Fous-loop taclpoles: applicasions in QCD

M. Czakon
U. Würzburg

Anomalous dimensions for $b->$ sy $a+$ NNLO
\longrightarrow with U. Haisch and M. Misiak

Mass corrections to $\sigma\left(e^{+} e^{-}\right.$-> had.) at $O\left(\alpha_{s}^{3}\right)$

- c-and b-quark masses
\longrightarrow with R. Boughezal and T. Schutzmeier
- running of the fine structure constant
\longrightarrow with T. Schutzmeier
Δp at $O\left(\alpha \alpha_{s}^{3}\right)$
\longrightarrow with R. Boughezal

Anomalous dimensions for $b->$ sy $a+$ NNLO

Rare B decays provide strong constraints on extensions of the SM

Current exp. average: $\left(3.55 \pm 0.24_{-0.10}^{+0.09} \pm 0.03\right) \times 10^{-4}$
(HFAG, hep-ph/0603003)
SM expectation (NLO): $\quad(3.57 \pm 0.30) \times 10^{-4}$
(Gambino, Misiak, hep-ph/0104034, Buras et al. hep-ph/0203135)

$$
\begin{aligned}
& \mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}=\mathcal{B}\left(\bar{B} \rightarrow X_{c} e \bar{\nu}\right)_{\exp }\left[\frac{\Gamma(b \rightarrow s \gamma)}{\Gamma(b \rightarrow c e \bar{\nu})}\right]_{\mathrm{LO} \text { EW }} f\left(\frac{\alpha_{s}\left(M_{W}\right)}{\alpha_{s}\left(m_{b}\right)}\right) \times
\end{aligned}
$$

Effective Field Theory approach

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QCD} \times Q E D}(u, d, s, c, b)+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{8} C_{i}(\mu) O_{i} \\
& \text { higher-dimensional, } \\
& \text { on-shell vanishing, } \\
& \text { evanescent } \\
& \left|C_{i}\left(m_{b}\right)\right| \sim 1 \\
& \left|C_{i}\left(m_{b}\right)\right|<0.07 \\
& C_{7}\left(m_{b}\right) \simeq-0.3 \\
& C_{8}\left(m_{b}\right) \simeq-0.15
\end{aligned}
$$

Ingredients of the approach

- anomalous dimensions
- matching
- matrix elements

Resummation of large logarithms $\alpha_{s} \ln \left(\frac{M_{w}^{2}}{m_{b}^{2}}\right)$

$$
\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} C_{\mathrm{j}}(\mu)=C_{\mathrm{i}}(\mu) \gamma_{\mathrm{ij}}(\mu)
$$

- infrared rearrangement by putting a single mass on all lines and setting external momenta to zero
- reduces to the evaluation of fully massive four-loop tadpoles

Original idea by

- Misiak \& Münz '95 and van Ritbergen, Vermaseren, Larin '97

At four-loops used in

- van Ritbergen, Vermaseren, Larin '97 and M.C. '04

Mixing between $O_{1} \ldots O_{6}$ and O_{7}, O_{8} requires insertion of $\gamma^{\alpha} \times \gamma_{\alpha}$ and $\gamma^{\alpha} \gamma^{\beta} \gamma^{\gamma} \times \gamma_{\alpha} \gamma_{\beta} \gamma_{\gamma}$ and two color structures and projection on $\gamma_{\mu} p h k, \gamma_{\mu}(p \cdot k), \gamma_{\mu} p^{2}, \gamma_{\mu} k^{2}, p k_{\mu}, p p p_{\mu}, k k_{\mu}, k k k_{\mu}, M_{b} k \gamma_{\mu}, M_{b} \gamma_{\mu} k k, M_{b} p \gamma_{\mu}, M_{b} \gamma_{\mu} p$.

