

Elettra Sincrotrone Trieste

ELETTRA GIRDERS DESIGN IVAN CUDIN AND DIEGO RAINONE

ON BEHALF OF THE MECHANICAL ENGINEERING TEAM

GENERAL REQUIREMENTS

GOALS:

- \checkmark increase of the brilliance and coherence fraction
- $\checkmark\,$ reduction of the emittance

CONSTRAINTS:

- > reusing the same tunnel and infrastructure
- maintaining the existing ID straight sections in their current position
- maintaining the existing dipole magnet beamlines
- keeping the present injection scheme
- minimizing operation costs and electric power consumption
- Imiting downtime for installation

GENERAL REQUIREMENTS

Elettra 2.0

(S6BA-E) 6 bend achromat lattice

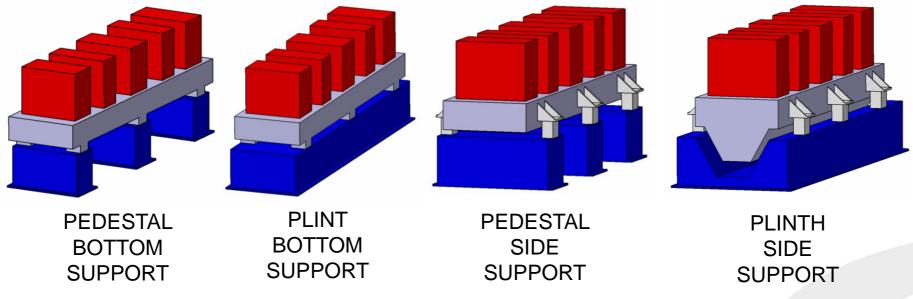
12 long straight sections

12 short straight sections

Energy 2.4 GeV

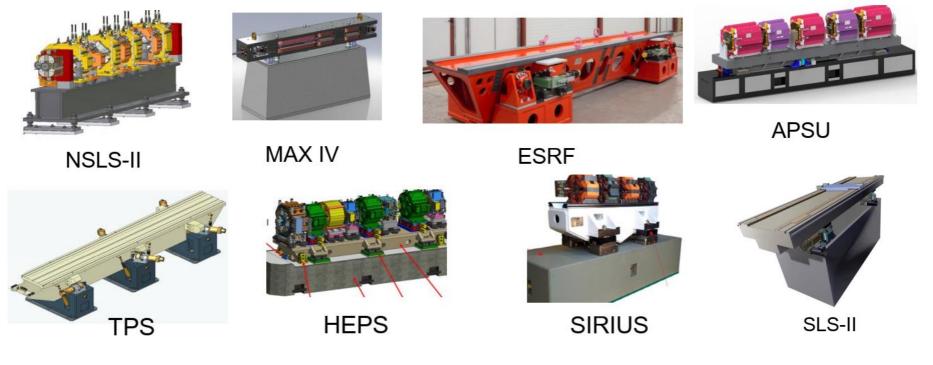
Current 400 mA

Circumference 259.2 m



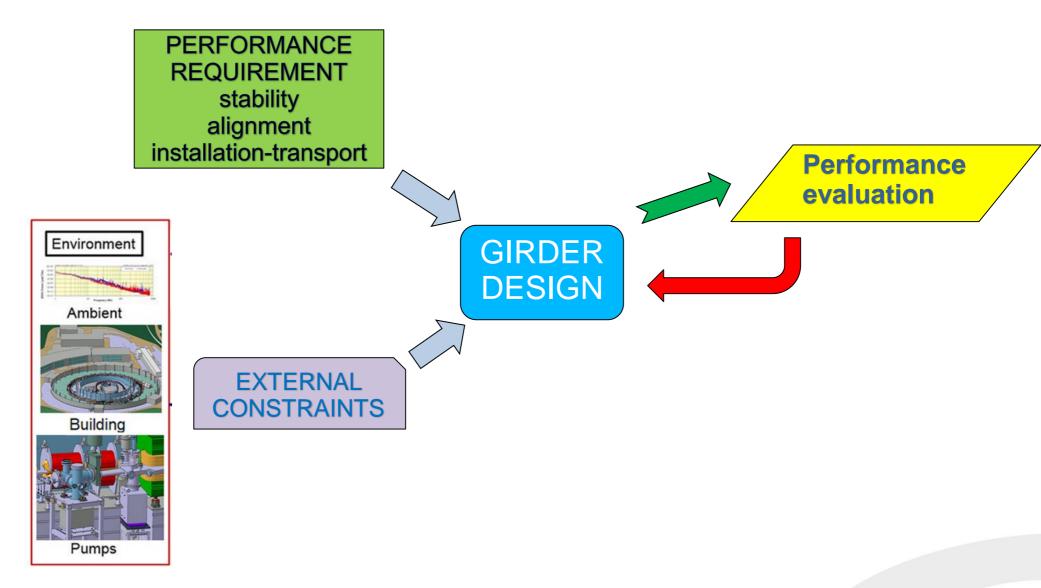
GIRDER BASIC CONCEPTS

The grouping of elements on girders and the mechanical design of the girders is guided by requirements like:


- easy installation and maintenance
