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Motivation

Tradionally in HEP we have

◮ Statistical errors: uncorrelated between data points

◮ Systematic errors: correlated between data points

A popular way to incorporate correlated errors into a χ2 fit:

χ2 =
X

i

(zi +
P

k γ i
kbk − fi)

2

δz2
i,uncorr

+
X

k

b
2
k (1)

= ((~z + G~b) − ~f )TΣ−1((~z + G~b) − ~f ) + ~bT~b. (2)

Unfolding results in a fully occupied covariance matrix for the statistical errors.

◮ Difficult for visualization (no uncorrelated part)

◮ Current fit programs typically use form (2)

Can an arbitrary covariance matrix be decomposed into an uncorrelated

and a correlated part?
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Introduction

The χ2 in a fit is given by:

χ2 = (~z − ~f )T · C−1 · (~z − ~f ) (3)

=
X

i,j

(zi − fi)
“

C
−1

”

i,j
(zj − fj). (4)

In case of correlated errors, often this form is used:

χ2 =
X

i

(zi +
P

k
γ i

kbk − fi)
2

δz2
i,uncorr

+
X

k

b
2
k (5)

= ((~z + G~b) − ~f )TΣ−1((~z + G~b) − ~f ) + ~bT~b. (6)

◮ How are C , Σ and G related?

◮ Can we transform any covariance matrix C into uncorrelated errors Σ and
a coefficient matrix G?

◮ Are the two χ2 definitions equivalent?
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Notation

zi = ŷi +
X

k

γ i
k âk

◮ zi: The measured values, with 〈zi〉 = 〈yi〉 and uncorrelated (“statistical”)
error δz2

i,stat = δy 2
i .

◮ ŷi: Uncorrelated random variables with variance δy 2
i (“the measurement

without systematics”)

◮ âk: Uncorrelated random variables with zero mean and unit variance:
〈âk〉 = 0, 〈â2

k − 〈âk〉2〉 = 1 (“the unknown systematics”)

◮ γ i
k : shift of measurement i due to systematic k (assumed to be known,

e.g. from MC)

Note: âk represents the deviation from an unknown, true value, e.g. deviation
from the true luminosity, the true energy scale etc.
The observed value of âk (e.g., the measured luminosity, the energy scale after
some calibration) is generally nonzero and shifts all measurements.
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Notation, cont’d

For convenience, we define ak such that the measured (or calibrated) value is
zero:

ak = âk + ∆ak (7)

yi = ŷi −
X

k

γ i
k∆ak (8)

(9)

Then the measured values zi are given by

zi = yi +
X

k

γ i
kak (10)

Define Σ = diag(δy 2
i ) and Gik = γ i

k , then error propagation gives

C = Σ + GG
T

for the covariance matrix of the measurements zi.
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Decomposition of the Covariance Matrix

If only C is given, e.g. as result from an unfolding, can this calculation be
reversed, i.e.:

Is it possible to decompose any given covariance matrix C into an uncorrelated
part Σ and a correlated part G such that

C = Σ + GG
T?
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Any covariance matrix C is

◮ symmetric: C = CT

◮ positive definite: ~xTC~x > 0 for all ~x with |~x | 6= 0.

Therefore:

◮ All eigenvalues λi of C are real and positive.

◮ An orthogonal matrix O of eigenvectors exists such that

C = OΛO
T

with Λ = diag(λi) the diagonal matrix of the eigenvalues.

Setting F = O diag(
√

λi):
C = FF

T

This is not a solution to the problem, because there are no uncorrelated errors.
But: any positive semidefinite matrix C can be written as FFT .
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The Problem

The problem: Find a diagonal matrix Σunc = diag(σ2
unc,1, ...σ

2
unc,N), representing

the uncorrelated errors, such that C − Σunc is positive semidefinite, i.e. all
eigenvalues are ≥ 0.
The uncorrelated errors should be “as large as possible”.
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The Solution

Ansatz:

Σunc = aΣtot,

where Σtot = diag(Cii) is the diagonal part of C .
Define S = diag(

√
Cii), i.e. Σtot = S2, and the matrix of correlation coefficients

R = S
−1

CS
−1,

with eigenvalues λR,i.

Now
C̃ = C − Σunc = S(R − aI )S

C̃ is positive semidefinite if R̃ = R − aI is positive semidefinite.
The eigenvalues of R̃ are given by λR,i − a.
Therefore: Choose

a = min(λR,i)

then at least one eigenvalue of C̃ is zero, and all others are nonnegative.
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Properties of G

If O is the matrix of eigenvectors of R, then

G = SO diag(
p

λR,i − a)

and
C = aΣtot + GG

T

Elements of G :

γk
i = Gik = σtot,iOik

p

λR,k − a

Since O is orthogonal, for any column k:
P

i
O2

ik = 1, i.e. the Oik are of order 1,
and |Oik| ≤ 1.

If λR,k − a ≪ 1 it follows: γk
i ≪ σtot,i

Therefore: Columns of G where λR,k − a = 0 and λR,k − a ≪ 1 can be omitted,
because they do not contribute noticeably to the overall error.
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Short Summary

For any covariance matrix C , one can define an
uncorrelated part Σ = aΣtot and a coefficient
matrix G such that

C = Σ + GG
T

The uncorrelated errors are a fixed fraction
√

a

of the total errors for all data points.

Caveat: For N data points, the full covariance
matrix has N · (N + 1)/2 elements, while Σ and
G have up to N + N · (N − 1) = N2 elements.