Large computational time -> finished on the DESY Zeuthen Grid Engine

Types of off-shell operator counterterms (apart from the physical operators O_{1}, \ldots, O_{8})

- gauge-invariant EOM-vanishing operators, e.g., $\left(\bar{s}_{L} \gamma^{\mu} T^{a} b_{L}\right)\left[D^{\nu} G_{\mu \nu}^{a}+g \Sigma_{q}\left(\bar{q} \gamma^{\mu} T^{a} q\right)\right]$,
- gauge-variant EOM-vanishing operators, e.g., $\bar{s}_{L}\left[-i \overleftarrow{D D} G+G\left(i \not D-M_{b}\right)\right] b_{R}$
- BRS-exact operator $\delta_{\text {BRS }}\left[\left(\bar{s}_{L} \gamma^{\mu} T^{a} b_{L}\right) \partial_{\mu} \bar{\eta}^{a}\right]=\left(\bar{s}_{L} \gamma^{\mu} T^{a} b_{L}\right)\left[\partial_{\mu} \partial^{\nu} G_{\nu}^{a}-g f^{a b c}\left(\partial_{\mu} \bar{\eta}^{b}\right) \eta^{c}\right]$
- evanescent operators, e.g., $\left(\bar{s}_{L} \gamma^{\left[\mu_{1}\right.} \gamma^{\mu_{2}} \gamma^{\mu_{3}} \gamma^{\mu_{4}} \gamma^{\left.\mu_{5}\right]} c_{L}\right)\left(\bar{c}_{L} \gamma_{\left[\mu_{1}\right.} \gamma_{\mu_{2}} \gamma_{\mu_{3}} \gamma_{\mu_{4}} \gamma_{\left.\mu_{5}\right]} b_{L}\right)$
- so-called m^{2}-operators (due to propagator numerator simplification) e.g., $m^{2} \bar{s}_{L} G b_{L}$

Completed result for the mixing with O_{7}

Numerical effect on the branching ratio

$$
-2.4 \%
$$

Impact of the remaining mixing with O_{8} expected to be 10 times smaller

Charm and bottom quark masses

Quark masses may be derived from the measurement of the production cross section around threshold

Example for charm quark threshold region

Idea: Subtract the contribution of the massless quarks evaluated in PQCD and compare the experimental predicition with theory

Starting from the definitions of the R-ratio and the current corr.

$$
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma_{\mathrm{pt}}},\left(-q^{2} g_{\mu \nu}+q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right)=i \int \mathrm{~d} x e^{i q x}\langle 0| T j_{\mu}(x) j_{\nu}^{\dagger}(0)|0\rangle
$$

One obtains the classic dispersion relation

$$
\Pi_{c}\left(q^{2}\right)=\frac{q^{2}}{12 \pi^{2}} \int \mathrm{~d} s \frac{R_{c}(s)}{s\left(s-q^{2}\right)}+Q_{c}^{2} \frac{3}{16 \pi^{2}} \bar{C}_{0}
$$

The moment can then be calculated or taken from experiment

$$
\left.\mathcal{M}_{n} \equiv \frac{12 \pi^{2}}{n!}\left(\frac{\mathrm{d}}{\mathrm{~d} q^{2}}\right)^{n} \Pi_{c}\left(q^{2}\right)\right|_{q^{2}=0} \quad \mathcal{M}_{n}^{\exp }=\int \frac{\mathrm{d} s}{s^{n+1}} R_{c}(s)
$$

The three-loop analysis done by Kühn \& Steinhauser '01

The smallest error comes from the first moment

The calculation requires an expansion of propagators with respect to external momenta -> tadpoles

- $1^{\text {st }}$ physical moment is equivalent to the second term in the Taylor expansion
- up to eight dots and six power of numerators
- very expensive computationally, but only 2 weeks real time
- parts of the calculation done at the DESY-Zeuthen Grid Engine
- next moment seems hardly reachable by the method because of resources usage

The result will be published soon after the Conference

Running of the fine structure constant

$\Delta \alpha\left(M_{z}\right)$ contributes to any predicition in the electroweak sector
The low energy tail is evaluated with dispersion relations from data
Possible improvement of the prediction by moving to the Euclidean

Ideally the error would be smaller by a half

Eidelman, Jegerlehner, Kataev, Veretin '98

It is necessary to have the full mass dependence of the correlator

- At three loop done with Pade approximants and other tricks
- It looks hopless in view of the experience with direct expansion of tadpoles
- Solution: use differential equations on propagators inspired by Czyz, Caffo, Laporta, Remiddi '98-'02
- Requires reduction of four-loop propagators with massive lines
- As a first step we implemented automatic expansion