- complete preassembly in order to minimize the time required to mount the girder ring in the storage ring
- low deformation
- stiffness
- high eigenfrequencies.

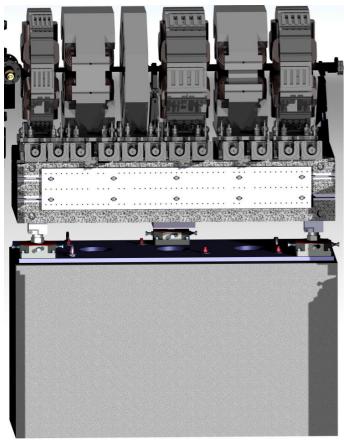
GIRDER DESIGNS

Extremely different girder designs show large difference in the constraints and requirements


- Ring dimension and lattice
- Ground and support points
- Need to realign achromats •

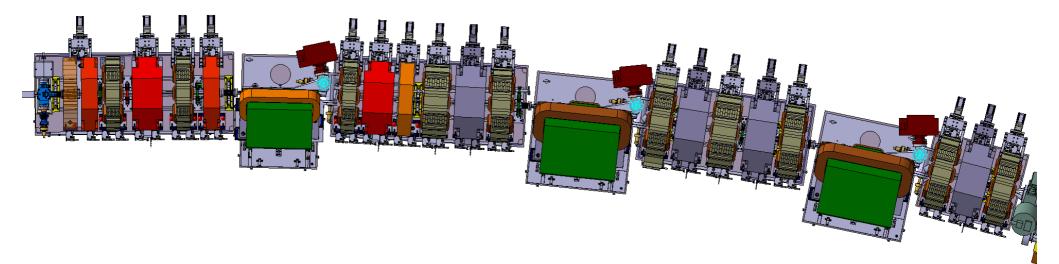
Alignment mechanism: cam movers, wedge jacks, threaded rods

DESIGN PROCESS


GIRDER REQUIREMENTS

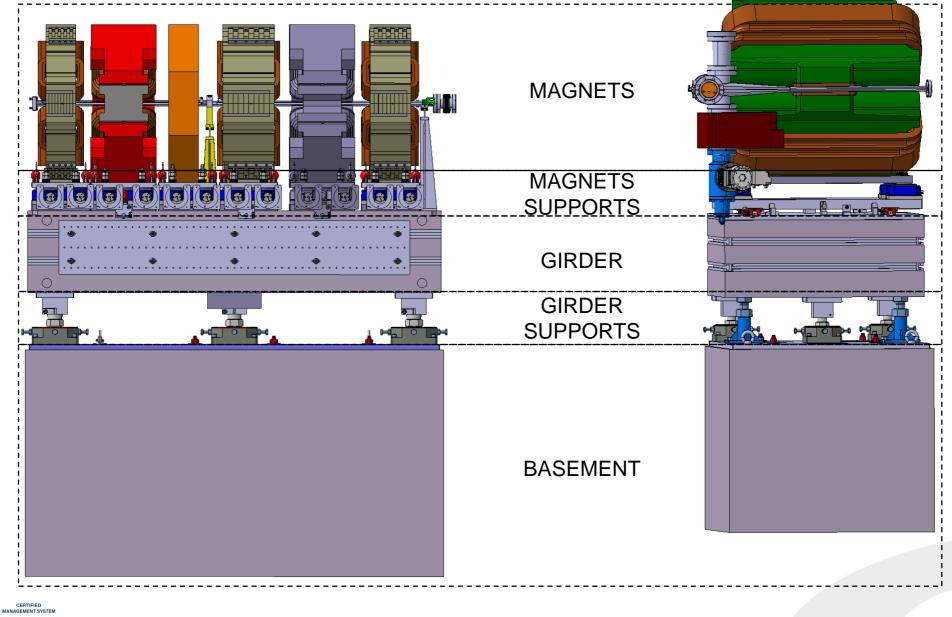
- ✓ Beam height of 1300 mm
- ✓ Stiffness
- ✓ Weight lower than 5000 kg for the crane limit
- ✓ Length limit 3 m
- Precise alignment of the magnets
- ✓ Tightening girder supports without loosing position accuracy
- ✓ Easy installation in the SR tunnel
- High mechanical stability: minimized thermal and mechanical vibrations and excitations (water, electricity...)
- Friction at supports may lead to non-repeatable gravity deflections
 - Meet budget and schedule

