The one-loop amplitude for six gluon scattering

In collaboration with Walter Giele and Keith Ellis

27 April 2006 – Loops and Legs, Eisenach, Germany

At the LHC most processes/backgrounds will involve many particles in the final state \Rightarrow important to know these to NLO

At the LHC most processes/backgrounds will involve many particles in the final state \Rightarrow important to know these to NLO

However, quite little is known at NLO when the number of legs increases

- $2 \rightarrow 2$: well established in the SM (QCD & EW) and beyond (MSSM)
- **9** $2 \rightarrow 3$: a variety of calculations, but some still missing
- $2 \rightarrow 4$: only very few full calculations exist
 - EW: $e^+e^- \rightarrow 4$ fermions [full]
 - EW: $e^+e^- \rightarrow HH\nu\bar{\nu}$ [full]
 - QCD: $gg \rightarrow 4g$ [virtual only]

Denner, Dittmaier '05

GRACE '05

Ellis, Giele, GZ '06

At the LHC most processes/backgrounds will involve many particles in the final state \Rightarrow important to know these to NLO

However, quite little is known at NLO when the number of legs increases

- $2 \rightarrow 2$: well established in the SM (QCD & EW) and beyond (MSSM)
- **9** $2 \rightarrow 3$: a variety of calculations, but some still missing
- **9** $2 \rightarrow 4$: only very few full calculations exist
 - EW: $e^+e^- \rightarrow 4$ fermions [full]
 - EW: $e^+e^- \rightarrow HH\nu\bar{\nu}$ [full]
 - QCD: $gg \rightarrow 4g$ [virtual only]

Denner, Dittmaier '05

GRACE '05

Ellis, Giele, GZ '06

What is the bottleneck?

A full *N*-particle NLO calculation requires

- the calculation of the tree graph rates with N + 1 partons
- the evaluation of the virtual corrections to N parton processes
- the calculation of a set of subtraction terms

A full *N*-particle NLO calculation requires

- the calculation of the tree graph rates with N + 1 partons
- \bullet the evaluation of the virtual corrections to N parton processes
- the calculation of a set of subtraction terms

While the calculation of LO amplitudes has been automated (ALPGEN, AMEGIC++, CompHEP, GRACE, HELAC, MadGraph, ...) and subtractions are also well understood, at NLO the bottleneck is the complexity of the *analytical evaluation of the one-loop contributions*

A full *N*-particle NLO calculation requires

- the calculation of the tree graph rates with N + 1 partons
- \bullet the evaluation of the virtual corrections to N parton processes
- the calculation of a set of subtraction terms

While the calculation of LO amplitudes has been automated (ALPGEN, AMEGIC++, CompHEP, GRACE, HELAC, MadGraph, ...) and subtractions are also well understood, at NLO the bottleneck is the complexity of the *analytical evaluation of the one-loop contributions*

A similar automation of one-loop calculations would constitute a major progress \Rightarrow this was our aim

We developed a seminumerical method to compute one-loop corrections

Ellis, Giele, GZ '05

We developed a seminumerical method to compute one-loop corrections Ellis,Giele,GZ '05

- A: use qgraf/form/mathematica to generate the amplitude
- N1: reduce tensor integrals to scalar integrals in higher D Davydychev '91
- N2: use a complete set of recursions relations to reduce all integrals to a set of analytically known basis integrals Giele & Glover '04

We developed a seminumerical method to compute one-loop corrections Ellis,Giele,GZ '05

- A: use qgraf/form/mathematica to generate the amplitude
- N1: reduce tensor integrals to scalar integrals in higher *D* Davydychev '91
- N2: use a complete set of recursions relations to reduce all integrals to a set of analytically known basis integrals Giele & Glover '04 *Note:*
- <u>....</u>
 - we compute ϵ expansions \Rightarrow no issue about IR divergeces
 - \bullet analytical expressions for the basis integrals \Rightarrow no loss of accuracy
 - we use expanded relations for exceptional configurations \Rightarrow results numerical stable in the whole phase space

details about the method in W. Giele's talk

- standard recursions assume $det(S_{ij}) \neq 0$ and $det(G_{ij}) \neq 0$
- not true for exceptional configurations (degeneracies or thresholds)
- exceptional configurations have zero measure, but recursions are unstable close to those points

