New Four/Five Loop Results in QCD/QED

or
Four-loop massless propagators: applications in QCD/QED

K. Chetyrkin, Karlsruhe

based on recent results obtained with: P. Baikov, J. H. Kühn

$$
\text { LOOPS \& LEGS } 2006
$$

- Massless propagators and physics
- List of theoretical and programming tools in use
- New Results (and Puzzles) :

1. DIS: 4-loop anom. dimensions (and the matrix elements) of the non-siglet spin=twist=2 operator and the tensor current
2. Higgs $\rightarrow g g$ Decay to Order α_{s}^{5} in \mathbf{N}^{3} LO (4×4 loops)
3. scalar correlator in 5 loops: full result and applications
4. puzzles of the quenched QED β-function at $\mathbf{5}$ loops: is it really rational? Could it contain $\zeta(3)$ or $\zeta(4)$ or $\zeta(5)$ or $\zeta(6)$ or $\zeta(7)$?

- Conclusion

Massless propagators: central problem

$$
\Pi^{j j}\left(q^{2}=-Q^{2}\right)=i \int \mathrm{~d} x e^{i q x}\langle 0| T\left[j(x) j^{\dagger}(0)\right]|0\rangle
$$

related to the corresponding absorptive part $R^{j j}(s)$ through

$$
R^{j j}(s) \approx \Im \Pi^{j j}(s-i \delta)
$$

masslessness \longleftrightarrow simplicity:

5-loop $R(s)$ is reducible*

to 4-loop massless propagators (\equiv p-integrals) \leftarrow main object to compute

* (i) the same is true for for massive corrections like $\mathbf{m}_{\mathbf{q}}^{2} / \mathbf{s}$, etc.
/ J. Kühn, K.Ch $(91,94)$ /
(ii) any 5-loop anom. dim. or β-function in any theory reducible to 4-loop p-integrals /K. Ch., Smirnov (1984)/

Tool Box

- IRR / Vladimirov, (78)/ + IR R^{*}-operation /K. Ch., Smirnov (1984)/ + resolved combinatorics /K. Ch., (1997)/
- reduction to Masters: "direct and automatic" construction of CF's through $1 / D$ expansion-made with BAICER—within the Baikov's representation for Feynman integrals ${ }^{1}$
- all 4-loop master p-integrals are known analytically /P. Baikov and K.Ch. (2004)/
- computing time and required resources: could be huge (the price for full automatization); to cope with it we use parallel FORM /Vermaseren, Retey, Fliegner, Tentyukov, ... 2000 - ...)
* NO IBP identities are use at any step!
${ }^{1}$ Baikov, Phys. Lett. B385 (1996) 403; B474 (2000) 385; Nucl.Phys.Proc.Suppl.116:378381,2003

Warming up*: the current $\bar{\psi} \sigma_{\mu \nu} \psi$ in the 4 loops /has applications in the lattice and the QCD heavy quark effective theory/ The 4-loop piece of its $\overline{\mathrm{MS}}$ anomalous dimension reads:

$$
\begin{aligned}
\gamma_{T, 4}^{\mathrm{QCD}, \overline{\mathrm{MS}}=} & \frac{2208517}{41472}-\frac{7733}{3888} \zeta_{3}+\frac{319}{144} \zeta_{4}-\frac{10465}{972} \zeta_{5} \\
& +n_{f}\left[-\frac{1537379}{186624}-\frac{18979}{3888} \zeta_{3}+\frac{437}{432} \zeta_{4}+\frac{575}{216} \zeta_{5}\right] \\
& +n_{f}^{2}\left[\frac{9961}{93312}+\frac{115}{648} \zeta_{3}-\frac{5}{72} \zeta_{4}\right]+n_{f}^{3}\left[\frac{7}{15552}+\frac{1}{324} \zeta_{3}\right]
\end{aligned}
$$

Full agreement with previous (partial) results by / D. Broadhurst (1999), J. Gracey (2001)/ Also we have a result for the matrix element /important for MOM-like, more lattice fiendly renormalized schemes/

* was done at 2002 with both MINCER and BAICER, to test the latter; also we have found the Next To Renormalon contribution at 5 loop $\left(1 / N_{F}^{2}\right.$ term in the terminology of J. Gracey)
anomalous dim. and the matrix element of the $O_{2}=\bar{\psi} \gamma^{\{\mu} D^{\nu\}} \psi$ in 4 loops: ($\overline{\mathrm{MS}}$ scheme, $a=\alpha_{s} /(4 \pi), n_{f}=3$, Feynman gauge!)

