Performance and improvements of different unfolding methods

K. Bierwagen, U. Blumenschein, A. Quadt
$2^{\text {rd }}$ Institute of Physics, Georg-August-University Göttingen
May 27, 2010

Helmholtz Alliance

Bundesministerium für Bildung und Forschung

- Plan:
- Correction for detector effects in data
- Effects:
- Migration
- Efficiency/acceptance
- Resolution
- Preparations:

- Performance checks of available methods
- Develope new methods
- Improve the different methods
- Comparison of the methods

Iterative (Bayes) Method

Correction aplied on two different test samples

\rightarrow Uncertainties seems to be too large
\rightarrow Check method using a simple Toy Mc

- Define a migration matrix

$$
M_{1}=\left(\begin{array}{ccc}
0 & 0.1 & 0.1 \\
0.2 & 0.3 & 0.5 \\
0.8 & 0.6 & 0.4
\end{array}\right) \quad M_{2}=\left(\begin{array}{ccc}
0 & 0.1 & 0.8 \\
0.2 & 0.8 & 0.2 \\
0.8 & 0.1 & 0
\end{array}\right) \quad M_{3}=\left(\begin{array}{ccc}
0 & 0.025 & 0.95 \\
0.05 & 0.95 & 0.05 \\
0.95 & 0.025 & 0
\end{array}\right)
$$

large migration medium migration low migration

- Create a truth distribution with 3 bins with 10000 entries each
- Create randomly a test distribution
- Calculate the unfolded distribution with the program and manually
\rightarrow Both calculations give the same result
\rightarrow Method is correctly implemented
- Define a migration matrix $\left(\mathrm{M}_{2}\right)$
- Create a truth distribution with 3 bins with 10000 entries each
- Create randomly 2000 test distributions and calculate the unfolded distribution
- Compare unfolded distribution with the true distribution

- No bias visible
- Create randomly 2000 migration matrices from fixed probabilties $\left(M_{2}\right)$
- Create a truth distribution with 3 bins with 10000 entries each
- Create randomly 2000 test distributions and calculate the unfolded distribution

- No bias visible
- Create randomly 2000 migration matrices from fixed probabilties $\left(\mathrm{M}_{2}\right)$
- Create randomly 2000 uniformly distributed truth distributions with 30000 entries
- Create randomly 2000 test distributions and calculate the unfolded distribution

- No bias visible

Uncertainties

$$
\begin{aligned}
& \widehat{n}\left(C_{i}\right)=\sum_{j=1}^{n_{B}} M_{i j} \cdot n\left(E_{j}\right) \quad \text { - } \mathrm{M}_{\mathrm{ij}} \text { terms of the unfolding matrix } \mathrm{M} \\
& \text { - } M \text { is clearly not equal to the } \\
& \text { inverse of the migration matrix } \\
& M_{i j}=\frac{P\left(E_{j} \mid C_{i}\right) \cdot P_{\mathrm{o}}\left(C_{i}\right)}{\left[\sum_{l=1}^{n_{B}} P\left(E_{l} \mid C_{i}\right)\right] \cdot\left\{\sum_{l=1}^{n_{C}^{C}} P\left(E_{j} \mid C_{l}\right) \cdot P_{\mathrm{o}}\left(C_{l}\right)\right]} \\
& \text { - } P_{0}\left(C_{i}\right) \text { : initial probabilities } \\
& \text { - } n\left(E_{j}\right) \text { : data sample } \\
& \text { - } P\left(E_{j} \mid C_{j}\right) \text { : migration probabilities }
\end{aligned}
$$

- Sources of uncertainties:
- $P_{0}\left(C_{i}\right)$: no uncertainty is introduced
- $n\left(E_{\mathrm{j}}\right)$: data is assumed to be mutinomial distributed

$$
V_{k l}(\underline{n}(E))=\sum_{j=1}^{n_{B}} M_{k j} \cdot M_{l j} \cdot n\left(E_{j}\right) \cdot\left(1-\frac{n\left(\overline{\widetilde{N}}_{j}\right)}{\widehat{N}_{\text {true }}}\right)-\sum_{\substack{i, j=1 \\ i \neq j}}^{n_{B}} M_{k i} \cdot M_{i j} \cdot \frac{n\left(E_{i}\right) \cdot n\left(E_{j}\right)}{\widetilde{N}_{\text {true }}}
$$