- standard recursions assume $det(S_{ij}) \neq 0$ and $det(G_{ij}) \neq 0$
- not true for exceptional configurations (degeneracies or thresholds)
- exceptional configurations have zero measure, but recursions are unstable close to those points

IDEA: exploit the existence of a small parameter ($det(S_{ij})$ or $det(G_{ij})$) todefine expanded relationsGiele, Glover, GZ, L&L '04

very similar method used by Denner & Dittmaier

- standard recursions assume $det(S_{ij}) \neq 0$ and $det(G_{ij}) \neq 0$
- not true for exceptional configurations (degeneracies or thresholds)
- exceptional configurations have zero measure, but recursions are unstable close to those points

IDEA: exploit the existence of a small parameter ($det(S_{ij})$ or $det(G_{ij})$) todefine expanded relationsGiele, Glover, GZ, L&L '04

very similar method used by Denner & Dittmaier

An *iterative* application of expanded recursion relations allows one to reach *any predefined accuracy*, at the price of evaluating more integrals with higher D and σ

- standard recursions assume $det(S_{ij}) \neq 0$ and $det(G_{ij}) \neq 0$
- not true for exceptional configurations (degeneracies or thresholds)
- exceptional configurations have zero measure, but recursions are unstable close to those points

IDEA: exploit the existence of a small parameter ($det(S_{ij})$ or $det(G_{ij})$) todefine expanded relationsGiele, Glover, GZ, L&L '04

very similar method used by Denner & Dittmaier

An *iterative* application of expanded recursion relations allows one to reach *any predefined accuracy*, at the price of evaluating more integrals with higher D and σ

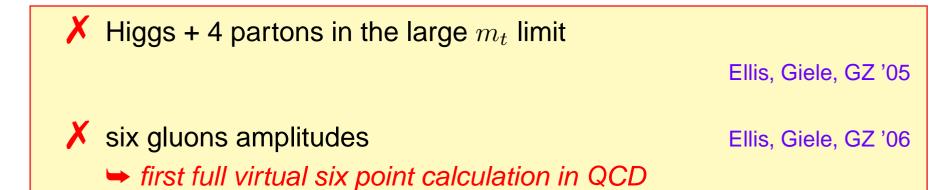
<u>Note:</u>

- general method, no analytical understanding of "singularities" needed
- method should hold unaltered in the presence of internal masses

Warmup: calculation of virtual corrections to

- ✓ four photon amplitudes
- ✓ four gluon amplitudes
- ✓ five gluon amplitudes

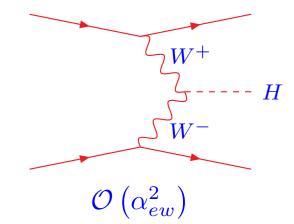
New results: calculation of virtual corrections to



Higgs plus dijets production via VBF is one of the most promising channels to measure the Higgs couplings at the LHC

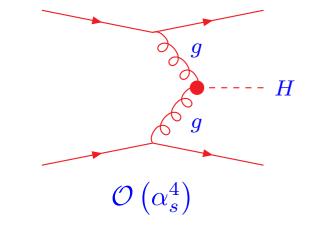
Two mechanisms:

Vector Boson Fusion



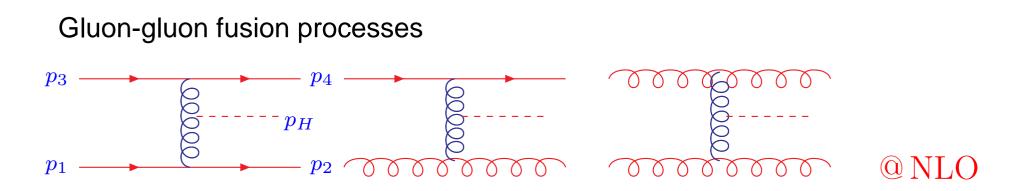
- x small QCD uncertainties
- x suitable for coupling measurements

