -1)

Evaluation limit is 200000
New element of length 9
Degree is {1, 0, 0, 0}

New element of length 9
Degree is {0, 1, 0, 0}

New element of length 9
Degree is {0, 1, 0, 1}

New element of length 9

Degree is {0, 1, 1, 0}



boxla.nb

Saved element 1 of length 9

Saved element 2 of length 9

Test results: {True, True, False, False}
Sorting

Permutation = {1, 2, 4, 3}

Sorting over

Trying to reduce elements

Reducing basis element 4 of length 9
{0, 1, 0, 1}

{4, 1, 10, 3, 10}

{1, 0, 0, 1}

Reduction over

Degree is {1, 0, 0, 1}

Element reduced. New length: 18

Test results: {True, True, False, False}
Sorting

Permutation = {1, 2, 4, 3}

Sorting over

Reducing basis element 4 of length 9
{0, 1,1, 0}

{4, 1, 10, 3, 10}

{1, 0, 1, 0}

Reduction over

Degree is {1, 0, 1, 0}

Element reduced. New length: 18

Test results: {True, True, False, False}
Sorting

Permutation = {1, 2, 4, 3}

Sorting over

B RN O
NN O N
N O N R
onN N R
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{1, 3}

{0, 1,1, 0}

{d, 1, 24, 3, 10}

{0, 0, 1, 0}

New element of length 30
Degree is {0, 0, 1, 0}

Saved element 3 of length 30
Testing element 1

Testing element 2

Testing element 3

Testing element 4

Testing element 5

Test results: {True, True, True, False}
Sorting

Permutation = {1, 2, 5, 3, 4}
Sorting over

Trying to reduce elements

No elements reduced

0 2 2 0 1
2 0 2 2 2
2 2 0 1 2
0 2 1 0 2
1 2 2 2 0

{3, 4}

{2, 0,1, 0}

New element of length 94

Degree is {2, 0, 1, 0}

Testing element 6

Test results: {True, True, True, False}
Sorting

Permutation = {1, 2, 3, 4, 5, 6}
Sorting over

Trying to reduce elements

No elements reduced
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In[19] :=

Out [19]=

P P O ODNM O
N NDNDNON
N O O N O
P M O o DN o
N O N NN
o N B RFE N

{1, 5}
{0, 1, 0, 1}
{d, 1, 24, 3, 10}
{0, 0, 0, 1}
New element of length 30
Degree is {0, 0, 0, 1}
Testing element 7
Saved element 4 of length 30
All tests done
Sorting
Permutation = {1, 2, 3, 7, 4, 5, 6}
Sorting over
Evaluation time: 0.644902
F[{1, 1, 1, 1}]
Direction set to {1, 1, 1, 1}
{0, 0, 0, 0}
Trying to reduce with lower members
G[{1, 1, 1, 1}] is a master integral
Coefficient: 1

Gr{1, 1,1, 1}]
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In[21]:= F[{1, 1,1, 2}1/. {&6[{1, 1, 1, 1}] » 11, G¢[{1, 1, O, O}] » I2, G[{O, O, 1, 1}] —» I3}
Direction set to {1, 1, 1, 1}
{0, 0, 1, 0}
{0, 0, 0, 0}
G[{1, 1, 1, 1}] is a master integral

-5+d
t

Coefficient: -

Direction set to {1, 1, -1, 1}

{1, 0, 0, 0}

{0, 0, 0, 1}

{0, 0, 0, 0}

Direction set to {1, 1, -1, -1}

{1, 0, 0, 0}

{0, 0, 0, 0}

Trying to reduce with lower members
G[{1, 1, 0, 0}] is a master integral

4 (-5+d) (-3 +d)

Coefficient: e-d 57t

(-5+d)I1 4 (-5+d) (-3+d) I2

ouelzt= - t (-6+d) s’ t

In[22]:= F[{1, 0,1, 2}]1 /. {G[{1, 1, 1, 1}] » I1, G[{1, 1, 0, O}] » I2, G[{0O, O, 1, 1}] » I3}
Direction set to {-1, 1, 1, 1}
{0, 0,1, 0}

Direction set to {-1, -1, 1, 1}

Trying to reduce with lower members
G[{0, 0, 1, 1}] is a master integral

2 (-3+d)

