GBP-MC Simulation Update

Kyle Fleck, Niall Cavanagh and Dr. Gianluca Sarri 10/05/21

Updates

- After discussion with Tom, found that there is a fault with the angular distribution with the IPstrong MC data for the IP
- The GEANT4 simulation analysed to far has been using this
- New Ptarmigan data for xi = 1.0, w0 = 5 μ m is being used now in FLUKA simulations

Ptarmigan Parameters

- Ptarmigan parameters used to generate xi = 1.0, w0 = 5.0 μm MC data
- Initial electron energy 16.5 GeV, 1e6 macro-particles
- Coordinate system defined along beam axis
- RMS divergence is divergence of source electron beam 8.672 μrad
- Assumes beam emittance of 1.4 mm mrad with transverse size 5.0 μm
- Laser energy 1.55 eV

control: dt_multiplier: 0.1

```
laser:
```

- - -

```
a0: xi
wavelength: wavelength
fwhm_duration: 25.0 * femto
# w0 [micron] = 147.839 sqrt(E [J]) lambda [micron] / (a0 sqrt(t [fs]))
waist: 147.839 * sqrt(laser_energy) * wavelength / (xi * sqrt(25.0))
```

beam:

ne: 1000000
charge: 1.5e9 * e
gamma: initial_gamma
sigma: 0.001 * initial_gamma
radius: [5.0 * micro, normally_distributed]
length: 24.0 * micro
collision_angle: -17.2 * degree
rms_divergence: 8.672 * micro

```
output:
```

```
ident: 1.00x5
dump_all_particles: plain_text
electron: [energy]
photon: [energy:birth_a]
```

stats:

```
electron:
- total number
- mean energy
```

photon:

```
- total number
```

```
- mean energy
```

constants: laser_energy: 0.8 # joules wavelength: 0.8 * micro xi: 1.0 <u>init</u>ial_gamma: 16.5 * GeV / (me * c^2)

Geometrical Discussion

- Polar axis defined along electron beam direction (z)
- Polar angle then deflection from beam axis
- Azimuthal angle is angle around beam
- Angles calculated from direction cosines of momentum vector

#	operties when tra	ocking stops										
#												
# First inter	acting species: e	electron	Second interac	ting species: la	iser							
# First initi	al particle energ	y = 10.0000 + / -	0.1000 GeV, Sigm	na_xyz = 5.00 5.0	00 24.00 microns							
# Laser peak	intensity = 8.56	x 10^18 W/cm^2,	wavelength = 800	0.00 nm, pulse le	ength = 25.00 fs,	beam waist = 1	0.58 micro	ons				
FPULSE peak #	X1 = 2.0000, CN1	= 0.2321										
# E (GeV)	x (micron)	y (micron)	z (micron)	p_x (GeV/c)	p_y (GeV/c)	p_z (GeV/c)	PDG_NUM	MP_Wgt MP	_ID t	(um/c)	xi	
‡	- 5 50904600	-2 27227700	0 411020-0	7 2507600 5	-1 2645500-5	1 002720-1	44	1 50000002			1 51632001	0.00000000
00572901	-3.39804000	-5.2/52//00	-1 06014401	1.338/088-3	-1.2043398-3	1.00572901	11	1.50000000	1		2.06067901	0.00000000
00000101	7.15146200	-3.08928960	-1.00914401	4.1854558-5	9.3004250-7	1.01060101	11	1.50000000	1		1.0000/8e1	0.000000000
.00682501	4.44445760	7.2415540-1	2.42849400	-5.59068/8-5	2.4403950-0	1.00682501	11	1.500000003	2		1.8854/801	0.000000000
.938964e0	-6.493028e0	-1.2//40400	7.456709e0	6.354960e-5	-9.029412e-5	9.938964e0	11	1.500000e3	3		1./30143e1	0.00000000
.016594e1	5.475384e0	3.724210e0	1.804165e1	1.363695e-4	-1.646280e-4	1.016594e1	11	1.500000e3	4		3.639566e0	0.000000e0
.798048e0	5.570407e0	-1.038583e0	1.619203e1	4.898384e-5	1.155994e-4	9.798048e0	11	1.500000e3	5		5.371172e0	0.00000e0
.490772e0	-1.070701e1	-6.911075e0	-2.935829e0	5.206560e-5	-5.642856e-5	8.490772e0	11	1.500000e3	6		2.846774e1	0.00000e0
.801542e0	-4.406956e0	1.689439e0	5.716518e0	-1.854832e-4	-1.471069e-4	8.801542e0	11	1.500000e3	7		1.833275e1	0.000000e0
.004843e1	6.413293e-1	4.190397e0	2.003385e1	9.283460e-6	1.237667e-4	1.004843e1	11	1.500000e3	8		3.181200e0	0.000000e0
.964726e0	-5.601759e0	1.940726e0	-1.309887e0	-5.267399e-6	1.528170e-4	9.964726e0	11	1.500000e3	9		2.539923e1	0.000000e0
.004526e1	-1.758977e0	-2.039647e0	3.003312e1	3.260226e-5	-3.123452e-5	1.004526e1	11	1.500000e3	1	0	-5.667815e0	0.000000e0
.001196e1	-3.146929e-1	1.837328e0	-9.104778e-1	2.119801e-5	2.205038e-7	1.001196e1	11	1.500000e3	1	1	2.346391e1	0.00000e0
9.963854e0	-1.253322e1	1.210741e0	3.232870e1	-5.754779e-5	-2.787090e-5	9.963854e0	11	1.500000e3	1	.2	-4.687421e0	0.000000e0