Weight max: 3000 Kg Overall Length: 1.57 m Overall Width: 600 mm Overall Height: 1300 mm Beam height: 1.3 m


DESIGN CONCEPT

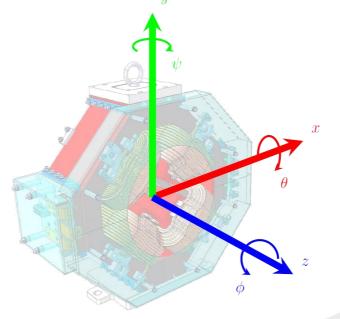
- Girder design developed to satisfy stability and alignment requirements
- Low deformability with real load case
- Girder rigidly connected to grouting using wedges and equipped with manual adjustments
- Cost effective girder design, using conventional fabrication (flatness 0.02 mm)
- Increase system stability
- Complete preassembly in order to minimize the time required to mount the girder in the storage ring
- Easy transportation

ACHROMAT


Parameter	Q13	Q24	Q24RB	Sx12	Sx16	Sx20	B64	B80		
Overall Length	130	2	240	170	210	230	640	800	mm	
Pole length	90	2	222	110	150	190	TBD	TBD	mm	
Overall height	580	580	580	580	580	580	580	680	mm	
Total weight	~ 130	~ 300		~ 180 ~ 230 ~ 2			~ 1050	kg		
Bore diameter	26		30		30		-	-	mm	
Pole minimum gap	10		12		10		-	-	тт	

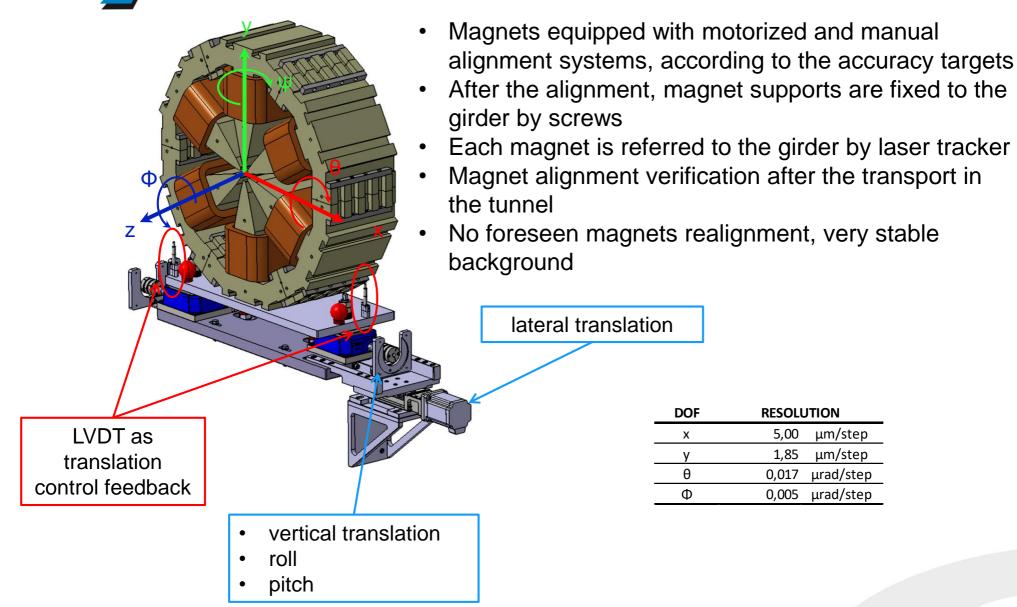
CERTIQUALITY UNI EN ISO 9001:2015 UNI ISO 45001:2018