Gluon Gluon Fusion

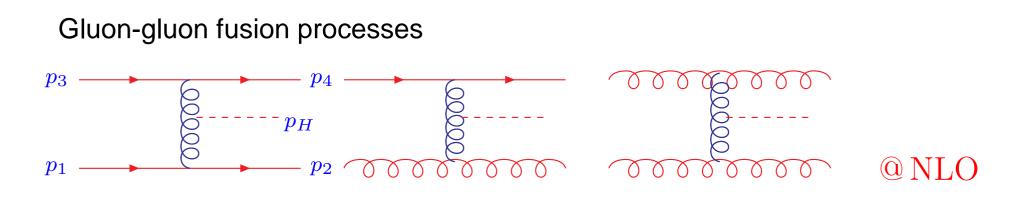


- X large QCD uncertainties
- X despite kinematical cuts remains dominant background

First application: Higgs plus four partons



First application: Higgs plus four partons



<u>Processes</u>

- $A: H \rightarrow q\bar{q}q'\bar{q}'$ 30 diagrams
- $B: H \rightarrow q\bar{q}q\bar{q}$ 60 diagrams
- $C: H \rightarrow q\bar{q}gg$ 191 diagrams
- $D: H \rightarrow gggg$ 739 diagrams

	$1/\epsilon^2$	$1/\epsilon$	1
A_B	0	0	12.9
$A_{V,A}$	-68.9	-114.6	120.0
$ A_{V,N} - A_{V,A} $	10^{-13}	$4 \cdot 10^{-12}$	$3 \cdot 10^{-11}$
B _B	0	0	858.9
$B_{V,A}$	-4580.6	-436.1	26471.0
$ B_{V,N} - B_{V,A} $	$5 \cdot 10^{-11}$	$4 \cdot 10^{-9}$	$4 \cdot 10^{-10}$
C_B	0	0	968.6
$C_{V,A}$	-8394.4	-19808.0	not known
$ C_{V,N}-C_{V,A} $ or $C_{V,N}$	$8 \cdot 10^{-10}$	$9 \cdot 10^{-9}$	-1287.9
D_B	0	0	$3.6\cdot 10^6$
$D_{V,A}$	$-4.3\cdot10^7$	$-1.0\cdot10^8$	not known
$ D_{V,N} - D_{V,A} $ or $D_{V,N}$	$8 \cdot 10^{-8}$	$9 \cdot 10^{-7}$	$-6.8\cdot10^7$

Notation:

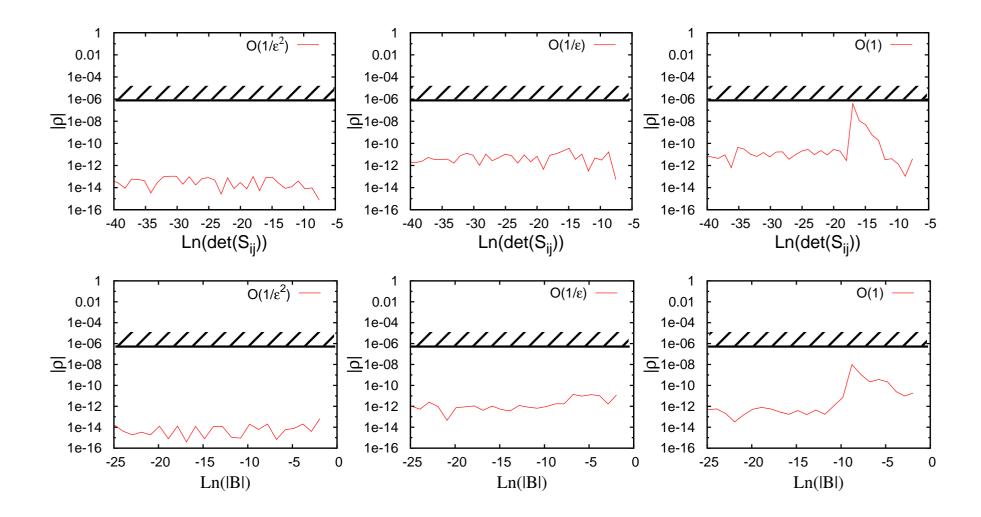
- A, B, C, D four processes
 - X_B : Born
- $X_{V,A}$: Virtual Analytical
- $X_{V,N}$: Virtual Numerical
- \Rightarrow full analytical calculation done for H + 4q
- \Rightarrow relative accuracy $\mathcal{O}\left(10^{-13}\right)$

