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Introduction

 Plan:

− Correction for detector effects in data

 Effects:

− Migration

− Efficiency/acceptance

− Resolution

 Preparations:

− Performance checks of available methods

− Develope new methods

− Improve the different methods

− Comparison of the methods

ATLAS work in progress
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Iterative (Bayes) Method
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ATLAS work in progress

Iterative (Bayes) Methode

Input distributions

00

Iterative (Bayes) Methode:
 Use C++ implementation of G. D'Agostini 's paper from 

Marisa Sandhoff
 Training distributions (true T

i
 and reconstructed M

j
)

 Migration matrix R
ji
 (R

ji
 fraction of events of T

i
 in M

j
)

 Iteration step:

Correction for fake 
jets is applied 

Correction aplied on two different test samples

ATLAS work in progress

ATLAS work in progress

➔ Uncertainties seems to be too large
➔ Check method using a simple Toy Mc
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Test of C++ implementation

 Define a migration matrix

 Create a truth distribution with 3 bins with 10000 
entries each 

 Create randomly a test distribution

 Calculate the unfolded distribution with the program 
and manually

➔ Both calculations give the same result

➔ Method is correctly implemented

M 1= 0 0.1 0.1
0.2 0.3 0.5
0.8 0.6 0.4 M 2= 0 0.1 0.8

0.2 0.8 0.2
0.8 0.1 0  M 3= 0 0.025 0.95

0.05 0.95 0.05
0.95 0.025 0 

large migration medium migration low migration
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Method checks 1

 Define a migration matrix (M
2
)

 Create a truth distribution with 3 bins with 10000 entries each 

 Create randomly 2000 test distributions and calculate the 
unfolded distribution

 Compare unfolded distribution with the true distribution

 No bias visible

1st  bin
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Method checks 2

 Create randomly 2000 migration matrices from fixed probabilties (M
2
)

 Create a truth distribution with 3 bins with 10000 entries each 

 Create randomly 2000 test distributions and calculate the unfolded 
distribution

 No bias visible

1st  bin
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Method checks 3

 Create randomly 2000 migration matrices from fixed probabilties (M
2
)

 Create randomly 2000 uniformly distributed truth distributions with 
30000 entries 

 Create randomly 2000 test distributions and calculate the unfolded 
distribution

 No bias visible

1st  bin
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Uncertainties

 Sources of uncertainties:

− P
0
(C

i
): no uncertainty is introduced

− n(E
j
): data is assumed to be mutinomial distributed

− P(E
j
|C

i
): 

− Total uncertainty: 

 M
ij
 terms of the unfolding matrix M

 M is clearly not equal to the 
inverse of the migration matrix

 P
0
(C

i
): initial probabilities

 n(E
j
): data sample

 P(E
j
|C

i
): migration probabilities
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Uncertainties

 Absolute uncertainties from ensemble tests with 
and w/o fluctuations in the matrix (M

2
)

 Fluctuations in the matrix increases the 
uncertainty by a factor of 1.4 in this case

1st  bin
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Uncertainties

 Create pull distribution → comparison between uncertainties from 
ensemble tests and the program (M

2
)

 Uncertainties given from the program are too large (σ(pull)<1.0)

➔ Seems that fluctuations in data are not treated correctly

 Pull distributions with and w/o fluctuations in the matrix are not equal

➔ Seems that fluctuations in the matrix are not treated correctly

1st  bin
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Uncertainties

 Infinite statistics in the migration matrix → contribution 
close to 0 to the total uncertainty

 Compare the pull distributions for the fixed migration 
matrix with uncertainty on and off on the migration 
matrix 

 Calculation of the uncertainty on the migration matrix 
for infinite statistics seems to work correctly
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Uncertainties

 Comparison between uncertainties from ensemble tests and the 
program for high and low statistics in data with infinite statistics 
in the training

 As expected the influence of the amount of statistics in data is 
very small
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Uncertainties

 Comparison between uncertainties from ensemble tests and the 
program for 3 different migration matrices

 Less migration leads to an over estimation of the uncertainties

➔ Migration effect is not treated correctly in the error calculation

➔ Assumptions for the error calculation have to be checked

1st  bin
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Uncertainties

 Problem: Program assumes a multinomial 
distribution for the data 

 Multinomial distribution: 

 But each bin is multinomial distributed

 The sum of multinomial distributions is only a multinomial 
distribution if all distributions are the same

➔ The columns of the migration matrix has to be equal to get 
the correct estimate for the uncertainty

➔ Not the typical case in data analysis

var=np j⋅1−p j

cov=−npi p j
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Uncertainties

 Example 1 (large migration):


0 0.1 0.1

0.2 0.3 0.5
0.8 0.6 0.4
program

1
3
⋅

0.2
1.0
1.8

0 0 0
0 0.16 −0.16
0 −0.16 0.16  0.09 −0.03 −0.06

−0.03 0.21 −0.18
−0.06 −0.18 0.24  0.09 −0.05 −0.04

−0.05 0.25 −0.2
−0.04 −0.2 0.24 =

0.18 −0.08 −0.1
−0.08 0.62 −0.54
−0.1 −0.54 0.64 


0.187 −0.07 −0.14
−0.07 0.7 −0.6
−0.12 −0.6 0.72 

● As mentioned before both 
calculations give different results

Calculate covariance matrix
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Uncertainties

 Example 2 (low migration):