$$
\begin{aligned}
& \gamma_{2}=\frac{32}{9} a+\frac{9440}{243} a^{2}+a^{3}\left[\frac{3936832}{6561}-\frac{10240}{81} \zeta_{3}\right] \\
& +a^{4}\left[\frac{1680283336}{177147}-\frac{24873952}{6561} \zeta_{3}+\frac{5120}{3} \zeta_{4}-\frac{56960}{243} \zeta_{5}\right] \\
& <q\left|O_{2}\right| q>=1-\frac{140}{27} a+a^{2}\left[-\frac{113995}{1458}+\frac{280}{27} \zeta_{3}\right] \\
& +\quad a^{3}\left[-\frac{126410231}{52488}+\frac{1562656}{2187} \zeta_{3}+\frac{4067}{81} \zeta_{4}-\frac{21100}{243} \zeta_{5}\right] \\
& +\quad a^{4}\left[-\frac{762284085865}{7558272}+\frac{20199525605}{472392} \zeta_{3}-\frac{3495127}{1458} \zeta_{3}^{2}+\frac{30620959}{34992} \zeta_{4}\right. \\
& + \\
& \left.\frac{80119519}{8748} \zeta_{5}-\frac{462575}{486} \zeta_{6}-\frac{105149513}{11664} \zeta_{7}\right]
\end{aligned}
$$

Some numerics

$$
\gamma_{2}=\frac{8}{9}\left(a_{s}+2.731 a_{s}^{2}+7.876 a_{s}^{3}+28.7067 a_{s}^{4}\right)
$$

$<q\left|O_{2}\right| q>\overline{\mathrm{MS}}=1-1.296 a_{s}-4.107 a_{s}^{2}-24.768 a_{s}^{3}-205.205 a_{s}^{4}$
$<q\left|O_{2}\right| q>^{\text {G-scheme }}=1-0.18512 a_{s}-0.826 a_{s}^{2}-5.687 a_{s}^{3}-12.495 a_{s}^{4}$

Higgs Boson \rightarrow the Last Missing Piece of the SM

its mass M_{H} is constrained by experiments + theoretical considerations

$100 \mathrm{GeV}<\mathrm{M}_{\mathrm{H}}<200 \mathrm{GeV}$

within this mass range the gluon fusion $\mathrm{H} \rightarrow \mathrm{gg}$ has the largest cross-section at both Tevatron and LHC

Higgs gluon fusion and its cross-process $H \rightarrow g g$ are extremely interesting also from theoretical point of view:

$$
\mathcal{L}_{\text {eff }}=-\mathbf{2}^{1 / 4} \mathbf{G}_{\mathrm{F}} \mathbf{H} \mathbf{C}_{1}\left(\alpha_{\mathrm{s}}, \ln \frac{\mu^{2}}{\mathbf{M}_{\mathrm{t}}^{2}}\right) \mathbf{G}_{\mu \nu}^{\mathrm{a}} \mathbf{G}_{\mu \nu}^{\mathrm{a}}
$$

Hgg coupling is a device to count the number of heavy fermion generations, it is even sensitive to quark isodublets with degenerate masses

Theoretically very demanding process:

- Born approximation starts from one loop and $\sim \alpha_{s}^{2}$, e.g. :

$$
\boldsymbol{\Gamma}_{\text {Born }}(\mathbf{H} \rightarrow \mathbf{g g})=\frac{\mathbf{G}_{\mathbf{F}} \mathbf{M}_{\mathbf{H}}^{3}}{36 \pi \sqrt{\mathbf{2}}}\left(\frac{\alpha_{\mathbf{s}}(\mu)}{\pi}\right)^{2}
$$

- which leads to a strong scale dependence and to an utmost importance of higher order corrections
- a lot of efforts devoted to evaluate higher order QCD effects during last 10-15 years:
for decay:
NLO: T. Inami, T. Kubota, and Y. Okada,Z. Phys. C 18, 69 (1983).
NNLO: K. Ch., B. Kniehl, M. Steinhauser, PRL, 79 (1977) 353
for gluon fusion
NLO: Z. Phys. C 18, 69 (1983); TS. Dawson, Nucl. Phys. B 359, 283 (1991); A. Djouadi, M. Spira and P. M. Zerwas, Phys. Lett. B 264, 440 (1991).
NNLO: R. V. Harlander and W. B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002); C. Anastasiou and K. Melnikov, Nucl. Phys. B 646, 220 (2002) V. Ravindran, J. Smith and W. L. van Neerven, Nucl. Phys. B 665, 325 (2003);

