Exploiting Twistor Techniques for QCD Calculations

David Dunbar,

Swansea University, Wales, UK
including work with
Zvi Bern, Steve Bidder, Emil
Bjerrum-Bohr, Harald Ita, Warren Perkins, Kasper Risager

Loops and Legs 2006

QCD Matrix Elements

-QCD matrix elements are an important part of calculating the QCD background for processes at LHC
-NLO calculations (at least!) are needed for precision
Talks by Binoth, Mnich
-One-Loop n-point on-shell amplitudes unknown analytically for $n>5$
-In this talk we discuss how recent (> Dec 03) ideas of a "weak-weak" duality might help,

- apply to $2 g \rightarrow(n-2) g$ in massless QCD

Duality with String Theory

In Dec 03 Witten proposed a Weak-Weak duality between
A) Yang-Mills theory ($\mathrm{N}=4$)
B) Topological String Theory

S-matrix of two theories should be identical
-True for tree level gluon scattering
Rioban, Spradlin, Volovich
proposal constructive for $N=4$ but... $N<4 . . ? ?$

Is the duality useful?

Theory A :
Theory B:

hard,
interesting

Perturbative QCD, hard, interesting

Topological
String Theory:
harder, uninteresting
-duality may be useful indirectly
-the existance may suggest or motivate

Some notation/defintions

Amplitude a function $A\left(\epsilon^{\mu}, p^{\mu}\right)$
Spinor helicity replaces polarisation by fermionic variables Xu , Zhang, Chang 87

$$
\epsilon^{\mu}=\frac{\langle k| \gamma^{\mu}|p\rangle}{\langle k \mid p\rangle}
$$

Use fermionic coordinates and replace bosonic momenta by `twistors`

$$
p_{a \dot{a}}=\lambda_{a} \bar{\lambda}_{\dot{a}}
$$

Amplitude now function entirely of fermionic variables

$$
p_{\mu}=\sigma_{\mu}^{a \dot{a}} p_{a \dot{a}}
$$

$$
A\left(\lambda_{a}, \bar{\lambda}_{\dot{a}}\right)
$$

$$
\left|p^{+}\right\rangle=\bar{\lambda}_{\dot{a}}
$$

Fourier (Penrose transform) one of spinors,

$$
\left|p^{-}\right\rangle=\lambda_{a}
$$

$$
\widetilde{A}\left(\lambda_{a}, \mu_{\dot{a}}\right)=\int d \bar{\lambda} e^{\bar{\lambda} \mu} A(\lambda, \bar{\lambda})
$$

Amplitude on twistor space is closest to string theory
D Dunbar, Loops and Legs 06

Inspired by duality -BCFW construction for tree amplitudes

Britto, Cachazo,Feng (and Witten)
Return of the analytic S-matrix!
Shift amplitude $A\left(\lambda_{a}, \bar{\lambda}_{\dot{a}}\right)$ so it is a complex function of z

$$
\begin{gathered}
\lambda_{a}^{1} \longrightarrow \lambda_{a}^{1}+z \lambda_{a}^{2} \\
\bar{\lambda}_{\dot{a}}^{2} \longrightarrow \bar{\lambda}_{\dot{a}}^{2}-z \bar{\lambda}_{\dot{a}}^{1}
\end{gathered}
$$

$$
p_{a \dot{a}}^{1} \longrightarrow p_{a \dot{a}}^{1}-z \lambda_{a}^{2} \bar{\lambda}_{\dot{a}}^{1}
$$

Tree amplitude becomes an analytic function of $z, A(z)$
-Full amplitude can be reconstructed from analytic properties

Provided,

a) $A(z)$ analytic with simple poles at z_{i}
b) $A(z) \longrightarrow 0$ as $z \rightarrow \infty$
then
$0=\int_{c_{\infty}} d z \frac{A(z)}{z}=\sum \operatorname{Res} \frac{A(z)}{z}$
$A(0)=-\sum_{i} \frac{\operatorname{Res}(A(z))_{i}}{z_{i}}$
Residues occur when amplitude factorises on multiparticle pole (including two-particles)

$$
P\left(z_{i}\right)^{2}=0
$$

-results in recursive on-shell relation
(c.f. Berends-Giele off shell recursion)

$1 \quad 2$

$$
\begin{array}{r}
A=\sum \hat{A}(. ., 1 . .)\left[z_{i}\right] \times \frac{1}{P_{i}^{2}} \times \widehat{A}(. ., 2, . .)\left[z_{i}\right] \\
z_{i}=\frac{P_{i}^{2}}{\langle 2| P|1\rangle}
\end{array}
$$

Tree Amplitudes are on-shell but continued to complex momenta (three-point amplitudes must be included)
D Dunbar, Loops and Legs 06