MAGNETS



ALIGNMENT TARGET

Element Type	Parameter	Value	Unit				
	Δx	50	μm				
	Δy	50	μm				
Dipoles	Δz	300	μ m				
	Roll angle	100	μrad				
	∆BI/BI	0.01	%				
	Δx	20	μm				
	Δy	20	μm				
Quadrupoles on the girder	Δz	300	μm				
the glider	Roll angle	50	μrad				
	∆BI/BI	0.03	%				
	Δx	20	μm				
Sextupole	Δy	20	μm				
/multipoles on the	Δz	300	μm				
girder	Roll angle	50	μrad				
	∆BI/BI	0.03	%				
Correctors	Δz	20	μm				
Conectors	Roll angle	100	μrad				
	Δx	20	μm				
BPMs	Δy	20	μm				
	Δz	300	μm				
	Roll angle	100	μrad				
	Δx	50	μm				
Oindana	Δ y	50	μm				
Girders	Δz	300	μm				
	Roll angle	100	μrad				


The magnets must be fixed to the girder by means of a stiff system, avoiding vibration amplifications, but providing adjustment for the alignment of each magnet within the required tolerances

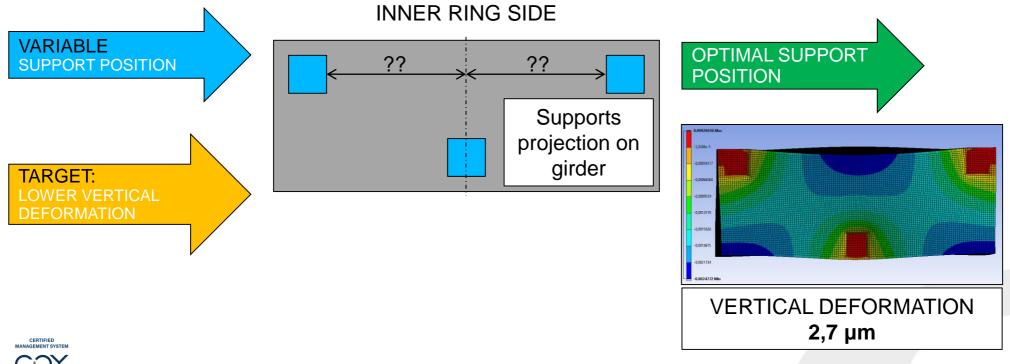
Picture by courtesy of. D.Castronovo

ALIGNMENT TARGET

MAGNET SUPPORTS TESTS

A mock up of the magnet alignment system was created in order to characterize the levelling wedges and identify any design improvement and installation issue.

UNI EN ISO 9001:201


GIRDER SUPPORTS POSITION

Supports position designed to:

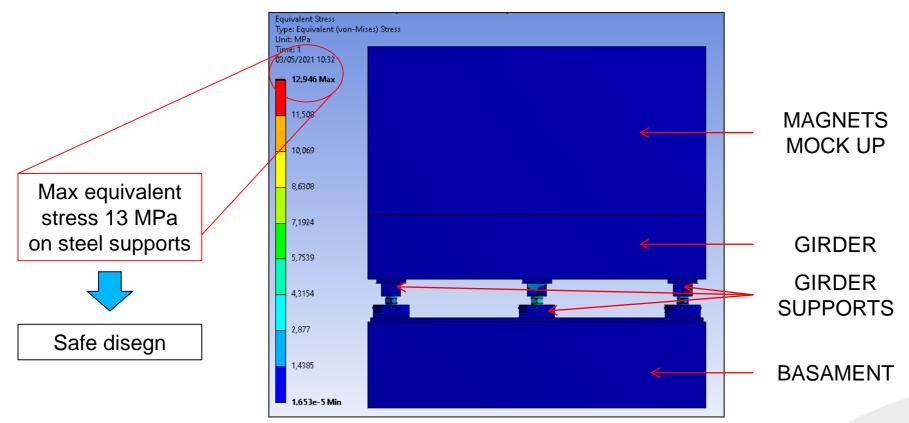
- reduce girder deformation
- easy and accurate alignment