Coefficient:
t2

2 (-3+d) I3

out [22] = o
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In[23]:= F[{1, 1,0, 2}] /. {e[{1, 1,1, 1}]»1I1, &¢[{1, 1, 0, O}] > I2, G[{0, 0, 1, 1}] > I3}
Direction set to {1, 1, -1, 1}
{0, 0, 0, 1}
{0, 0, 0, 0}
Direction set to {1, 1, -1, -1}
{0, 0, 0, 0}
G[{1, 1, 0, 0}] is a master integral

4 (-3+4d)

Coefficient: m

4 (-3+4d) I2

Oout [23] = (—6+4d) s2

In[24]:= F[{2, 3, 4, 2}]
In[25]:= %

out[25]= -((-11+d) (-9+d) (-7+d) (-5+d) (-3 +4d)
(-1536 52 +544ds? -60d? s2 +23d% s?2 -12640st +4824dst-676d2 st +
4238 st-d*st-5760t2 +1776dt? -180d2 t2 +64d%t2) G[{0, 0, 1, 1}]) /
(3 (-8+d) (-6+d)s*t’?) - ((-11+d) (-9+4d) (-7+d) (-5+d) (-3+4d)
(53760 s> -20416ds>® +2864d% s®> -1763d° s®> +4d* s® +155520s2 £ -71712ds? t +
13056d? s £t -1184d> st +54d* s? £t -d°® s? £t +32256 st? -14400dst? +2320d% st? -
160d° st?2 +4d* st? -3072t% +1088d¢t> -120d2 3 +43d%¢t3)G[{1, 1, 0, 0}])/
7 5 1
(3 (-12+4d) (-8+4d) (-6+d) 8" £%) + 5=
((-11+d) (-10+d) (-9+d) (-7+d) (-5+4d)
(-5682 +4ds?-176st+24dst-d?st-72t2+6dt?)G[{1, 1,1, 1}])



Reduction of a family of Feynman integrals relevant to the
three-loop static quark potential [A.V. Smirnov and V.A. Smirnov’05]
A family of Feynman integrals with 9 indices

[A.V. Smirnov & A.G. Grozin, A.V. Smirnov and V.A. Smirnov, in preparation]

dk d?]
F(al, ce ey ag) — // (—2’0’k)a1(—2U°l)a2(—k2)a3(—12)a4[_(k — l)2]a5
(2v-r)_a9ddr
< | G

Eisenach, April 25, 2006 — p.30

V.A. Smirnov



Symmetry:
(12,347« 38)
Boundary conditions: F(ay, ..
sets of lines has non-positive indices: {5, 7}, {5,8}, {6, 7},

{6,8}, {7,8}, {3,4,6}.
Master integrals:

V.A. Smirnov

F(1,1,0,1,1,1,1,0,0),
F(1,1,0,0,0,1,1,1,0),
F(0,1,1,0,1,1,0,1,0

F(0,0,0,1,1,1,1,0,0
F(0,1,0,0,1,1,1,0,0),
F(0,0,0,0,0,1,1,1,0).

)

)
)
),
)
)
)

,ag) = 0 If one of the following

I, =F(1,1,1,1,0,0,1,1,0),

Iy =F(-1,1,1,0,1,1,0,1,0),
Is = F(0,1,0,0,0,1,1,1,0),

I; = F(0,2,0,0,1,1,1,0,0),

Eisenac h, April 25, 2006 — p.31
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Tn[13]:= BuildBasis[{-1, -1,

1
[y
~

_11 -11 ll ll 11 -1}1

, SearchStyle -» 0, UsingSymmetries - 1]

O o0OooooorRr
O o0oOooookr oRr
O o0oOoookHrHr ooRr
O oO0Oo0oOoOPkr oOooRr
O oO0OoOoOPr OOOOoOR
OO PRFrPR OOOOOHR
OPRr OOOOOOHR
O oO0OOo0Oo0Oo0OoOoooRr
H OO OoOOo0OOoOOoOOoo

Even restrictions set

No regularized lines

Initial data protected. Use ClearBasis to clear it and the basis from memory.
Dimension = 9