0 0.1 0.8

0.2 0.8 0.2
0.8 0.1 0 
program

1
3
⋅

0.9
1.2
0.9

0 0 0
0 0.16 −0.16
0 −0.16 0.16  0.09 −0.08 −0.01

−0.08 0.16 −0.08
−0.01 −0.08 0.09  0.16 −0.16 0

−0.16 0.16 0
0 0 0 =

0.25 −0.24 −0.01
−0.24 0.48 −0.24
−0.01 −0.24 0.25 


0.63 −0.36 −0.27
−0.36 0.72 −0.36
−0.27 −0.36 0.63 

● As mentioned before both 
calculations give different results

● Differences become larger for 
less migration in the migration 
matrix

Calculate covariance matrix
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Uncertainties

 Implement the new uncertainty calculation for 
the data into the program

 Assumption: The data sample is a realization 
of a sum of multinomial 
distributions

V kl n E=∑
j=1

nE

M kj⋅M lj⋅∑
r=1

n E

n C r⋅P E j∣Cr ⋅1−PE j∣C r 

−∑
i , j=1
i≠ j

n E

M ki⋅M lj⋅∑
r=1

n E

nC r⋅P Ei∣C r⋅P E j∣Cr 
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Uncertainties

 Comparison of the pull distributions for the old and the new 
uncertainty calculation for a migration matrix with large 
migration (M

1
)

➔ As expected for large migration only a small improvement 
of the uncertainty calculation is visible

1st  bin
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Uncertainties

 Comparison of the pull distributions for the old and the new 
uncertainty calculation for a migration matrix with low 
migration (M

2
)

➔ For low migration in the migration matrix a clear 
improvement of the uncertainty calculation is visible

1st  bin
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Uncertainties

 Comparison between uncertainties from ensemble tests and the 
program with and w/o fluctuations in the migration matrix (M

2
) for the 

new error calculation

old uncertainty new uncertainty

1st  bin 1st  bin
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Uncertainties

 Comparison between uncertainties from ensemble tests and the 
program with and w/o fluctuations in the migration matrix (M

2
) for the 

new error calculation

 The new uncertainty calculation shows a clear improvement

 Seems that also the problem with fluctuations in the matrix is solved

old uncertainty new uncertainty
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Bin-by-Bin Method
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Bin-by-Bin Method

Bin-by-Bin Method:
● Assumes that migration between the bins 

is negligable
➔ Migration matrix is diagonal
● Only needs the reconstructed and the truth 

distribution as input
● No correction for fake jets is needed

ATLAS work in progress

ATLAS work in progress

➔ Uncertainties seems to be too 
large

➔ Check method using a simple 
Toy Mc



Toy MC studies - Katharina Bierwagen27.05.2010 25

Method checks

 Create a truth distribution with 3 bins with 10000 entries each

 Create randomly 2000 training distributions from fixed probabilties

 Calculate for each bin a correction factor

 Create randomly 2000 test distributions and calculate the unfolded 
distribution

 No bias visible

1st  bin
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Uncertainties

 Uncertainties for the Bin-by-Bin method can be calculated assuming 
a multinomial distribution or poisson distribution for the data

 Create pull distribution → comparison between uncertainties from 
ensemble tests and the program with infinite statistics in the training

➔ The multinomial distribution gives a better and a stable 
estimation of the uncertainties due to fluctuations in data

1st  bin
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Uncertainties

 Create pull distribution → comparison between uncertainties from 
ensemble tests and the program with finite statistics in the training 
assuming a multinomial distribution for the data 

➔ Uncertainties given from the program are too small (σ(pull)>1.0) 
 with finite statistics in the training

➔ Have to introduce an additional uncertainty on the correction 
factor

1st  bin
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Other Methods
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SVD
 SVD describes a change of Basis with a diagonal response 

matrix A

A=USVT

U  and V are orthogonal and S is a diagonal matrix with non-
negative diagonal elements 

S
ij
=0 for i≠j, S

ii
≡s

i
≥0

s
i
 are called singular values of A

 Some singular values are significantly smaller than others

➔ The system is difficult to solve

➔ The small singular values are set to zero to solve the system

 Problem: Due to the cut on the singular values the unfolded 
distributions becomes periodic, not a good method if it is known 
that the function is smooth
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Tikhonov regularisation

Y=A⋅X
 The migration matrix A itself is not invertable

 But (αΙ+ATA) is invertable

X=(αΙ+ATA)-1ATY

 For α→0 the system converges to the initial system

➔ Tikhonov regularisation is a reweighting of the singular 
values

➔ Smoother result 

● α can be estimated using cross validation
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Conclusion & Outlook

 Iterative (Bayes) Method:

− Performance of this method is checked

− New uncertainty calculation shows a clear improvement

− Code exists in C++, but is not yet user friendly enough

 Bin-by-Bin Method:

− Performace of this method is checked

− Code exists also in C++

 Next steps:

− Include efficiency loss

− Ensemble tests for Tikhonov regularisation and SVD

− Look at physics distributions

− Make the code public and document it

− Compare the different methods 
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Method checks 2
 Create randomly a migration matrix from fixed probabilties (M

2
)

 Create a truth distribution with 3 bins with 10000 entries each 

 Create randomly 2000 test distributions and calculate the unfolded distribution

➔ Create randomly a migration matrix results in fluctuations in the matrix for finite 
statistics

➔ Introduce a bias 

➔ Fluctuations have to be taken into account

➔ Have to create randomly different migration matrices

1st  bin
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