Extended BCFW

$$
A\left(1^{-} 2^{-} 3^{-} 4^{+} \ldots n^{+}\right)
$$

$$
\begin{aligned}
& \bar{\lambda}_{\dot{a}}^{1} \longrightarrow \bar{\lambda}_{\dot{a}}^{1}+z\langle 23\rangle \bar{\eta}_{\dot{a}} \\
& \bar{\lambda}_{\dot{a}}^{2} \longrightarrow \bar{\lambda}_{\dot{a}}^{2}+z\langle 31\rangle \bar{\eta}_{\dot{a}} \\
& \bar{\lambda}_{\dot{a}}^{3} \longrightarrow \bar{\lambda}_{\dot{a}}^{3}+z\langle 12\rangle \bar{\eta}_{\dot{a}}
\end{aligned}
$$

(conserves momenta using Schouten identity)

Factorisation under this shift+extensions reproduces the MHV vertex construction of Cachazo, Svercek and Witten

Risager 05; Bjerrum-Bohr, Dunbar, Ita, Perkins and Risager, 059

One-Loop Amplitudes

One Loop Gluon Scattering Amplitudes in massless QCD
-Four Point : Ellis+Sexton
-Five Point : Bern, Dixon,Kosower
-Six-Point and beyond--- present problem/meeting talks of Binoth, Mastrolia, Zanderighi+
-more known for supersymmetric theories
n-point MHV amplitudes supersymmetric theories
six-point $\mathrm{N}=4$ amplitudes
Bern, Dixon, Dunbar and Kosower 94/95
$N=4$, 1-loop essentially solved using twistor inspired techniques combined with unitarity method

Continuation of One-Loop amplitudes Have Cuts

Analytically continuing the 1-loop amplitude in momenta leads to a function with both poles and cuts in z

$$
\ln (s) \longrightarrow \ln (s(z))
$$

D Dunbar, Loops and Legs 06

Expansion in terms of Integral Functions

$$
A^{1-\text { loop }}=\sum c_{i} I_{4}^{(i)}+d_{i} I_{3}^{(i)}+e_{i} I_{2}^{(i)}+R
$$

- R is rational and not cut constructible (to $\mathrm{O}(\mathrm{h})$)
-amplitude is a mix of cut constructible pieces and rational
D Dunbar, Loops and Legs 06

Recursion for Rational terms

$$
A-\sum_{i} c_{i} I^{(i)}=R
$$

-can we shift R and obtain it from its factorisation?
-YES see Berger, Bern, Dixon, Forde and Kosower 1) Function must be rational
2) Function must have simple poles
3) We must understand these poles

Recursion on Integral Coefficients

Integral coefficients are rational functions
There are many choices of basis
The coefficients can encode stange effect of the Duality
For example, an rather unexpected results is that NMHV tree amplitudes are coplanar in twistor space,

$$
\widetilde{A}^{N M H V, \operatorname{tree}}\left(\lambda_{a}^{i}, \mu_{\dot{a}}^{i}\right)=0
$$

unless

$$
Z_{i} \equiv\left(\lambda_{\dot{a}}^{i}, \mu_{\dot{a}}^{i}\right) \quad \text { lie on a plane }
$$

Box Coefficients-Twistor Structure

Similarly Box coefficients have coplanar support for NMHV 1-loop amplitudes

-true for both $\mathrm{N}=4$ and QCD!!!
D Dunbar, Loops and Legs 06

-to carry out recursion we must understand poles of coefficients

-multiparticle factorisation theorems
Bern, Chalmers

$$
\begin{aligned}
& A_{n}^{\text {one-loop }} \xrightarrow[\longrightarrow]{K \xrightarrow{2}} 0 \\
& A^{\text {one-loop }} \times \frac{i}{K^{2}} \times A^{\text {tree }}
\end{aligned}
$$

$$
+A^{\text {tree }} \times \frac{i}{K^{2}} \times A^{\text {one-loop }}
$$

$$
+A^{\text {tree }} \times \frac{i}{K^{2}} \times A^{\text {tree }} \times \mathcal{F}_{n}
$$

Potential Recursion Relation

$$
c_{n}^{1-\mathrm{IOOP}}=
$$

Complication,

The coefficients of integral functions may contain additional Spurious Singularities which are not present in the full amplitude

It is important and non-trivial to find shift(s) which avoid these spurious singularities whilst still affecting the full R/coefficient