Ptarmigan – energy distribution

- For electron-laser (HICS) setup, maximum photon energy is ~10 GeV
- Peak in electron spectrum at 16.5 GeV corresponds to source XFEL beam
- First order Compton edge at ~3 GeV as expected from

$$\omega' \approx \frac{4\gamma^2 \omega_0}{1+\xi^2}$$

Ptarmigan – electron energy distribution

- Contribution due to source beam on energy distribution removed
- Mean electron energy 14.0 GeV
- Corresponds to a Lorentz factor of 27397
- Xi/gamma = 36.5 µrad

Ptarmigan – phase space

Ptarmigan – polar angle

8

Ptarmigan – measurement of beam width

 Photon polar angle assumed to be symmetric about 0.0 with weights satisisfying

 $W(|\theta|) = W(\theta) + W(-\theta)$

- Fitted with Gaussian, Cauchy-Lorentz and Voigt profiles
- Within central range of –2.0 mrad to 2.0 mrad, Voigt profile gives best fit
 - Captures peak like Gaussian fit
 - Tails extend farther into data

Measurement of beam width

- Around central peak, Gaussian (and Voigt) give good fit
- From Gaussian fit, sigma = 74.56 μrad
- Using average xi/gamma from slide 6, photon divergence 37.5 μrad

Ptarmigan – xi = 0.15, w0 = 5μ m

- Following similar procedure
 - Average electron energy after interaction = 14.06 GeV -> gamma = 27516
 - Xi/gamma = 5.45 μrad; 1/gamma = 36.34 μrad
 - Std dev from Gaussian fit to polar angle distribution = 56.03 μrad
 - Anticipated photon divergence = 8.76 μrad

Ptarmigan – xi = 2.0, w0 = 5μ m

- Following similar procedure
 - Average electron energy after interaction = 13.75 GeV -> gamma = 26908
 - Xi/gamma = 74.32 µrad
 - Std dev from Gaussian fit to polar angle distribution = 90.42 μrad
 - Anticipated photon divergence = 74.8 μrad

Ptarmigan – xi = 5.0, w0 = 5μ m

- Following similar procedure
 - Average electron energy after interaction = 12.9 GeV -> gamma = 25240
 - Xi/gamma = 198.10 µrad
 - Std dev from Gaussian fit to polar angle distribution = 194.2 μrad
 - Anticipated photon divergence = 198.23 μrad

Ptarmigan – simulation xi vs estimated xi

- Reverse engineering of previous method
- Taking sigma as the photon divergence, calculate xi/gamma as $\frac{\xi}{\langle \gamma \rangle} \approx \sqrt{\theta_{\gamma}^2 \theta_e^2}$
- Using average Lorentz gamma factor of electrons, calculate estimated value of xi
- Ideally, the estimated value should equal the exact simulation value

Ptarmigan – particle xi

- Ptarmigan data also includes the xi (a0) value that each macroparticle experiences
- For peak xi = 5.0, distribution shown on right
- Maximum xi value is 5.0, but most particles see a lower value of xi
- How to deal with this?