It takes about $\frac{1}{2}$ hour to obtain 30 terms of the expansion of the three-loop result \dagger

$$
\begin{aligned}
+ & a^{2}\left((2.03953+2.64911 n l) x+(1.41227+0.454915 n l) x^{2}+(0.088057+0.107216 n l) x^{3}\right. \\
& +(-0.0299336+0.0265519 n l) x^{4}+(-0.0155361+0.00662735 n l) x^{5} \\
& +(-0.00493409+0.00165382 n l) x^{6}(-0.00132002+0.000412023 n l) x^{7} \\
& +(-0.000319571+0.000102483 n l) x^{8}+(-0.0000713887+0.0000254583 n l) x^{9} \\
& +\left(-0.0000146235+6.3181910^{-6} n l\right) x^{10}+\left(-2.6432610^{-6}+1.5669810^{-6} n l\right) x^{11} \\
& +\left(-3.6836610^{-7}+3.8844510^{-7} n l\right) x^{12}+\left(-1.145610^{-8}+9.6263510^{-8} n l\right) x^{13} \\
& +\left(1.8742410^{-8}+2.3851210^{-8} n l\right) x^{14}+\left(1.036610^{-8}+5.90910^{-9} n l\right) x^{15} \\
& +\left(4.0636210^{-9}+1.4638610^{-9} n l\right) x^{16}+\left(1.3942610^{-9}+3.6265210^{-10} n l\right) x^{17} \\
& +\left(4.4383310^{-10}+8.9846110^{-11} n l\right) x^{18}+\left(1.3551510^{-10}+2.2260710^{-11} n l\right) x^{19} \\
& +\left(3.9108310^{-11}+5.5159210^{-12} n l\right) x^{20}+\left(1.0913910^{-11}+1.3669110^{-12} n l\right) x^{21} \\
& +\left(1.8189910^{-12}+3.3877810^{-13} n l\right) x^{22}+\left(8.3973210^{-14} n l\right) x^{23} \\
& +\left(-3.6379810^{-12}+2.0817110^{-14} n l\right) x^{24}\left(-3.6379810^{-12}+5.1612710^{-15} n l\right) x^{25} \\
& +\left(-1.8189910^{-12}+1.2798210^{-15} n l\right) x^{26}+\left(-3.6379810^{-12}+3.1739210^{-16} n l\right) x^{27} \\
& +\left(-1.8189910^{-12}+7.8722610^{-17} n l\right) x^{28}+\left(1.952810^{-17} n l\right) x^{29} \\
& \left.+\left(-1.8189910^{-12}+4.8447610^{-18} n l\right) x^{30}\right)
\end{aligned}
$$

The $30^{\text {th }}$ term of the expansion

$$
\begin{aligned}
C_{A} C_{F} & \left(\frac{180859378850195691751750576523624402795753654564433230787270805191831949224136249217543143953184253712635714861447218126928556683117922510935160119}{13679320424596916203074364365947417256733649676008767414841606085054121318820286803610869669655829617083194658505189916020643289087606784000000000}\right. \\
& \left.+\frac{129341582636074802823044479556113038264992676611007553597488535433136517309644437 C_{3}}{11759441208929267239889435877553653487049746953702726731961447704128946543001600}+\frac{8061993764052097415190828474719628061 \log \left(m^{2}\right)}{612652347429339234584008743993125710947607099363200000}-\frac{\log \left(m^{2}\right)^{2}}{333204389262289188}\right) \\
+C_{F}^{2} & \left(\frac{5452442682630450296642824032103939456655504765440407784934641427818025912549344757664277666932329289657359507785778454301397660514082981623265892971}{784879040755560765750168447226491154074881538787388294294190513076875813374934488731771210554023010816248873848658437804463139537813504000000000}\right. \\
& \left.+\frac{3910174642321001964705203088904531487724403900845470691751666908020470377169925892631 C_{3}}{676601264152582593587495981972021328090878253779689442864145458504765615898624000}-\frac{2769786373815879084431338364080308061 \log \left(m^{2}\right)}{12479955225412465889674252192452560778562366838880000}+\frac{15 \log \left(m^{2}\right)^{2}}{101812452274588363}\right) \\
-C_{F} T n_{l} & \left(\frac{3618812055261664112993448386993905552231298096735245046961313919}{497969025010575669793979151955857508569923872510111280688822999477335891520000000}-\frac{5721870475160139142947642814286028061 \log \left(m^{2}\right)}{1684793955430682895106024045981095705105919523248800000}+\frac{\log \left(m^{2}\right)^{2}}{916312070471295267}\right) \\
+C_{F} T & \left(\frac{63231171903846753827450722571963199605492411223711424758408962061177435277137464230373}{679749971204285601184425700590889619059575904898137817715408420215930495406987400921151208161280000000}+\frac{7894593817692395071597010869422653638889 C_{3}}{103443449008447497939188424332645869894264890747393146880}\right. \\
& \left.-\frac{5721870475160139142947642814286028061 \log \left(m^{2}\right)}{1684793955430682895106024045981095705105919523248800000}+\frac{\log \left(m^{2}\right)^{2}}{916312070471295267}\right)
\end{aligned}
$$