Net Effects of Higher Orders

- indeed NLO results to a 60-70\% increase of the both $\sigma(p p \rightarrow H+X)$ and $\Gamma_{\text {Born }}(H \rightarrow g g)$ while NNLO adds approximately about 20% more (for both, the production and decay rates!)
- even at NNLO the residual scale dependence amounts to about 15-20\% (and again for both processes)
- note the striking similarity of QCD radiative corrections to the Higgs gluon fusion and Higgs gluon decay!

Very recently as a spin-off of the heroic calculation of the 3-loop splitting function ${ }^{\star}$ S. Moch and A. Vogt have succeeded even in finding "leading" set of NNNLO corrections to $\sigma(g g \rightarrow H)$. This leads to a significant stabilization of the scale dependence: with $\mu=M_{H} / 2-2 M_{H}$ the relative change of the production cross-section is now about 4\% only!

* / S. Moch, J.A.M. Vermaseren and A. Vogt (2004-2005)/

Another important observation was recently made by Anastasiou, Melnikov and Petriello (hep-ph/0509014):
"We point out that the appropriate uncertainty in the $g g \rightarrow H$ channel which enters the analysis of Higgs couplings should instead be $\pm 5 \%$, which is smaller by a factor of four.

This reduction relies upon the observation that the theoretical input for the Higgs coupling determination is the ratio

```
\sigmagg
```

The QCD corrections to $\sigma_{g g}^{S M}$ and $\Gamma_{g g}^{S M}$ track each other, and a large portion of the uncertainty cancels when the ratio is taken"
Even working only in NNLO they conclude: "Consequently, the ratio of these two quantities has a theoretical uncertainty smaller than the uncertainty in the cross section alone by a factor of two."
$H g g$ coupling in the heavy top-quark limit is described by an extra term in the $n_{f}=5$ effective topless Lagrangian $\left(\alpha_{s}^{\prime} \equiv \alpha_{s}^{(5)}, \alpha_{s} \equiv \alpha_{s}^{(6)}\right)$

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QCD}}^{\mathrm{n}_{\mathrm{f}}=5}-2^{1 / 4} \mathrm{G}_{\mathrm{F}}^{1 / 2} \mathrm{HC}_{1}\left[\mathrm{O}_{1}^{\prime}\right], \quad \mathrm{O}_{1}^{\prime}=\mathrm{G}_{\mathrm{a} \mu \nu}^{0 \prime} \mathrm{G}_{\mathrm{a}}^{0 / \mu \nu}
$$

Due to the optical theorem:

$$
\Gamma(\mathbf{H} \rightarrow \mathbf{g g})=2 \mathrm{G}_{\mathrm{F}} \mathbf{C}_{1}^{2} \mathbf{M}_{\mathbf{H}}^{3} \mathbf{R}^{\mathrm{GG}}\left(\mathbf{M}_{\mathbf{H}}^{2}\right), \quad \mathbf{R}^{\mathrm{GG}}\left(\mathbf{q}^{2}\right) \equiv \frac{\pi}{2 \mathbf{q}^{4}} \operatorname{Im} \Pi^{\mathrm{GG}}\left(\mathbf{q}^{2}\right)
$$

where

$$
\boldsymbol{\Pi}^{\mathrm{GG}}\left(\mathbf{q}^{2}\right)=\int \mathrm{e}^{\mathrm{iqx}}\langle\mathbf{0}| \mathbf{T}\left(\left[\mathbf{O}_{1}^{\prime}\right](\mathbf{x})\left[\mathbf{O}_{1}^{\prime}(\mathbf{0})\right]\right)|\mathbf{0}\rangle \mathrm{dx}
$$

Important: the coef. function C_{1} comes from massive tadpoles and known since long /K.Ch, B. Kniehl, M.Steinhauser (1997)/
Π^{GG} obviously from massless propagator; \mathbf{N}^{3} LO means 4 loops for both

Π^{GG} is contributed by 10240 4-loop diagrams:

- all diagrams are "native", no need for IR transformation and no squared propagator \longleftarrow simple task for BAICER ${ }^{\star}$
- done for about only 4 weeks of work of SGI cluster ${ }^{\dagger}$
- in numerical form $R^{G G}$ reads $\left(\mu^{2}=\mathbf{q}^{2}, \mathbf{a}_{\mathbf{s}}=\alpha_{\mathbf{s}} / \pi\right)$

$$
\mathbf{R}^{\mathrm{G}}=1+12.4167 \mathrm{a}_{\mathrm{s}}+68.6482 \mathrm{a}_{\mathrm{s}}^{2}-212.447 \mathrm{a}_{\mathrm{s}}^{3}
$$

* set of FORM3 programs implementing $1 / D$ expansion to express any 4-loop massless propagator in terms of masters
\dagger cmp. to 15(!) months taken by five loop SS-correlator (due to resulting after IR transformations non-native 4-loop diagrams)

RESULTS for K FACTOR

$\boldsymbol{\Gamma}(\mathbf{H} \rightarrow \mathbf{g g})=\boldsymbol{\Gamma}_{\text {Born }}(\mathbf{H} \rightarrow \mathbf{g g}) \mathbf{K}, \quad \mu=\mathbf{M}_{\mathbf{H}}, \quad \mathbf{a}_{\mathrm{s}}^{\prime} \equiv \alpha_{\mathbf{s}}^{(\mathbf{5})} / \pi$

$$
\begin{aligned}
& \mathbf{K}=\mathbf{1}+\mathbf{1 7 . 9 1} \mathbf{a}_{\mathrm{s}}^{\prime}+\left(\mathbf{1 5 6 . 8}-\mathbf{5 . 7 1} \ln \frac{\mathbf{M}_{\mathbf{t}}^{2}}{\mathbf{M}_{\mathbf{H}}^{2}}\right)\left(\mathbf{a}_{\mathrm{s}}^{\prime}\right)^{2} \\
& +\left(467.9-122.4 \ln \frac{\mathbf{M}_{\mathrm{t}}^{2}}{\mathbf{M}_{\mathrm{H}}^{2}}+10.9 \ln ^{2} \frac{\mathbf{M}_{\mathrm{t}}^{2}}{\mathbf{M}_{\mathrm{H}}^{2}}\right)\left(\mathrm{a}_{\mathrm{s}}^{\prime}\right)^{3}
\end{aligned}
$$

for $M_{t}=175 \mathrm{GeV}, M_{H}=120 \mathrm{GeV}$ and $\alpha_{s} / \pi=.036$

$$
\begin{aligned}
\mathrm{K}=1 & +17.9167 \mathrm{a}_{\mathrm{s}}^{\prime}+152.5\left(\mathrm{a}_{\mathrm{s}}^{\prime}\right)^{2}+381.5\left(\mathrm{a}_{\mathrm{s}}^{\prime}\right)^{3} \\
& =1+0.65575+0.2043+0.0187
\end{aligned}
$$

Depedence of $\Gamma(H \rightarrow g g)(\mu) / \Gamma(H \rightarrow g g)\left(M_{H}\right)$ on the renormalization scale $\mu=M_{H} / 2-2 M_{H}$ for $M_{H}=120 \mathrm{GeV}$ and $M_{t}=175 \mathrm{GeV}$ $\delta \Gamma / \Gamma=$ (residual scale dependence)

LO: $\pm 24 \%$ NLO: $\pm 22 \%$ NNLO: $\pm 10 \%$ NNNLO: $\pm 3 \%$!

Scalar Correlator in 5 loops and Higgs Decay into b-quarks

Higgs boson decays into quark-antiquark pair $(\bar{f} f)$ via its coupling to the corresponding quark scalar current:

$$
\begin{equation*}
\Gamma(H \rightarrow \bar{f} f)=\frac{G_{F} M_{H}}{4 \sqrt{2} \pi} m_{f}^{2} \widetilde{R}\left(s=M_{H}^{2}\right) \tag{1}
\end{equation*}
$$

where $\widetilde{R}(s)=\operatorname{Im} \widetilde{\Pi}(-s-i \epsilon) /(2 \pi s)$ is the absorptive part of the scalar two-point correlator:

$$
\widetilde{\Pi}\left(Q^{2}\right)=(4 \pi)^{2} i \int d x e^{i q x}\langle 0| T\left[J_{f}^{\mathrm{S}}(x) J_{f}^{\mathrm{S}}(0)\right]|0\rangle
$$