Deformations generated by girder and magnets weight

- optimization analysis
- larger inter axle spacing
- two supports on inner ring side (easy access)

 \rightarrow

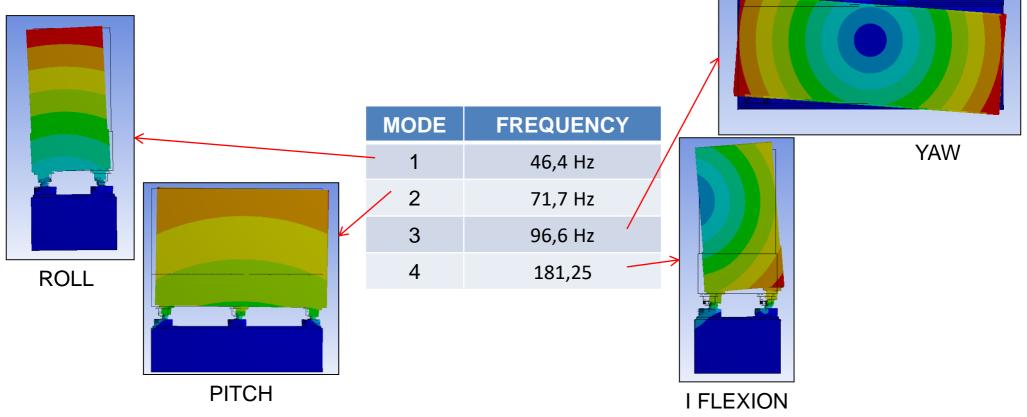
 \rightarrow


 \rightarrow

GIRDER STATIC ANALYSIS

Deformations generated by girder and magnets weight

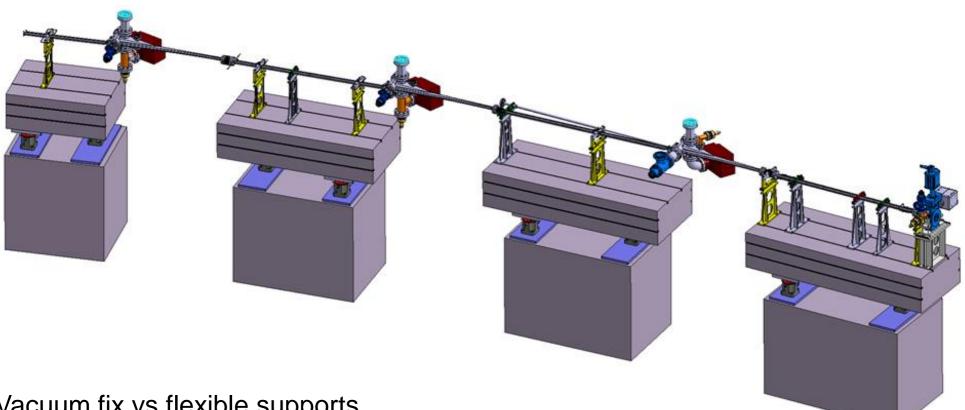
Model integrated with basement, girder supports and magnet equivalent mock-up in order to define equivalent stress:



UNI ISO 45001:20

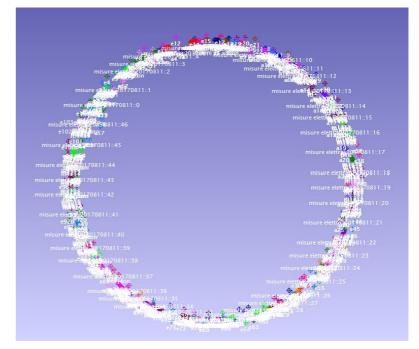
GIRDER DINAMIC ANALYSIS

Girder supports are designed to lead satisfactory vibration stability (higher eigen frequencies \rightarrow lower displacement vibration):



Numerical model is stiffer than real one: we suppose that those frequencies on the real mock-up will be lower \rightarrow *experimental vibration measurements on mock-up*.