- $P\left(E_{j} \mid C_{j}\right):$

$$
V_{k l}(\mathrm{M})=\sum_{i, j=1}^{n_{B}} n\left(E_{i}\right) \cdot n\left(E_{j}\right) \cdot \operatorname{Cov}\left(M_{k i}, M_{l j}\right)
$$

- Total uncertainty: $\quad V_{k l}=V_{k l}(\underline{n}(E))+V_{k l}(\mathrm{M})$
- Absolute uncertainties from ensemble tests with and w/o fluctuations in the matrix $\left(\mathrm{M}_{2}\right)$

- Fluctuations in the matrix increases the uncertainty by a factor of 1.4 in this case
- Create pull distribution \rightarrow comparison between uncertainties from ensemble tests and the program $\left(\mathrm{M}_{2}\right)$

- Uncertainties given from the program are too large (σ (pull)<1.0)
\rightarrow Seems that fluctuations in data are not treated correctly
- Pull distributions with and w/o fluctuations in the matrix are not equal
\rightarrow Seems that fluctuations in the matrix are not treated correctly
- Infinite statistics in the migration matrix \rightarrow contribution close to 0 to the total uncertainty
- Compare the pull distributions for the fixed migration matrix with uncertainty on and off on the migration matrix

- Calculation of the uncertainty on the migration matrix for infinite statistics seems to work correctly
- Comparison between uncertainties from ensemble tests and the program for high and low statistics in data with infinite statistics in the training

- As expected the influence of the amount of statistics in data is very small
- Comparison between uncertainties from ensemble tests and the program for 3 different migration matrices

- Less migration leads to an over estimation of the uncertainties
\rightarrow Migration effect is not treated correctly in the error calculation
\rightarrow Assumptions for the error calculation have to be checked
- Problem: Program assumes a multinomial distribution for the data
- Multinomial distribution:

$$
\begin{aligned}
& \operatorname{var}=n p_{j} \cdot\left(1-p_{j}\right) \\
& \operatorname{cov}=-n p_{i} p_{j}
\end{aligned}
$$

- But each bin is multinomial distributed
- The sum of multinomial distributions is only a multinomial distribution if all distributions are the same
\rightarrow The columns of the migration matrix has to be equal to get the correct estimate for the uncertainty
\rightarrow Not the typical case in data analysis

Uncertainties

- Example 1 (large migration):
$\left(\begin{array}{ccc}0 & 0.1 & 0.1 \\ 0.2 & 0.3 & 0.5 \\ 0.8 & 0.6 & 0.4\end{array}\right) \longrightarrow\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0.16 & -0.16 \\ 0 & -0.16 & 0.16\end{array}\right)+\left(\begin{array}{ccc}0.09 & -0.03 & -0.06 \\ -0.03 & 0.21 & -0.18 \\ -0.06 & -0.18 & 0.24\end{array}\right)+\left(\begin{array}{ccc}0.09 & -0.05 & -0.04 \\ -0.05 & 0.25 & -0.2 \\ -0.04 & -0.2 & 0.24\end{array}\right)=\left(\begin{array}{ccc}0.18 & -0.08 & -0.1 \\ -0.08 & 0.62 & -0.54 \\ -0.1 & -0.54 & 0.64\end{array}\right)$
program
$\frac{1}{3} \cdot\left(\begin{array}{l}0.2 \\ 1.0 \\ 1.8\end{array}\right)$

Calculate covariance matrix

- As mentioned before both calculations give different results
$\left|\begin{array}{ccc}0.187 & -0.07 & -0.14 \\ -0.07 & 0.7 & -0.6 \\ -0.12 & -0.6 & 0.72\end{array}\right|$

- Example 2 (low migration):

program

Calculate covariance matrix

- As mentioned before both calculations give different results
- Differences become larger for less migration in the migration matrix
- Implement the new uncertainty calculation for the data into the program
- Assumption: The data sample is a realization of a sum of multinomial distributions

$$
\begin{aligned}
V_{k l}(\underline{n}(E))= & \sum_{j=1}^{n_{E}} M_{k j} \cdot M_{l j} \cdot \sum_{r=1}^{n_{E}} \hat{n}\left(C_{r}\right) \cdot P\left(E_{j} \mid C_{r}\right) \cdot\left(1-P\left(E_{j} \mid C_{r}\right)\right) \\
& -\sum_{\substack{i, j=1 \\
i \neq j}}^{n_{E}} M_{k i} \cdot M_{l j} \cdot \sum_{r=1}^{n_{E}} \hat{n}\left(C_{r}\right) \cdot P\left(E_{i} \mid C_{r}\right) \cdot P\left(E_{j} \mid C_{r}\right)
\end{aligned}
$$