	$1/\epsilon^2$	$1/\epsilon$	1
A_B	0	0	12.9
$A_{V,A}$	-68.9	-114.6	120.0
$\left A_{V,N}-A_{V,A} ight $	10^{-13}	$4 \cdot 10^{-12}$	$3 \cdot 10^{-11}$
B _B	0	0	858.9
$B_{V,A}$	-4580.6	-436.1	$26471.0 \\ 4 \cdot 10^{-10}$
$ B_{V,N} - B_{V,A} $	$5 \cdot 10^{-11}$	$4 \cdot 10^{-9}$	
C_B	0	0	968.6
$C_{V,A}$	-8394.4	-19808.0	not known
$ C_{V,N}-C_{V,A} $ or $C_{V,N}$	$8 \cdot 10^{-10}$	$9\cdot 10^{-9}$	-1287.9
D_B	0	0	$3.6 \cdot 10^6$
$D_{V,A}$	$-4.3\cdot10^7$	$-1.0\cdot10^8$	not known
$ D_{V,N} - D_{V,A} $ or $D_{V,N}$	$8 \cdot 10^{-8}$	$9 \cdot 10^{-7}$	$-6.8\cdot10^7$

Notation:

- A, B, C, D four processes
 - X_B : Born
- $X_{V,A}$: Virtual Analytical
- $X_{V,N}$: Virtual Numerical
- \Rightarrow full analytical calculation done for H + 4q
- \Rightarrow relative accuracy $\mathcal{O}\left(10^{-13}\right)$

First full NLO (real+virtual) predictions for dijet Higgs production crosssections at the LHC implemented in MCFM \Rightarrow see K. Ellis's talk



→ reach predefined relative accuracy $\rho \equiv (A_{V,N} - A_{V,A})/A_{V,A}$ of 10^{-6}

Elements of the calculation

- color decomposition
- supersymmetric decomposition (comparison with from literature)
- helicity amplitudes
- modified tensor reduction

 \Rightarrow see W. Giele's talk

Inumber of diagrams involved ~ 12000 (compare with H+4g ~ 700)

tree level decomposition

$$\mathcal{A}_n^{\text{tree}}(\{p_i, \lambda_i, a_i\}) = g^{n-2} \sum_{\sigma \in S_n/Z_n} \text{Tr}(T^{a_{\sigma(1)}} \cdots T^{a_{\sigma(n)}}) A_n^{\text{tree}}(p_{\sigma(1)}^{\lambda_{\sigma(1)}}, \dots, p_{\sigma(n)}^{\lambda_{\sigma(n)}})$$

• tree level decomposition $\mathcal{A}_{n}^{\text{tree}}(\{p_{i}, \lambda_{i}, a_{i}\}) = g^{n-2} \sum_{\sigma \in S_{n}/Z_{n}} \text{Tr}(T^{a_{\sigma(1)}} \cdots T^{a_{\sigma(n)}}) A_{n}^{\text{tree}}(p_{\sigma(1)}^{\lambda_{\sigma(1)}}, \dots, p_{\sigma(n)}^{\lambda_{\sigma(n)}})$

• one-loop decomposition $\mathcal{A}_n(\{p_i, h_i, a_i\}) = g^n \sum_{c=1}^{\lfloor n/2 \rfloor + 1} \sum_{\sigma \in S_n/S_{n;c}} \operatorname{Gr}_{n;c}(\sigma) A_{n;c}(\sigma)$

- leading in color: $\operatorname{Gr}_{n;1}(1) = N_c \operatorname{Tr}(T^{a_1} \cdots T^{a_n})$
- subleading in color: $\operatorname{Gr}_{n,c}(1) = \operatorname{Tr}(T^{a_1} \cdots T^{a_{c-1}}) \operatorname{Tr}(T^{a_c} \cdots T^{a_n})$

• tree level decomposition $\mathcal{A}_{n}^{\text{tree}}(\{p_{i}, \lambda_{i}, a_{i}\}) = g^{n-2} \sum_{\sigma \in S_{n}/Z_{n}} \text{Tr}(T^{a_{\sigma(1)}} \cdots T^{a_{\sigma(n)}}) A_{n}^{\text{tree}}(p_{\sigma(1)}^{\lambda_{\sigma(1)}}, \dots, p_{\sigma(n)}^{\lambda_{\sigma(n)}})$