Local symmetries: {{{2, 1, 4, 3,5,6,8, 7,9}, {1,1,1,1,1,1,1,1, 1}}}
Using the code 100 search style (MinimizingLengthWhenSearchingQ = 0)
Evaluation limit is 200000

New element of length 6

Degree is {1, 0, 0, 0, 0, 0, 1, 0, O}

New element of length 6

Degree is {0, 1, 0, 0, 0, 0, O, 1, 0}

New element of length 6

Degree is {1, 0, 0, 0, 0, 0, 1, 0, O}

New element of length 9

Degree is {0, 0, 1, 0, 0, 0, 1, 0, 0O}

New element of length 9

Degree is {0, 0, 0, 1, 0, 0, 0, 1, 0}

New element of length 13

Degree is {0, 0, 0, 0, 0, 1, 0, 0, O}

New element of length 10

Degree is {0, 0, 0, 0, 1, 0, 1, 0, 0O}

New element of length 10

Degree is {0, 0, 0, 0, 1, 0, 0, 1, 0}

New element of length 11

Degree is {0, 0, 0, 0, 0, 0, 1, 0, O}
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New element of length 11

Degree is {0, 0, 0, 0, 0, 0, O, 1, O}

New element of length 11

Degree is {0, 0, 1, 0, 0, 1, 0, 0, O}

New element of length 11

Degree is {0, 0, 0, 1, 0, 1, 0, 0, 0}

Saved element 6 of length 13

Saved element 7 of length 11

Saved element 8 of length 11

Test results: {False, False, False, False, False, True, True, True, False}
Sorting

Permutation = {10, 9, 6, 8, 7, 5, 12, 4, 11, 2, 1, 3}
Sorting over

Trying to reduce elements

Reducing basis element 11 of length 6

{1, o0, 0, 0,0,0,1, 0, O}

{(d, 1, 7, 1, 12}

{1, o, 0, 0, 0,0,0,0,0}

Reduction over

Degree is {1, 0, 0, 0, 0, 0, O, 0, O}

Element reduced. New length: 17

Saved element 1 of length 17

Test results: {True, False, False, False, False, True, True, True, False}
Sorting

Permutation = {1, 2, 3, 11, 4, 5, 6, 7, 8, 9, 10, 12}
Sorting over

Reducing basis element 12 of length 6

{1, 0, 0, 0, 0,0,1, 0, O}

{d, 1, 7, 1, 12}

{0, 1,0, 0,0,0,0,1, 0}

{4, 1, 18, 1, 12}

{1, 0,0,0,0,0,0,0, 0}
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same degree

{d, 1, 28, 1, 18}

{0, 1, 0, 0, 0,0, 0,0, 0}

Reduction over

Degree is {0, 1, 0, 0, 0, 0, 0, 0, O}

Element reduced. New length: 19

Saved element 2 of length 19

Test results: {True, True, False, False, False, True, True, True, False}
Sorting

Permutation = {1, 2, 3, 12, 4, 5, 6, 7, 8, 9, 10, 11}
Sorting over

Reducing basis element 12 of length 6

{0, 1, 0, 0,0,0,0,1, 0}

{(d, 1, 7, 1, 12}

{0, 1, 0, 0,0,0,0,0,0}

same degree

Basis element 4 replaced

Degree is {0, 1, 0, 0, 0, 0, 0, 0, O}

{d, 1, 18, 1, 20}

{0, 0, 0, 0,0,1, 0, 0,1}

{d, 1, 7, 1, 14}

{0, o, 0, 0, 0, 0,1, 0, 1}

{d, 1, 19, 1, 12}

{o, o, 0, 0, 0,0,0,1, 1}

Reduction over

Degree is {0, 0, 0, 0, 0, 0, O, 1, 1}

Element reduced. New length: 20

Saved element 2 replaced, new length: 17

Test results: {True, True, False, False, False, True, True, True, False}
Sorting

Permutation = {1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

Sorting over
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Reducing basis element 12 of length 11
{0, 0,1, 0, 0,1, 0, 0, 0}