The number of independent coefficients
decreases only if at least N/2 eigenvalues of R̃

are so small that the corresponding columns of
G can be omitted.
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Extended χ
2 Fit

In an extended χ2 fit, shifts and scale values are determined for all sources of
systematic errors.
Sometimes the errors are significantly reduced (“cross calibration”), sometime
the result is quite unexpexted (e.g. large shifts of the systematics).

Would that also happen if the “pure” covariance matrix were used?

Are a χ2 fit with a full covariance matrix and an extended χ2 fit with

parameters for each systematic error equivalent?

A formal proof is presented for the equivalence.
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Define:
Vector of measured values:

~z ′ = (z1 . . . zN , a1 . . . aM)T = (z1 . . . zN , 0 . . . 0)T

Vector of independent random variables

~y ′ = (y1 . . . yN , a1 . . . aM)T

~z ′ and ~y ′ are related by a matrix

M =

„

I G

0 I

«

and M
−1 =

„

I −G

0 I

«

.

such that
~z ′ = M · ~y ′.
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The covariance matrix of the elements of ~y ′ is given by

Σ′ = diag(δz2
1,uncorr . . . δz2

N,uncorr, 1 . . . 1).

From error propagation, the covariance matrix C ′ of the extended vector z ′ is
given by

C
′ = MΣ′

M
T (11)

=

„

Σ + GTG G

GT I

«

. (12)

and we note that

C
′−1

= (MT )−1Σ′−1
M

−1 =

„

Σ−1 −Σ−1G

−GTΣ−1 1 + GTΣ−1G

«

.
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Introduce K additional fit parameters bk representing the best fit values of ak,
i.e. our best estimate of the true mean of the ak.
Form a vector

~f ′ = (f1 . . . fN , b1 . . . bM)T ,

Use

C
′−1

= (MT )−1Σ′−1
M

−1 =

„

Σ−1 −Σ−1G

−GTΣ−1 1 + GTΣ−1G

«

.

Extended χ2:

χ̃2 = (~z ′ − ~f ′)T
C

′−1
(~z ′ − ~f ′) (13)

= (~z − ~f )TΣ−1(~z − ~f ) + (~z − ~f )TΣ−1
G~b (14)

+b
T
G

TΣ−1(~z − ~f ) + ~bT~b + ~bT
G

TΣ−1
G~b

= (~z + G~b − ~f )TΣ−1(~z + G~b − ~f ) + ~bT~b. (15)

By definition ~b −~a = ~b, because the measured values ak all vanish.
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Best value for ~b, i.e. minimum of χ̃2:

0 =
∂χ̃2

∂~b
(16)

= 2G
TΣ−1(~z + G~b − ~f ) + 2b (17)

Solution:

~b = (1 + G
TΣ−1

G )−1
G

TΣ−1(~f − ~z) (18)
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Rewrite

χ̃2 = (~z + G~b − ~f )TΣ−1(~z + G~b − ~f ) + ~bT~b (19)

= (~z − ~f )TΣ−1(~z − ~f ) (20)

−b
T
G

TΣ−1(~z − ~f ) − (~z − ~f )TΣ−1
G~b + b

T
G

TΣ−1
G~b + ~bT~b.

Insert ~b = −(1 + GTΣ−1G )−1GTΣ−1(~z − ~f ):

χ̃2 = (~z − ~f )TΣ−1(~z − ~f ) (21)

−(~z − ~f )TΣ−1
G (I + G

TΣ−1
G )−1

G
TΣ−1(~z − ~f )

−(~z − ~f )TΣ−1
G (I + G

TΣ−1
G )−1

G
TΣ−1(~z − ~f ).

+(~z − ~f )TΣ−1
G (I + G

TΣ−1
G )−1

G
TΣ−1

G (I + G
TΣ−1

G )−1
G

TΣ−1(~z − ~f )

+(~z − ~f )TΣ−1
G (I + G

TΣ−1
G )−1(I + G

TΣ−1
G )−1

G
TΣ−1(~z − ~f ).

after a bit of calculation...

= (~z − ~f )TΣ−1(~z − ~f ) (22)

−(~z − ~f )TΣ−1
G (I + G

TΣ−1
G )−1

G
TΣ−1(~z − ~f )
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C = Σ + GG
T

is an rank-M update of Σ.

Apply the the Sherman–Morrison–Woodbury formula
(A + UV T )−1 = A−1 − A−1U(I − V TA−1U)−1V TA−1

to calculate inverse of C :

C
−1 = Σ−1 − Σ−1

G
“

I + G
T Σ−1

G
”

−1

G
T Σ−1.

Insert into χ2 expression:

χ2 = (~z − ~f )T · C−1 · (~z − ~f ) (23)

= (~z − ~f )T · Σ−1 · (~z − ~f ) (24)

−(~z − ~f )T · Σ−1
G

“

I + G
T Σ−1

G
”

−1

G
T Σ−1 · (~z − ~f )

Result is identical to χ̃2 at minimum w.r.t. ~b.
Conclusion:
The extended χ2 fit is exactly equivalent to a fit with the full covariance

matrix.
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Summary and Conclusions

◮ Any covariance matrix, e.g. from a unfolding problem, can be decomposed
into an uncorrelated part and a correlated part, with a coefficient matrix
for a number of sources of correlation.

◮ The extended χ2 fit, where shifts and scale factors for all all sources of
systematics are determined, is exactly equivalent to a fit with only the full
correlation matrix of the data points.
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