• one-loop decomposition $\mathcal{A}_n(\{p_i, h_i, a_i\}) = g^n \sum_{c=1}^{\lfloor n/2 \rfloor + 1} \sum_{\sigma \in S_n/S_{n;c}} \operatorname{Gr}_{n;c}(\sigma) A_{n;c}(\sigma)$

- leading in color: $\operatorname{Gr}_{n,1}(1) = N_c \operatorname{Tr}(T^{a_1} \cdots T^{a_n})$
- subleading in color: $\operatorname{Gr}_{n;c}(1) = \operatorname{Tr}(T^{a_1} \cdots T^{a_{c-1}}) \operatorname{Tr}(T^{a_c} \cdots T^{a_n})$
- subleading amplitudes $A_{n;c}(c > 1)$ fully determined by the leading ones $A_{n;1}$

Bern, Kosower Nucl.Phys. B 362 (1991) 389

 \Rightarrow need only leading color stripped amplitudes

Full QCD amplitude is

$$A^{\text{QCD}} = A^{[1]} + \frac{n_f}{N} A^{[1/2]}$$

 $A^{[J]}$: amplitude with spin [J] particle in the loop

Full QCD amplitude is

$$A^{\text{QCD}} = A^{[1]} + \frac{n_f}{N} A^{[1/2]}$$

 $A^{[J]}$: amplitude with spin [J] particle in the loop

In the literature first contributions computed are

$$A^{\mathcal{N}=4} = A^{[1]} + 4A^{[1/2]} + 3A^{[0]}$$
$$A^{\mathcal{N}=1} = A^{[1/2]} + A^{[0]}$$

 $A^{\mathcal{N}=m}$: supersymmetric $\mathcal{N}=m$ multiplet in the loop

The one-loop amplitude for six gluon scattering - April 2006 – p.13/18

Full QCD amplitude is

$$A^{\text{QCD}} = A^{[1]} + \frac{n_f}{N} A^{[1/2]}$$

 $A^{[J]}$: amplitude with spin [J] particle in the loop

In the literature first contributions computed are

$$A^{\mathcal{N}=4} = A^{[1]} + 4A^{[1/2]} + 3A^{[0]}$$
$$A^{\mathcal{N}=1} = A^{[1/2]} + A^{[0]}$$

 $A^{\mathcal{N}=m}$: supersymmetric $\mathcal{N}=m$ multiplet in the loop

 \bullet to construct full QCD amplitudes one needs also $A^{[0]}$

- Finite contributions (vanish at LO)

 - **9** + + + ++

- Finite contributions (vanish at LO)

 - **9** -+++++
- MHV (Maximally Helicity Violating)
 - **9** --++++
 - **●** -+-+++
 - **9** -++-++

- Finite contributions (vanish at LO)

 - **9** -+++++
- MHV (Maximally Helicity Violating)
 - **9** --++++
 - -+-+++
 - **9** -++-++
- NMHV (Next-to-Maximally Helicity Violating)
 - **9** --- + +++
 - **9** --+-++
 - -+-+-+

Only 8 independent helicity configurations out of 64, e.g.

- Finite contributions (vanish at LO)

 - **9** -+++++
- MHV (Maximally Helicity Violating)
 - **9** --++++
 - -+-+++
 - **9** -++-++
- NMHV (Next-to-Maximally Helicity Violating)
 - **9** --- + +++
 - **9** --+-++
 - -+-+-+

All the others obtained by parity operation or cyclic permutations

Comparison with the literature: bibliography

	$\mathcal{N}=4$	
	Finite	Bern, Dixon, Kosower, PRL 70, 2677 (1993)
	MHV	Bern, Dixon, Dunbar, Kosower, NPB 425 (1994) 217
	NMHV	Bern, Dixon, Dunbar, Kosower, NPB 435 (1995) 59
. ،	$\mathcal{N}=1$	
	Finite	Bern, Dixon, Kosower, PRL 70, 2677 (1993)
	MHV	Bern, Dixon, Dunbar, Kosower, NPB 435 (1995) 59
	NMHV	Bidder, Bjerrum-Bohr, Dixon, Dunbar, PLB 606, 189 (2005)
		Britto, Buchbinder, Cachazo, Feng, PRD 72 (2005) 065012
	$\mathcal{N} = 0$	
	Finite	Bern, Dixon, Kosower, PRD 72, 125003 (2005)
	MHV	Bern, Dixon, Kosower, hep-ph/0507005 [only $(+++)$]
	NMHV	Britto, Feng, Mastrolia, hep-ph/0602178 [no rational terms]
		BDK+Berger,Forde, hep-ph/0604195 [only (+++)]
		\Rightarrow talks of Z. Bern, D. Kosower, P. Mastrolia's