Consider Adler function:

$$
\begin{gathered}
\widetilde{D}\left(Q^{2}\right)=\frac{Q^{2}}{6} \frac{\mathrm{~d}}{\mathrm{~d} Q^{2}} \frac{\widetilde{\Pi}\left(Q^{2}\right)}{Q^{2}}=\int_{0}^{\infty} \frac{Q^{2} \widetilde{R}(s) d s}{\left(s+Q^{2}\right)^{2}} \\
\widetilde{D}\left(Q^{2}\right)=1+\sum_{i=1}^{\infty} \widetilde{d}_{i} a_{s}^{i}\left(Q^{2}\right), \quad \tilde{R}(s)=1+\sum_{i=1}^{\infty} \tilde{r}_{i} a_{s}^{i}(s)
\end{gathered}
$$

$$
\begin{aligned}
& d_{4}=n_{f}^{3}\left[-\frac{520771}{559872}+\frac{65}{432} \zeta_{3}+\frac{1}{144} \zeta_{4}+\frac{5}{18} \zeta_{5}\right] \\
+ & n_{f}^{2}\left[\frac{220313525}{2239488}-\frac{11875}{432} \zeta_{3}+\frac{5}{6} \zeta_{3}^{2}+\frac{25}{96} \zeta_{4}-\frac{5015}{432} \zeta_{5}\right] \\
+ & n_{f}\left[-\frac{1045811915}{373248}+\frac{5747185}{5184} \zeta_{3}-\frac{955}{16} \zeta_{3}^{2}-\frac{9131}{576} \zeta_{4}\right. \\
+ & \left.\frac{41215}{432} \zeta_{5}+\frac{2875}{288} \zeta_{6}+\frac{665}{72} \zeta_{7}\right] \\
+ & {\left[\frac{10811054729}{497664}-\frac{3887351}{324} \zeta_{3}+\frac{458425}{432} \zeta_{3}^{2}\right.} \\
+ & \left.+\frac{265}{18} \zeta_{4}+\frac{373975}{432} \zeta_{5}-\frac{1375}{32} \zeta_{6}-\frac{178045}{768} \zeta_{7}\right]
\end{aligned}
$$

the resulting \widetilde{R} reads

$$
\begin{align*}
\widetilde{R} & =1+5.6667 a_{s}+\left[35.94-1.359 n_{f}\right] a_{s}^{2} \\
& +a_{s}^{3}\left[164.14-25.77 n_{f}+0.259 n_{f}^{2}\right] \tag{2}\\
& +a_{s}^{4}\left[39.34-220.9 n_{f}+9.685 n_{f}^{2}-0.0205 n_{f}^{3}\right]
\end{align*}
$$

and with "kinematical" π^{2} terms expliciltly separated and underlined:

$$
\begin{aligned}
& \widetilde{R}=1+5.667 a_{s}+a_{s}^{2}\left[51.57-\underline{15.63}-n_{f}(1.907-\underline{0.548})\right] \\
+ & a_{s}^{3}\left[648.7-\underline{484.6}-n_{f}(63.74-\underline{37.97})+n_{f}^{2}(0.929-\underline{0.67})\right] \\
+ & a_{s}^{4}\left[9471 .-\underline{9431 .}-n_{f}(1454.3-\underline{1233.4})+n_{f}^{2}(54.78-\underline{45.10})\right. \\
& \left.-\quad n_{f}^{3}(0.454-\underline{0.433})\right]
\end{aligned}
$$

remarkable mutual cancellations in all n_{f} powers!!!

$$
\text { for } n_{f}=3 \longrightarrow a_{s}^{4}(5589-6126)=-536.8
$$

Application: Higgs Decay into b quarks

$$
\begin{aligned}
& \Gamma(H \rightarrow \bar{f} f)=\frac{G_{F} M_{H}}{4 \sqrt{2} \pi} m_{f}^{2} R^{S}\left(s=M_{H}^{2}\right) \\
R^{S}= & 1+5.66677 a_{s}+29.147 a_{s}^{2}+41.758 a_{s}^{3}-825.7 a_{s}^{4} \\
= & 1+0.2075+0.0391+0.0020-0.00148
\end{aligned}
$$

where we set $a_{s}=\alpha_{s} / \pi=0.0366$ (for the Higgs mass value $M_{H}=120 \mathrm{GeV}$)

