DESY PDF Meeting Hamburg, April 15, 2010

ATLAS Top Physics and PDFs

Ulrich Husemann Deutsches Elektronen-Synchrotron

- For many people (including myself): PDFs are tools
 - Important (but rather unexciting) input to theory calculations and MC
 - Have to work out of the box with a common interface \rightarrow LHAPDF
 - PDFs should come with a prescription for determination of uncertainties
- Strategies for (re-)discovery physics (now top; later Higgs, SUSY, ...)
 - Goal: get results out quickly (there's competition from the other side of the ring...)
 - Aim for the best-understood analysis, not (necessarily) the best-performing
 - Uncertainties: attack the largest ones first/only \rightarrow how good is good enough?
 - If PDFs are important here \rightarrow make the case, otherwise people won't bother
- Strategies for precision physics (top after 2011/2)
 - Few-percent effects will become important at some point \rightarrow be prepared
 - Infuse knowledge of improved PDFs early and using the right channels
 - Again: make the case

- Tevatron top physics:
 - CDF: main generator for tt signal events still Pythia 6.216 with CTEQ5L PDFs, various other setups and PDF reweighting for cross-checks
 - DØ: using ALPGEN tt+jets with CTEQ6L
 - Both: slowly moving to MC@NLO (CDF: with CTEQ5M or MRST02)
 - Published PDF uncertainties usually among the smaller ones (typically < 1–2%)
 - Reasons: lack of person power? lack of PDF expertise? inertia?
 → all of the above, but also: still good enough for most top physics!
- ATLAS before the data taking era: "CSC Book" studies (until 2008)
 - Scenario: 14 TeV CMS energy, 10 fb⁻¹ or more
 - Default PDF set: CTEQ6M for NLO, CTEQ6L1 for LO
 - PDF uncertainties on signal usually among the smaller ones, e.g. 3% for top cross section and many properties
 - PDF uncertainties on backgrounds may be larger (but certainly not larger than scale uncertainties in LO MC)
 - \rightarrow prefer data-driven determination of these backgrounds

- Current MC production for the ATLAS top group:
 - Full set of 7 TeV samples for 2010/2011 data-taking period
 - tt
 isignal generated with MC@NLO or POWHEG, interfaced to HERWIG/Jimmy
 (and PYTHIA in the case of POWHEG)
 - Single top signal generated with MC@NLO + HERWIG/Jimmy
- Top group uses ATLAS-wide PDF defaults, currently:
 - For NLO step (and HERWIG parton shower for MC@NLO): CTEQ6.6 (before: CTEQ6M)
 - For all LO MC generators: LO* PDFs (MRST2007lomod)
 → improved K factor and qq̄ to gg ratio w.r.t. old default (CTEQ6L1)
 - Underlying event re-tuned for new LO* PDFs

- Current feeling about PDFs (after discussion with the conveners)
 - Top group is consumer of PDFs, won't constrain PDFs in the next few years → usually follow recommendations of MC group
 - Lots of interactions with other groups (e.g. Higgs) \rightarrow need consistent MC samples
 - Established procedures to estimate PDF uncertainties based on PDF reweighting
 - Top mass (e.g. from cross section) may be the first to get sensitive to PDF uncertainties (if other uncertainties cancel) \rightarrow 2011 at the earliest
 - A few specialists study PDF effects, e.g. relevance of low-x gluon PDF for underlying event (UE) → soft jets may affect JES, b-tagging, lepton isolation, ...
- PDF reweighting method:

$$w(x_1, x_2, Q^2) = \frac{f_1^{\text{new}}(x_1, Q^2) \cdot f_2^{\text{new}}(x_2, Q^2)}{f_1^{\text{old}}(x_1, Q^2) \cdot f_2^{\text{old}}(x_2, Q^2)},$$

Caveat: changes PDFs for hard process but does not change UE and parton shower → not the full picture

ATLAS

- Large collaboration: inertia, but lots of people to work on issues
- Consistency of published results: decide on, and stick to, standards
- Scenario I: all DESY grad students use HERA PDFs from tomorrow
 - Need to rely on private MC production → huge effort; however, results cannot be used for any public result (ATLAS policy)

Scenario II: make the case for improved PDFs and use the right channels

- Approach conveners of MC group and physics groups that aim for precision measurements: Standard Model, Top after 2011/2
- Consider all implications → MC underlying event tunes, MC-based calibrations (e.g. JES) have to be redone, probably much more
- Give presentations (in the MC group) that make the case, like "current evaluation of PDF error too optimistic, PDFs are becoming the dominant systematic uncertainty in a certain (relevant) kinematic regime for process X after Y fb⁻¹, …"
- Ideally: this push comes from PDF community as a whole, not just a single group

- PDFs are not too high up on the top group's priority list right now, but some things could start now (and a few people are interested)
- Improve standard description of how PDF uncertainties are evaluated
 - Typical recipe today: for the default PDF (CTEQ) add differences between error PDFs in quadrature, combine with difference to second PDF (MSTW)
 - Done by PDF reweighting (generating new MC each time would take too long)
 - Various caveats: no error PDFs sets for LO PDF, second PDF choice is ad-hoc, ...
 - Are there better methods? Which "second PDFs" should be checked (not too many!)? How should the errors be treated? What about differences in α_S?
- Request test samples with different PDFs
 - Is it worth the effort (now)? Which PDFs with which priority? How much can be learned compared to PDF reweighting?
 - E.g. tt NLO step can be done at DESY for MC@NLO or POWHEG
- Start discussions with the right people in the experiments...

- Discussion with ATLAS MC group convener: J. Katzy (DESY)
- Collection of PDF related issues from the ATLAS MC group
 - Next round of changes to MC production will be driven by the first 7 TeV data
 - NLO PDFs cannot be used for underlying event (LO contributions from soft QCD must be canceled by LO PDF)
 - Some more recent LO and NLO generators (e.g. Pythia8, Herwig++, POWHEG): different PDFs for matrix element and underlying event \rightarrow LO* still necessary?
 - New prescription for PDF uncertainty treatment desirable \rightarrow proposals?
- Maximizing the impact of DESY's PDF expertise
 - Quick change of default PDF for ATLAS MC production unlikely → anyway: small impact compared to many other possible changes, use of LO MC, …
 - More interesting for PDF community: provide PDF input for theory calculations to be superimposed on the physics results of the paper (cross sections etc.)
 - Show strength of HERAPDFs in the physics processes where they perform best
 - Provide comparisons of PDFs for standard processes to show width of variations