Beam stabilization with MIMO controller and BBF

Christian Schmidt, Sven Pfeiffer For the LLRF team LBT Workshop 7.6.2011

Outline

- Motivation and current implementation
 - Schematic feedback overview
- Feedback setup and limitation
 - Response matrix estimation
 - Current operation points
- > Measurement results
 - Achieved arrival time stabilization
- Future integration in feedback scheme
 - Implementation proposal
 - Requirements

Arrival time stabilization

- Stable FEL operation is a user prerequisite
 - Pump-probe experiments
 - SASE intensity stabilization
 - Stabilization of electron pulse length
- Direct influence on beam orbit and energy gain
 - Arrival time imperfections accumulate trough accelerator
 - Compression variations after dispersive sections
 - Energy gain variations
- Imperfect RF regulation
 - Field detection errors and drifts in RF system
 - Accuracy
- Operability
 - Less manual tuning
 - Reduced long term drift

Observer based measurement of beam and RF field

> Perfect RF field regulation does not imply perfect beam regulation!!

Current implementation

- Feedback acts on the set-point (during RF pulse)
 - Decoupling of individual feedback loops (prevention of instabilities)
 - RF controller used for reference tracking
 - Constant pulse to pulse variations done by learning FF
- Transfer function BCM / BAM to RF
 - Beam information to set-point trajectory assumed to be linear
 - Estimation of response matrix needed (static gains)
- Machine protection
 - Corrections are limited to 1% amplitude and phase variation
 - Coupled to toroid system (missing beam, charge calibration)
- Currently used for BC2 and BC3
 - Therefore amplitude and phase regulation of ACC1, ACC39, ACC23

Block diagram of BBF structure

- > BAM, BCM input preprocessed, conversion in Amp, Pha.
- > Limiter as exception secure, modulation to SP I,Q
- > Addition/correction of User RF set-point, MIMO FB

Monitor signal procession

- Should be applied to all beam monitors and OXC
- > Unique structure for slow and fast FB systems

Setup of BBF

Measurement of response Matrix

- Static transfer function from BCM and BAM to amplitude and phase of actuator
- Estimation of 4 (8) Matrix parameters

$$\begin{pmatrix} \Delta t_{BAM,BC2} \\ \Delta V_{BCM,BC2} \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \\ \end{pmatrix} \begin{pmatrix} K_{13} & K_{14} \\ K_{23} & K_{24} \end{pmatrix} \begin{pmatrix} \Delta A_{ACC1} \\ \Delta P_{ACC1} \\ \hline \Delta A_{ACC39} \\ \Delta P_{ACC39} \end{pmatrix}$$

Computation of inversed matrix scaled by monitor specific calibrations

$$M_{BBF} = KM^{-1}$$

> Application of BBF matrix to feedback

Measured beam response matrix in BC2

Arrival time jitter 18ACC1 over 500 pulses

Approximatly 10 bunches are needed for arrival time stabilization

LFF, MIMO FB, BLC and BBF (ACC1, ACC23) on

Problems to be solved for BBF

- Offset should be compensated by slow SP adaptation
- > Reduced ringing, faster settling time
- Improves feedback system, stable operation

To be taken into account

Implementation of a uniform slow feedback system to keep the RF setpoint values to the beam measurements

- (Slow DAQ based long. feedback architecture, R. Kammering)
- > Charge and orbit dependency of beam monitors
 - (Results on BAM studies, M.K. Bock)

Currently setup of feedback demands experts and time

- check system integrity, calibration, measure response matrix ...
- Accuracy and resolution limitations of beam monitors
 - BCM saturation, different monitors
- Time delay and regulation limitations of feedback
- Additional to set-point model-based FF drive

Direct integration into field drive

- Identified beam-field model
- > 1st order MIMO Beam-FB controller
- > Additional gain scheduling tables

Expected benefits of updated BBF structure

- Reduced arrival time jitter and compression fluctuations
 - Possible other controller dynamics necessary for beam monitors
 - Sensitivity of beam monitors differ from field feedback
- Decoupling from field feedback controller dynamics
 - Gain scheduling depending on beam conditions
 - Controller input weights
- Reduced response time
 - Depending on max. closed loop bandwidth of combined system
 - Possible filtering of beam monitor signals, reduced oscillations
- Combination with slow feedback system
 - Keep monitor signals ~ mean free due to SP adaptation (drifts)
 - Update time distribution: 10 Hz ITFB, 1-5 Hz slow SP FB,
 - 1/10 Hz SP correction (residual tilts, oscillations)

Set-point modification

...using BAM measured arrival time slope

Block diagram of integrated slow FB scheme

Summary

- Fast longitudinal FB commissioned and operated at FLASH
- > Achieved arrival time stabilization of < 20 fs for >80 bunches over 500 pulses !
- Setup for user pump probe experiments with fast kickers before undulator

To be done:

- Improvement of monitor operability, availability
- > Automated response matrix determination and application
- Combination with model based direct feed forward drive
- Integration in full FB scheme
- > Further reduction of arrival time jitter below 10 fs

Thanks for your attention