VACUUM CHAMBER SUPPORTS



GIRDER ALIGNMENT

Tight tolerances and space and time limitations.

GLOBAL SURVEY NETWORK: to be positioned 450 control points / survey targets

Absolute uncertainties in the network < 30 μ m

Picture by courtesy of alignment team

SURVEY EQUIPMENT

Faro Cam2 Quantum

Leica Laser Tracker AT401

Accuracy: 20 µm

Accuracy: 16 µm

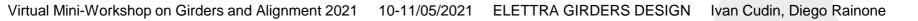
CMM

Accuracy: 2.5 µm

Absolute Angular Performance: accuracy (MPe): +/- 15 µm + 6 µm/m repeatability (MPe): +/- 7.5 µm + 3 µm/m

Absolute Distance Performance: accuracy (MPe): +/- 10 µm repeatability (MPe): +/- 5 µm

Available equipment: LS15 Digital Levels Leica TDRA 6000 Laser Station Leica N3 Precision Level


AMBIENT BACKGROUND

Thermal stability – expected conditions Tunnel air Temperature stability ± 0.5 °C/day ≤ 1.5°C in 100m

Water cooling systems ± 0.5 °C

Maximum magnet motion in 24 H 100 nm

Z

SE

TROLOGY

LAB

土

IERMALIZE

ROON

MAGNETS ALIGNMENT

- Multipoles calibration and fiducialization by rotating coils on a measurement bench, referencing magnetic axes to survey targets
- Magnets installation on the girder
 - Wait for temperature to stabilize and pre-alignment
- Set up stretched wire alignment system
- Magnetic measurement with wire in order to refine their intra-alignment with a reliability of about ± 15 µm. (In order to minimize any possible systematic and random errors, the support structures of the measuring equipment with the wire will be installed directly on the girder)
- Referencing magnetic axes to the girder fiducial references
- Manually lock the magnets in place, using displacement sensors while monitoring the magnet positions
- Magnets opening and installation of vacuum chamber
- Alignment check and fiducialization of the girder by laser tracker with respect to the layout nominal path

IN TUNNE

INSTALLATION IN TUNNEL

- Girder transport to storage ring
- Girder alignment using laser trackers
- Lock girder in the final position
- Girder, vacuum chamber and magnets final positions check

SCHEDULING

Year		2021			2022			2023			2024			2025			2026							
Quarter	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Designs																								
Magnetic Design								1 1 1 1				1 1 1 1	1		1	1	 	1	1		1 1 1 1	1 1 1 1		
Mechanical Design								- - - -	1 1 1 1								- - - -							
Layout integration													1				- - - -	1	1	-				
Post-Design			 	 	 	 		1 1 1 1	1 1 1 1			1 1 1	1		 	1 1 1	1 1 1 1	1	1	-	1 1 1	1 1 1		1
Magnetic Measurement Lab																								
Magnet Prototypes									- - - -															
Mechanical Design																 	1 1 1 1				1	1		
Girder Aligment Study																	1							
Acceptance Tests																								
Characterization				- - - -			- - - - -		- - - - - -			- - - - -		Т0										1
Assembly & Alignment								 	 	 														
Procurement																	1							
Construction				- - - - -	- - - - - - - - - - - - - - - - - - -	1															- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		
Acceptance Tests																								
Installation																	- - - - - -							
Maintenance							1	1				1				 		- - - - -						

By courtesy of. D.Castronovo

RESOURCES

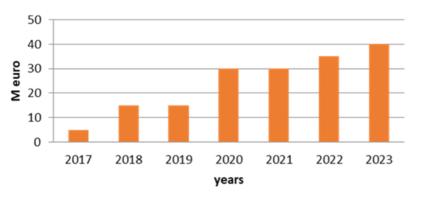
The ring is made up of 12 achromats with 8 multipole girders of maximum 6 magnets each plus 72 bending girder.

