

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Experiences with GURU

Sebastian Eckweiler - Universität Mainz

- Tool for regularized unfolding: *SVD Approach to Data Unfolding*⁴: <u>http://arxiv.org/abs/hep</u>-ph/9509307v2
- c++ wrapper available on the web: <u>http://www-d0.fnal.gov/~ghesketh/unfolding/</u>
- How does it work?
 - Unfolding problem treated as sys. of. equations, e.g.: t * R = b
 - With:
 - **b** = measured quantities (,*data*')
 - t = true quantities, ideally the result of the unfolding
 - R = response matrix, usually derived from Monte Carlo simulations
 - GURU employs singular value decomposition to solve this system of eq
 - Rotate such that R becomes diagonal solution(s) becomes trivial

Application of GURU

- Use case: unfolding of incl. jet cross section
- Unfortunately measured quantities aren't identical to the observable we'd like to measure, but (hopefully) closely related to them
- Concerning jets: energy reconstructed in calorimeter != energy of stable particles, due to:
 - Energy-scale: assumed to be I
 - Energy-resolution: can't do too much about that, once the calorimeter is built
- Impact on cross section:
 - Migrations between bins distort measured shape
 - Net effect in general: increase of measured cross section

Unfolding with GURU

- How to use GURU?
- In principle only 2 inputs needed (not completely true for this case):
 - b = data as a THI
 - R = Response Matrix as TH2
- In our case:
- R(i,j) = probability that reconstructed jet with p_{T,Reco} in bin i has an associated truth jet with p_{T,True} in bin j

- Matrix mainly diagonal:
 <p_{T,Reco}/p_{T,True}> ≈ I
 (means our calibration makes sense)
- Migration primarily to neighboring bins
- Probability decreasing by $\sim 1/10$ with every bin

Experience with GURU

- The response matrix only handles truth jets between PT,True,Min and PT,True,Max (here [50, ~900] GeV)
- But: Reco-Jets with 50 GeV may have nearest truth jets with only 45 GeV.
- Those losses/gains at the boundaries are not visible in the response matrix (esp. as long as truth and reco bins are identical)
- To correct for that, include the probability that:

Jet in reco bin i has truth jet between pT,True,Min & pT,True,Max

• Apply as an acceptance correction before the unfolding

What GURU does

- Starting off with: R*t = b
 R is diagonalized and system is rotated accordingly: S*z = d
 Equations are scaled such that: σ(d_i) = 1
 Since S is diagonal the solution is straight forward:
 Still, this is not regularized... z_i = d_i / s_i Adding the regularization this becomes: z_i = s_i *d_i / (s_i² + τ)
- With τ being the regularization parameter one has to choose
- GURU chooses N values $\tau = s_i^2$ and gives one result per τ
- This is where GURU stops and one has to employ some own thinking

Choice of τ

- There's ,dedicated' section on this in the paper
- To choose a proper regularization, the study of the d_i is crucial
- di are (usually?) exponentially decreasing
- Since σ(d_i) = I, everything close to one hints at a statistically insignificant component
- Find k where $d_i(i > k) \approx 1$

• Here, choose: $\tau = s_1^2 \text{ or } s_2^2$

• In these closure tests GURU basically gives perfect results

 No surprise, since response matrix is perfectly well known

• In these closure tests GURU basically gives perfect results

 No surprise, since response matrix is perfectly well known

- Started studying the use of GURU for the unfolding in the measurement of a incl. jet cross section
- Personally biased judgement:
- Positive:
 - It works
 - Some tripwires in its use exist e.g. the response matrix needs careful definition
 - It's readily available on the web and assuming some ROOT experience easy to use
 - Last but not least: the author replies to emails ;)
- Negative:
 - It certainly has some black-box character rotate&scale matrices are part of the output, but hardly intuitive
 - Can be unstable
 - output is very limited and tough to interpret