Example of Spurious singularities

$$
A_{6}^{N=1}=1 \text { chiral }\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, 5^{+}, 6^{+}\right)=a_{1} K_{0}\left[s_{61}\right]+a_{2} K_{0}\left[s_{34}\right]
$$

$$
-\frac{i}{2}\left[b_{1} \frac{L_{0}\left[s_{345} / s_{61}\right]}{s_{61}}+b_{2} \frac{L_{0}\left[s_{234} / s_{34}\right]}{s_{34}}+b_{3} \frac{L_{0}\left[s_{234} / s_{61}\right]}{s_{61}}+b_{4} \frac{L_{0}\left[s_{345} / s_{34}\right]}{s_{34}}\right]
$$

Bidder, Bjerrum-Bohr, Dixon and Dunbar

$$
L_{0}(r)=\frac{\ln (r)}{1-r}, K_{0}(r)=\frac{1}{\epsilon}+\ln (r)
$$

$$
b_{1}=\frac{\langle 6| P P|3\rangle^{2}\left\langle 6^{+}\right|(\not 2 P P-\not P \not P P)\left|3^{+}\right\rangle}{\langle 2| P P|5\rangle[61][12]\langle 34\rangle\langle 45\rangle P^{2}}, \quad P=P_{345}
$$

D Dunbar, Loops and Legs 06
-coplanar singularity is spurious

$$
\begin{aligned}
& \frac{b_{1}^{\prime}}{s_{61}} \longrightarrow \frac{b_{4}^{\prime}}{s_{34}} \quad b_{i}^{\prime}=\langle 2| P|5\rangle b_{i} \\
& t_{345} / s_{61} \longrightarrow s_{34} / t_{234}
\end{aligned}
$$

$$
\begin{array}{r}
\frac{b_{1}^{\prime}}{\langle 2 \mid P 5\rangle} \frac{L_{0}\left[s_{345} / s_{61}\right]}{s_{61}}+\frac{b_{4}^{\prime}}{\langle 2| P|5\rangle} \frac{L_{0}\left[s_{234} / s_{34}\right]}{s_{34}} \\
\longrightarrow \frac{1}{\langle 2| P|5\rangle} \times 0
\end{array}
$$

Spurious Singularities...

Cancellations occur between integral functions so that integral coefficients may contain these term

For tree amplitudes these singularities are not a problem

Must try to avoid shifts which for which, e.g

$$
\langle 2| P|5\rangle[z]=0
$$

For some z

Criteria to avoid Spurious Singularities

Consider an integral coefficient and isolate a coefficient and consider the cut. Consider shifts in the cluster.

- Shift must send tree to zero as z-> 4
- Shift must not affect cut legs
-such shifts will generate a recursion formulae

Example: Split Helicity Amplitudes

Consider the colour-ordered n -gluon amplitude
$A(-,-,-, \cdots-,-,+,+, \cdots,+)$
-two minuses gives MHV
-BCFW can be used for tree amplitudes
Britto, Rioban Spradlin and Volovich
-for $N=4$ SYM essentially solved
-use as a example of generating coefficients recursively

D Dunbar, Loops and Legs 06

Supersymmetric Decomposition

Supersymmetric gluon scattering amplitudes are the linear combination of QCD amplitudes

$$
A_{n}^{\mathcal{N}=4} \equiv A_{n}^{[1]}+4 A_{n}^{[1 / 2]}+3 A_{n}^{[0]}
$$

$$
\begin{aligned}
A_{n}^{\mathcal{N}}=1 \text { vector } & \equiv A_{n}^{[1]}+A_{n}^{[1 / 2]} \\
A_{n}^{\mathcal{N}}=1 \text { chiral } & \equiv A_{n}^{[1 / 2]}+A_{n}^{[0]}
\end{aligned}
$$

-this can be inverted

$$
\begin{aligned}
A_{n}^{[1]} & =A_{n}^{\mathcal{N}=4}-4 A_{n}^{\mathcal{N}=1 \text { chiral }}+A_{n}^{[0]} \\
A_{n}^{[1 / 2]} & =A_{n}^{\mathcal{N}=1 \text { chiral }}-A_{n}^{[0]}
\end{aligned}
$$

-look at cluster on corner with "split"
-shift the adjacent - and + helicity legs
-criteria satisfied for a + recursion

$$
\begin{aligned}
\lambda_{a}^{r} & \longrightarrow \lambda_{a}^{r}+z \lambda_{a}^{r+1} \\
\bar{\lambda}_{\dot{a}}^{r+1} & \longrightarrow \bar{\lambda}_{\dot{a}}^{r+1}-z \bar{\lambda}_{\dot{a}}^{r}
\end{aligned}
$$

-we obtain formulae for integral coefficients for both the $\mathrm{N}=1$ and scalar cases which together with $N=4$ cut give the QCD case (with, for $\mathrm{n}>6$ rational pieces outstanding)