• agreement with published results

apart from $\mathcal{N}=1$ ---+-+ and -+-+-+ amplitudes, where analytical results were not correct \Rightarrow agreement with revised version

seminumerical methods:powerful independent checks

agreement with published results

apart from $\mathcal{N}=1$ ---+-+ and -+-+-+ amplitudes, where analytical results were not correct \Rightarrow agreement with revised version

- seminumerical methods:powerful independent checks
- relative accuracy $\sim 10^{-8} 10^{-9}$

- agreement with published results
 - apart from $\mathcal{N}=1$ ---+-+ and -+-+- amplitudes, where analytical results were not correct \Rightarrow agreement with revised version
 - seminumerical methods:powerful independent checks
- relative accuracy $\sim 10^{-8} 10^{-9}$
- time estimate: \sim 9 sec for scalar term on 2.8GHz Pent.

- agreement with published results
 - apart from $\mathcal{N}=1$ ---+-+ and -+-+-+ amplitudes, where analytical results were not correct \Rightarrow agreement with revised version
 - seminumerical methods:powerful independent checks
- relative accuracy $\sim 10^{-8} 10^{-9}$
- time estimate: \sim 9 sec for scalar term on 2.8GHz Pent.
- new results for 5 out of 8 scalar helicity amplitudes

- agreement with published results
 - apart from $\mathcal{N}=1$ ---+-+ and -+-+- amplitudes, where analytical results were not correct \Rightarrow agreement with revised version
 - seminumerical methods:powerful independent checks
- relative accuracy $\sim 10^{-8} 10^{-9}$
- time estimate: \sim 9 sec for scalar term on 2.8GHz Pent.
- new results for 5 out of 8 scalar helicity amplitudes
- complementarity between analytical/numerical methods: scalar piece is numerically the easiest one

- agreement with published results
 - apart from $\mathcal{N}=1$ ---+-+ and -+-+- amplitudes, where analytical results were not correct \Rightarrow agreement with revised version
 - seminumerical methods:powerful independent checks
- relative accuracy $\sim 10^{-8} 10^{-9}$
- time estimate: \sim 9 sec for scalar term on 2.8GHz Pent.
- new results for 5 out of 8 scalar helicity amplitudes
- complementarity between analytical/numerical methods: scalar piece is numerically the easiest one

Six gluon amplitudes fully known numerically. Now further work needed to compute full cross sections.

In progress:

calculation of Higgs + dijet cross section via gluon fusion at LHC and phenomenological studies

Next:

- optimization of the method
- extension to include internal masses
- work on phase space integration
- automate subtraction
- general six-point NLO calculations ⇒ tackle Les Houches priority list
 NLO QCD corrections to six legs processes important and doable
 [of all six-point amplitudes the six-gluon one is numerically the most challenging one]

Experimental NLO priorities [from Les Houches 2005]

- $2 \rightarrow 3$
 - $pp \rightarrow WW + jet$ [general background to NP]
 - $pp \rightarrow VVV$ [background to SUSY trilepton]
 - $pp \rightarrow H + 2jets$ [background to VBF H]

- $2 \to 4$
 - $pp \rightarrow 4jets$ [general background to NP]
 - $pp \rightarrow tt + 2jets$ [background to $t\bar{t}H$]
 - $pp \rightarrow tt + b\overline{b}$ [background to $t\overline{t}H$]
 - $pp \rightarrow V + 3jets$ [general background to NP]
 - $pp \rightarrow VV + 2jets$ [background to WBF $H \rightarrow WW$]
 - $pp \rightarrow VVV + jet$ [background to SUSY trilepton]
 - $pp \to WW + b\bar{b}$

[background to $t\bar{t}$]