- Comparison of the pull distributions for the old and the new uncertainty calculation for a migration matrix with large migration $\left(\mathrm{M}_{1}\right)$

\rightarrow As expected for large migration only a small improvement of the uncertainty calculation is visible
- Comparison of the pull distributions for the old and the new uncertainty calculation for a migration matrix with low migration $\left(\mathrm{M}_{2}\right)$

\rightarrow For low migration in the migration matrix a clear improvement of the uncertainty calculation is visible
- Comparison between uncertainties from ensemble tests and the program with and w/o fluctuations in the migration matrix $\left(\mathrm{M}_{2}\right)$ for the new error calculation

- Comparison between uncertainties from ensemble tests and the program with and w/o fluctuations in the migration matrix $\left(\mathrm{M}_{2}\right)$ for the new error calculation

- The new uncertainty calculation shows a clear improvement
- Seems that also the problem with fluctuations in the matrix is solved

Bin-by-Bin Method

Bin-by-Bin Method:

- Assumes that migration between the bins is negligable
\rightarrow Migration matrix is diagonal
- Only needs the reconstructed and the truth distribution as input
- No correction for fake jets is needed

\rightarrow Uncertainties seems to be too large
\rightarrow Check method using a simple Toy Mc
- Create a truth distribution with 3 bins with 10000 entries each
- Create randomly 2000 training distributions from fixed probabilties
- Calculate for each bin a correction factor
- Create randomly 2000 test distributions and calculate the unfolded distribution

- No bias visible
- Uncertainties for the Bin-by-Bin method can be calculated assuming a multinomial distribution or poisson distribution for the data
- Create pull distribution \rightarrow comparison between uncertainties from ensemble tests and the program with infinite statistics in the training

\rightarrow The multinomial distribution gives a better and a stable estimation of the uncertainties due to fluctuations in data
- Create pull distribution \rightarrow comparison between uncertainties from ensemble tests and the program with finite statistics in the training assuming a multinomial distribution for the data

\rightarrow Uncertainties given from the program are too small ($\sigma($ pull $)>1.0$) with finite statistics in the training
\rightarrow Have to introduce an additional uncertainty on the correction factor

Other Methods

- SVD describes a change of Basis with a diagonal response matrix A

$$
\mathrm{A}=\mathrm{USV}^{\top}
$$

U and V are orthogonal and S is a diagonal matrix with nonnegative diagonal elements

$$
S_{i j}=0 \text { for } i \neq j, S_{i i} \equiv S_{i} \geq 0
$$

S_{i} are called singular values of A

- Some singular values are significantly smaller than others
\rightarrow The system is difficult to solve
\rightarrow The small singular values are set to zero to solve the system
- Problem: Due to the cut on the singular values the unfolded distributions becomes periodic, not a good method if it is known that the function is smooth

$$
Y=A \cdot X
$$

- The migration matrix A itself is not invertable
- But $\left(\alpha I+A^{\top} A\right)$ is invertable

$$
X=\left(\alpha I+A^{\top} A\right)^{-1} A^{\top} Y
$$

- For $\alpha \rightarrow 0$ the system converges to the initial system
\rightarrow Tikhonov regularisation is a reweighting of the singular values
\rightarrow Smoother result
- α can be estimated using cross validation
- Iterative (Bayes) Method:
- Performance of this method is checked
- New uncertainty calculation shows a clear improvement
- Code exists in C++, but is not yet user friendly enough
- Bin-by-Bin Method:
- Performace of this method is checked
- Code exists also in C++
- Next steps:
- Include efficiency loss
- Ensemble tests for Tikhonov regularisation and SVD
- Look at physics distributions
- Make the code public and document it
- Compare the different methods
- Create randomly a migration matrix from fixed probabilties $\left(\mathrm{M}_{2}\right)$
- Create a truth distribution with 3 bins with 10000 entries each
- Create randomly 2000 test distributions and calculate the unfolded distribution

\rightarrow Create randomly a migration matrix results in fluctuations in the matrix for finite statistics
\rightarrow Introduce a bias
\rightarrow Fluctuations have to be taken into account
\rightarrow Have to create randomly different migration matrices