{d, 1, 12, 1, 14}

{0, 0,1, 0, 0, 0,1, 0, 0}

{d, 1, 24, 1, 12}

{0, 0, 1, 0, 0,0, 0,1, 0}

{1, 0, 0,0, 0,0,0,0,0}

same degree

Basis element 6 replaced

Degree is {1, 0, 0, 0, 0, 0, 0, O, O}
{d, 3, 26, 7, 18}

{0, 0,1, 0, 0, 0, O, O, O}

Reduction over

Degree is {0, 0, 1, 0, 0, 0, O, 0, O}
Element reduced. New length: 141
Saved element 3 of length 141

Test results: {True, True, True, False, False, True, True, True, False}
Sorting

Permutation = {1, 2, 3, 4, 12, 5, 6, 7, 8, 9, 10, 11}
Sorting over

Reducing basis element 12 of length 9
{0, 0,1, 0,0, 0,1, 0, 0}

{d, 1, 10, 1, 12}

{0, 0,1, 0, 0, 0, O, 0, 0O}

same degree

Basis element 5 replaced

Degree is {0, 0, 1, 0, 0, 0, 0, O, O}

{0, o, 0, 0, 0, 0,1, 0, 1}

Reduction over

Degree is {0, 0, 0, 0, 0, O, 1, 0, 1}
Element reduced. New length: 159

Saved element 3 replaced, new length: 21
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Test results: {True, True, True, False, False, True, True, True, False}
Sorting

Permutation = {1, 2, 3, 12, 4, 5, 6, 7, 8, 9, 10, 11}
Sorting over

Reducing basis element 12 of length 11

{0, 0,0,1,0,1, 0, 0, 0}

{4, 1, 12, 1, 14}

{0, 0, 0,1, 0,0,1, 0, 0}

{d, 1, 24, 1, 12}

{0, 0, 0,1, 0,0,0,1, 0}

{0, 1, 0, 0,0,0,0,0,0}

same degree

Basis element 7 replaced

Degree is {0, 1, 0, 0, 0, 0, 0, 0, O}

{4, 3, 26, 7, 18}

{0, 0, 0,1, 0,0, 0,0,0}

Reduction over

Degree is {0, 0, 0, 1, 0, 0, 0, O, 0}

Element reduced. New length: 141

Saved element 4 of length 141

Test results: {True, True, True, True, False, True, True, True, False}
Sorting

Permutation = {1, 2, 3, 4, 5, 12, 6, 7, 8, 9, 10, 11}
Sorting over

Reducing basis element 12 of length 9

{0, 0, 0,1, 0,0,0,1, 0}

{d, 1, 10, 1, 12}

{0, 0, 0,1, 0,0, 0,0,0}

same degree

Basis element 6 replaced

Degree is {0, 0, 0, 1, 0, 0, 0, O, O}

{0, 0,0,0,0,0,0,1, 1}
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Reduction over

Degree is {0, 0, 0, 0, 0, 0, O, 1, 1}

Element reduced. New length: 159

Saved element 4 replaced, new length: 21

Test results: {True, True, True, True, False, True, True, True, False}
Sorting

Permutation = {1, 2, 12, 3, 4, 5, 6, 7, 8, 9, 10, 11}
Sorting over

Reducing basis element 12 of length 10

{0, 0, 0, 0,1, 0,1, 0, 0}

{d, 1, 11, 1, 12}

{0, o, 0, 0,1, 0,0, 0, 0}

Reduction over

Degree is {0, 0, 0, 0, 1, 0, 0, 0, O}

Element reduced. New length: 22

Saved element 5 of length 22

Testing element 1

Testing element 2

Testing element 3

Testing element 4

Testing element 5

Testing element 6

Testing element 7

Testing element 8

Testing element 9

Testing element 10

Testing element 11

Testing element 12

Test results: {True, True, True, True, True, True, True, True, False}
Sorting

Permutation = {1, 2, 3, 4, 5, 6, 12, 7, 8, 9, 10, 11}

Sorting over
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Reducing basis element 12 of length 10

{0, 0, 0, 0,1, 0, 0,1, 0}

{d, 1, 11, 1, 12}

{0, 0, 0, 0,1, 0,0, 0,0}

Reduction over

Degree is {0, 0, 0, O, 1, 0, 0, 0, O}

Element reduced. New length: 22

Testing element 12

Test results: {True, True, True, True, True, True, True, True, False}
Sorting

Permutation = {1, 2, 3, 4, 5, 6, 7, 12, 8, 9, 10, 11}
Sorting over

Symmetry number 1 of element 1 (length 11)