-for , special case of 3 minuses,

$A_{n}^{\mathcal{N}=1 \text { chiral }}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, 5^{+}, \cdots, n^{+}\right)=$

$$
\begin{align*}
& A^{\text {tree }} \\
& 2 \\
& \left(K_{0}\left(s_{n 1}\right)+K_{0}\left(s_{34}\right)\right)-\frac{i}{2} \sum_{r=4}^{n-1} \widehat{d}_{n, r} \frac{L_{0}\left[t_{3, r} / t_{2, r}\right]}{t_{2, r}} \\
& -\frac{i}{2} \sum_{r=4}^{n-2} \widehat{g}_{n, r} \frac{L_{0}\left[t_{2, r} / t_{2, r+1}\right]}{t_{2, r+1}}-\frac{i}{2} \sum_{r=4}^{n-2} \widehat{h}_{n, r} \frac{L_{0}\left[t_{3, r} / t_{3, r+1}\right]}{t_{3, r+1}} \text {, } \\
& \widehat{d}_{n, r}=\quad \frac{\langle 3| K_{3, r} K_{2, r}|1\rangle^{2}\langle 3| K_{3, r}\left[k_{2}, K_{2, r}\right] K_{2, r}|1\rangle}{\left[2\left|K_{2, r}\right| r\right\rangle\left[2\left|K_{2, r}\right| r+1\right\rangle\langle 34\rangle \ldots\langle r-1 r\rangle\langle r+1 r+2\rangle \ldots\langle n 1\rangle t_{2, r} t_{3, r}}, \\
& \hat{g}_{n, r}=\sum_{j=1}^{r-3} \frac{\langle 3| K_{3, j}+3 K_{2, j+3}|1\rangle^{2}\langle 3| K_{3, j+3} K_{2, j+3}\left[k_{r+1}, K_{2, r}\right]|1\rangle\langle j+3 j+4\rangle}{\left[2\left|K_{2, j}+3\right| j+3\right\rangle\left[2\left|K_{2, j+3}\right| j+4\right\rangle\langle 34\rangle\langle 45\rangle \ldots\langle n 1\rangle t_{3, j+3} t_{2, j+3}}, \\
& \widehat{h}_{n, r}=\left.\quad(-1)^{n} \widehat{g}_{n, n-r+2}\right|_{(123 . . n) \rightarrow(321 n .4)} . \tag{1}
\end{align*}
$$

$A_{n}^{[0]}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, 5^{+}, \cdots, n^{+}\right)=$

$\frac{1}{3} A_{n}^{\mathcal{N}}=1$ chiral $\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, 5^{+}, \cdots, n^{+}\right)$

$$
\begin{aligned}
& -\frac{i}{3} \sum_{r=4}^{n-1} \widehat{d}_{n, r} \frac{L_{2}\left[t_{3, r} / t_{2, r}\right]}{t_{2, r}^{3}}-\frac{i}{3} \sum_{r=4}^{n-2} \widehat{g}_{n, r} \frac{L_{2}\left[t_{2, r} / t_{2, r+1}\right]}{t_{2, r+1}^{3}} \\
& \quad-\frac{i}{3} \sum_{r=4}^{n-2} \hat{h}_{n, r} \frac{L_{2}\left[t_{3, r} / t_{3, r+1}\right]}{t_{3, r+1}^{3}}+\mathrm{R},
\end{aligned}
$$

$$
\hat{d}_{n, r}=\frac{\langle 3| K_{3, r} k_{2}|1\rangle\langle 3| k_{2} K_{2, r}|1\rangle\langle 3| K_{3, r}\left[k_{2}, K_{2, r}\right] K_{2, r}|1\rangle}{\left[2\left|K_{2, r}\right| r\right\rangle\left[2\left|K_{2, r}\right| r+1\right\rangle\langle 34\rangle \ldots\langle r-1 r\rangle\langle r+1 r+2\rangle \ldots\langle n 1\rangle},
$$

$$
L_{2}(r)=\frac{\ln (r)-(r-1 / r)}{(1-r)^{3}}
$$

For R see Berger, Bern, Dixon, Forde and Kosower

[^0]
Conclusions

-Optimism in computing one-loop QCD matrix elements
-Recent progress uses UNITARITY and FACTORISATION as key features of on-shell amplitudes
-Inspired by Weak-Weak duality but not dependant upon it
-after much progress in highly super-symmetric theories the (harder) problem of QCD beginning to yield results
-many approaches complementing each other
-cut constructibility: BDDK; Britto, Buchbinder, Cachazo Feng Mastrolia
-on-shell recursion: Berger,Bern,Dixon,Forde Kosower;

Bidder, Bjerrum-Bohr, Dunbar, Ita,

-numerical: Binoth et al; Ellis, Giele, Zanderighi
-also fermions, masses, multiloop........???.......

D Dunbar, Loops and Legs 06

[^0]: D Dunbar, Loops and Legs 06