Application: m_{s} from QCD sum rules for the PP-correlator*

$$
\mathbf{m}_{s}(2 \mathrm{GeV})=105 \pm\left. 5\right|_{\text {param }} \pm\left. 6\right|_{\text {nonp }} \pm\left. 7\right|_{\text {hadr }}
$$

param : $\Lambda_{Q C D}$, scale, condensates
nonpt : instanton correction
$h a d r$: hadronic input
important: new $\mathcal{O}\left(\alpha_{s}{ }^{4}\right)$ term amounts to a small
-2 MeV shift of $m_{s} \Longrightarrow$ good PT stability!
*K.Ch., A. Khodjamirian, hep=ph/0512295

The renormalization scale dependence of m_{s}

solid $O\left(\alpha_{s}^{4}\right)$, dashed $O\left(\alpha_{s}^{3}\right)$
$\simeq 2 \mathrm{MeV}$ increase of the central value, if the $O\left(\alpha_{s}^{4}\right)$ terms are removed

BEAUTY of β qQED

- it is scheme independent in all orders
- the coefficients are simple rational numbers at 1,2,3 and four loops: (4/3, 4,-2,-46)
- if

$$
\beta^{\text {qQED }}\left(\alpha_{0}\right) \equiv 0
$$

tnen $\alpha=\alpha_{0}$ leads to self-consistent finite solution of (massless) QED /K.Johnson and M. Baker, (1973)/

- its a piece ($\sim C_{F}^{4} a_{s}^{4}$) of the full $R(s)$, but its calculation is significantly(?) simpler
some people undestand the observed rationality of $\beta^{\text {qQED }}$ at 1,2,3 and 4 loops and hope that it is not a pure coincidence.
For instance: David Broadhurst: (in hep-th/9909185)
"Noting the profound work of Alain Connes and Dirk Kreimer [1],
one arrives at the nub of the rationality of quenched QED:
dimensional regularization of the derivative of
the scheme-independent single-fermion-loop Gell-Mann-Low function,
via Fock-Feynman-Schwinger formalism"
Clealy, for practioners of QFT (like me and my collaborators) there is a less profound way to contribute to the discussion: just to attack the next order!

β qQED

at 5 loops is done

Some Details about Complexity of Calculations

Scalar $R(s)$ versus. β qQED /both at 5 loops/

- CPU-time consumption: 5 vs. 25 years on 3GH PC
- Machines: [SGI cluster (of 32 parallel SMP CPU of 1.5 GH frequency each) + individual PC's]
\approx (very roughly) 25 vs. 50 effective 3 GH PC as maximum
- Calendar time: 15 vs. 7 months
- Basically computers were shared with other users, but in qQED case were used almost exclusively (summer time). Also for qQED algorithmical improvements implemented (factor 2 (or even more) in total).

Our result (still very :) preliminary) reads:

where \square stands for a digit
Comments :
the rationality spell seems to be broken at five loops
more testing is needed before we could make public the content of green boxes
any clarification of the sutiation with the rationality from the experts would be of
HUGE importance and help for us

CONCLUSION

PRESENT:

- systematic evaluation of 4-loop p-integrals \longleftrightarrow 5-loop UV counterterms +
- 4-loop anom.dim. and the $\langle q|$ matrix elements $\mid q>$ of tensor and twist $=$ spin $=2$ current +
- $\operatorname{Im} \Pi^{S S}$ in $\mathcal{O}\left(\alpha_{s}^{4}\right)(\mathrm{H} \rightarrow b \bar{b})+$
- $\Gamma\left(H \rightarrow 2\right.$ gluons) in $\mathcal{O}\left(\alpha_{s}^{5}\right)+$

FUTURE:

- $\operatorname{Im} \Pi^{V V}=R^{V}$ in $\mathcal{O}\left(\alpha_{s}^{4}\right)$ within reach
- calculations for higher spin (twist=2) operators /up to $\mathrm{n}=8$ / should be possible
- 5-loop QCD β-function and anomalous dimensions are in principle analytically computable

CONCLUSION /cont-ed/

BUT:

- Huge demands on computer power and storage!
- the calculation of the $\beta^{\text {qQED }}$ ($\equiv C_{F}^{4}$ part of $R(s)$) is finished BUT the testing is NOT!

The obtained result is puzzling and any help/hints from "theoreticial theory" is badly needed!