Equal to basis element 4

Symmetry number 1 of element 2 (length 20)

{0, 0, 0, 0, 0,0,1, 0, 1}

New element of length 20

Degree is {0, 0, 0, 0, 0, 0, 1, 0, 1}

Testing element 13

Test results: {True, True, True, True, True, True, True, True, False}
Sorting

Permutation = {1, 2, 3, 4, 5, 13, 6, 7, 8, 9, 10, 11, 12}
Sorting over

Trying to reduce elements

No elements reduced

Symmetry number 1 of element 3 (length 159)

Equal to basis element 5
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NN NN DNDDNDDNDDNDDNDDNDNDRER O
NNNDNDNNDNDNDNDNDNDNDNDNDREOR
N NNDNNDNDNDNDDNDNDNDNORRE
N NN DNDDNDDNDDNDREREONDDNDNDN
NN DNDDNDNDNDDNDREOEREDNDDNDDN
N NNDNDNNDNDNDMNOREREDNDDNDN
N NN DNDNDNDONDNDDNDDNDNDN
NN NN RE ODNDNDDNDNDDNDDNDDN
NN NN OEFEDNDNDDNDNDDNDDNDDN
N NN ONDNDDNDDNDNDNDDNDNDDN
NN ONNDDNDDNDDNDNDNDDNDNDN
N O N DNDDNDDNDDNDDNDDNDNDDNDDNDDN
O N N N DNDDNDDNDNDDNDDNDDNDDNDDN

—
[y
N

—

{1, o, 0, 0, 0, 0, O, 0, O}
New element of length 20
Degree is {1, 0, 0, 0, 0, 0, 0, 0, O}
Testing element 14
Saved element 9 of length 20
All tests done
New element of length 17
Degree is {1, 0, 0, 0, 0, 0, 0, 0, O}
New element of length 17
Degree is {0, 1, 0, 0, 0, 0, 0, O, O}
Sorting
Permutation = {1, 2, 3, 4, 5,6, 7, 8, 9, 10, 11, 12, 16, 13, 14, 15}
Sorting over
Evaluation time: 6.27005
In[14]:= F[{-2, -2, -1, 0, -1, 2, 3, 4, -2}]
In[15]:= %

out [15] = 2 (-2+d) (576 +1864d+1010d? +4634d° -319d* -54d° +11d°) G[{0, 0, 0, 0, 0,1, 1,1, 0}]

342 (2+4d) (4+4d)



Examples of reduction:

3(d—4)(3d —10) . 3(d — 4)(3d — 10)

Pl 1,0)= - 8(d—5)(2d—9) ' 16(d—5)(2d — 9)I2
__([@d=3)Bd-10)3d=8) = 3(d—2)(3d—11)(3d ~10)(3d - 8) -
8(d—5)(3d —13)(3d — 11)°  64(d — 5)(2d — 9)(2d — 7)(3d — 13)
9(d — 4)(d — 2)(3d — 10)(3d — 8) 3(3d — 10)(3d —8) -
T 64(d—5)(2d — 9)(2d — 7)(3d — 13) fs = 32(d—5)(2d —9)(2d —7)" "’
F(1,...,1,-1) 3(d —3)(3d — 11) I

" 16(d — 5)(d — 4)(2d — 9)

(d —2)(2d — 7)(2d — 5) I 3(2d — 7)*(2d — 5)(3d — 11)(3d — 7)
8(d—3)(2d—9)(3d—13)"°  256(d—4)2(d — 3)(2d — 9) T




Perspectives

o The algorithm can works successfully at the level of
modern calculations, e.g., in problems with 12 indices.

o There are various interesting practical and
mathematical problems. Which orderings are optimal for
a given sector? What is the order of CPU time needed
for the construction of the corresponding s-basis? Wil
the algorithm work for a given problem?

o Further improvements are necessary for more
sophisticated calculations.

& Combining our algorithm with other ideas. Janet basis?

V.A. Smirnov Eisenac h, April 25, 2006 — p.33
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