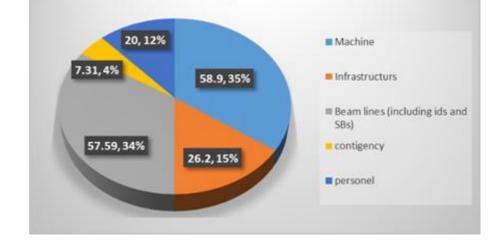
Taking into consideration the measurement and calibration times of the magnets, the expertise and the available staff, the total preparation of a girder, including the installation of the vacuum chamber inside the magnets, will take on average a week (7 CDs).

The preparation of all the girders will cover about 96 calendar weeks, or two calendar years. The last girder will be delivered no earlier than T0 + 728 CDs.

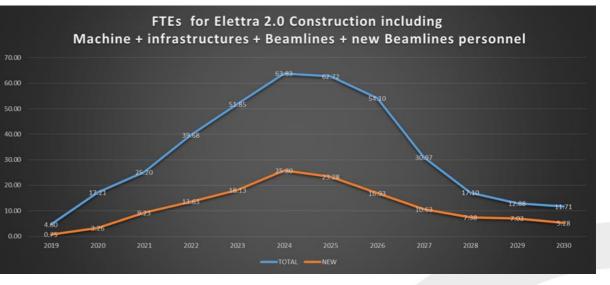
GIRDER BUDGET

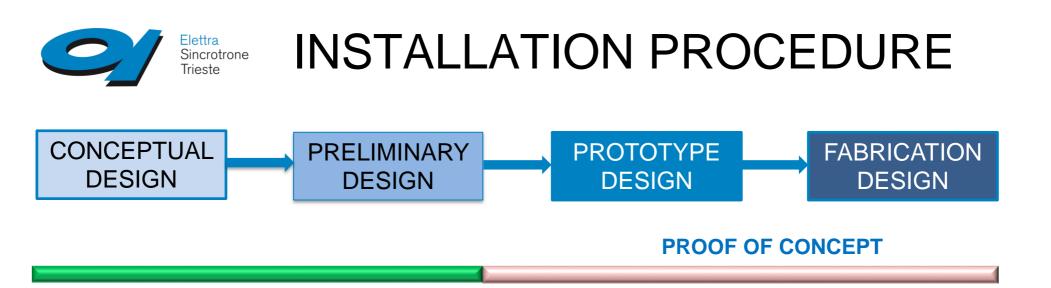
COMPONENTS	BUDGET [€]	BUDGET [€] + VAT
Girders	484000	614880
Standard feet	120000	146400
Girder feet	334000	431880
No-tipping feet	90000	122000
Grouting plates	49000	59780
Girder plates	390000	488000
Cables and wires fixing plates	42000	51240
Screws and ISO components	35000	48800
Anchor bolts	19000	23180
Alignment systems	48000	61000
Bending guides and tools	27000	32940
Vacuum chamber supports	288000	351360
TOTAL	1926000	2349720




PROJECT BUDGET AND MANPOWER

Total cost 170 M€


cash flow


Elettra 2.0 budget distribution in M€

On the average about 40 FTEs/year are considered to be needed for the project from 2020 to 2030 including on the average about 14 FTEs/year new personnel.

- Girder and stages design and optimization
- Vacuum chamber design
- Design of vacuum chambers stands
- Systems integration

NEXT TASKS

- ✓ Finalization of prototypes to be fabricated
- ✓ Tests on prototypes
- ✓ Final design

Elettra-Sincrotrone Trieste S.C.p.A. di interesse nazionale Strada Statale 14 - km 163,5 in <u>AREA Science Park</u> 34149 Basovizza, Trieste ITALY Anagrafe Nazionale Ricerche Cod. 51779CRP partita IVA 00697920320

Info: Analysis and Mechanical Engineering Department Phone: <u>+39 0403758031</u> E-mail: ivan.cudin@elettra.eu

Elettra Sincrotrone THANK YOU FOR YOUR ATTENTION

SPECIAL THANKS ALL THE MECHANICAL ENGINEERING AND THE ALIGNMENT TEAM

www.elettra.eu