46 masters with up to two irreducible numerators needed for the four-loop n_{f}^{2} contribution. All expanded to 30 terms within $\frac{1}{2}$ hour.

Example 8-liner

Finite part

$$
\begin{aligned}
& +2078.45+1542.65 x-36.0108 x^{2}-25.175 x^{3}-27.7474 x^{4}-13.2539 x^{5}-4.80407 x^{6} \\
& -1.53205 x^{7}-0.455313 x^{8}-0.129593 x^{9}-0.0358494 x^{10}-0.00972235 x^{11}-0.00259905 x^{12} \\
& -0.000687345 x^{13}-0.000180272 x^{14}-0.0000469721 x^{15}-0.0000121751 x^{16}-3.1422710^{-6} x^{17} \\
& -8.0812410^{-7} x^{18}-2.0721710^{-7} x^{19}-5.3000810^{-8} x^{20}-1.3527310^{-8} x^{21}-3.4461610^{-9} x^{22} \\
& -8.7652810^{-10} x^{23}-2.2263210^{-10} x^{24}-5.6477510^{-11} x^{25}-1.4311710^{-11} x^{26}-3.6231410^{-12} x^{27} \\
& -9.1643910^{-13} x^{28}-2.3162510^{-13} x^{29}-5.8501110^{-14} x^{30}
\end{aligned}
$$

Measures the relative strength of the charged and neutral currents

$$
\Delta \rho=\frac{\Pi_{\mathrm{zz}}(0)}{M_{\mathrm{z}}^{2}}-\frac{\Pi_{\mathrm{ww}}(0)}{M_{\mathrm{w}}^{2}}
$$

Small contributions imply shifts in the electroweak observables by

$$
\Delta M_{w}=\frac{M_{w}}{2} \frac{c_{w}^{2}}{c_{w}^{2}-s_{w}^{2}} \Delta \rho
$$

and

$$
\sin ^{2} \theta_{e f f}^{\text {lept }}=-\frac{c_{w}^{2} s_{w}^{2}}{c_{w}^{2}-s_{w}^{2}} \Delta \rho
$$

Recently the singlet term at $O\left(\alpha \alpha_{s}^{3}\right)$ has become available from Schröder \& Steinhauser '05

Surprisingly small value has been found. Need for complete result.

30 nontrivial new masters

- chose a massive propagator and assign a power to it

- write down a recurrence relation in x, by using IBP relations (highest order encountered was 4)
- find the behaviour of the integral for large x from the expansion of the propagator subloop
- solve the recurrence with the boundary condition at large x, using an ansatz for the solution as factorial series

$$
\sum_{s=0}^{\infty} \frac{\mathrm{a}_{\mathrm{s}} \Gamma(\mathrm{x}+1)}{\Gamma(\mathrm{x}-\mathrm{K}+\mathrm{s}+1)}
$$

Example of a propagator subgraph with a threshold at 0

Very efficient computational method

- fast derivation of recurrence relations (no longer than 12 hours on 1 CPU)
- fast numerical evaluation (a few hours for 40 digits)

28 masters computed, 29 -liners remain to be done Example results for two of the 9-liners

Conclusions

- Completed ADM mixing of four-quark operators with the magnetic penguin operator in b-> SY
- Completed calculation of the $1^{\text {st }}$ physical moment of the heavy quark current correlator
- Developed automatized method to calculate the complete mass dependence of the quark current correlator
- Almost completed calculation of the masters needed for four-loop QCD corrections to $\Delta \rho$