Ptarmigan – azimuthal angle

• Expect azimuthal angle to be uniformly distributed as laser is circularly polarised

Ptarmigan – Alternative angle measurement

- Rather than generate the polar and azimuthal angles, make a 2D distribution of the x and y direction cosines
- Allows for independent measurement of xi in two orthogonal directions – more similar to method used for profiler
- Estimated xi can be calculated using a weighted average of the two measuremtents for circular polarisation
- For linear polarisation (not yet simulated), ratio of measurements van be taken to extract value of xi

Ptarmigan - xi = 1.00

- Arccosine of each momentum direction cosine expressed in mrad
- Subtracted from pi/2 to centre distribution at zero
- Orthogonal projections of this distribution can be used to estimated photon divergence

Projections of direction cosine distributions

Extraction of xi

- Standard deviation taken from Gaussian fitting used as photon divergence
- Xi value found from

$$\xi \approx \langle \gamma \rangle \sqrt{\theta_{\gamma}^2 - \theta_e^2}$$

- Mean gamma found using mean electron energy like in slide 6
- Error bars come from error in fitting and a nominal 10% error in estimating mean gamma – corresponds to ± 1 GeV

Extraction of xi

- Weighted mean of x and y values of xi calculated to give estimated xi
- For xi less than 1, 1/gamma cone is more dominant so don't expect a good measurement of xi here
- At larger xi, various effects occur
 - Nonlinear photon interaction means mean gamma becomes harder to estimate and increases divergence
 - Photon divergence lower than xi/gamma due to various impact parameters of electrons*

GBP-MC Simulation Update

Kyle Fleck, Niall Cavanagh and Dr. Gianluca Sarri

26/04/21

FLUKA Spectrometer Geometry - Old

FLUKA Spectrometer Geometry - Updated

Things in progress

- Spectrometer geometry has been updated and simulations are running to test signal at profiler
- Aim to test 3 different profiler thicknesses 50um, 100um and 150um
- Begin investigating charge sharing effects and a more realistic output from profiler after discussion of digitisation

GBP-MC Simulation Update

Kyle Fleck, Niall Cavanagh and Dr. Gianluca Sarri

12/04/21

Fitting Data

Standard function for fitting is a Gaussian

$$f(x) = A \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

 Another possibility is a Cauchy-Lorentz distribution – similar to Gaussian but sharper peak

$$f(x) = \frac{A}{1 + \left(\frac{x - x_0}{\gamma}\right)^2}$$

- Positional parameters: mu for Gaussian (mean) and x0 for CL
- Dispersion parameter: sigma for Gaussian (standard deviation) and gamma for CL -> related to FWHM

$$FWHM = 2\sigma\sqrt{2\ln 2} \qquad FWHM = 2\gamma$$

Example of fitting

Cauchy-Lorentz Gaussian

Comparison of goodness of fit

Location of centre of distributions

npixx = 200x[mm] + 10000

Spread of distributions

 $\Delta npixx = 200\Delta x [mm]$

2D Distribution

- 2D distribution of energy deposition on sensor 2 profiler – GEANT4 data
- Lines show the ellipses with radii given by appropriate FWHM from previous slide
- Red Cauchy-Lorentz fit
- Blue Gaussian fit

Summary

- Gaussian and Cauchy-Lorentz distributions can be used to estimate the FWHM and hence shape of the energy distribution from energy deposition measurement
- Cauchy-Lorentz gives a slightly better agreement to the shape
- Needs to be compared to the true photon distribution to determine overestimation
- FLUKA simulations for profilers of different thicknesses still running
- Effect of strip width in profiler can be done by rebinning histograms and re-running the fitting algorithm

GBP-MC Simulation Update

Kyle Fleck, Niall Cavanagh and Dr. Gianluca Sarri 19/03/21

37

Truth signal

Ideal Signal Strip Deposition

- 8000 12000 npixx corresponds to central -10.0 to 10.0 mm of profiler
- Range ~100 GeV across central ±2.5 mm
- Conversion from npixx to mm – 1 npixx width = 0.005mm

Electron production processes

FLUKA background plots

- Previous results for background contained long (projected) particle tracks in plane of profiler problematic for energy deposition
- Two causes of this phenomenon
 - Slight misalignment of magnetic field in FLUKA caused both vertical and horizontal deflection of electron beam
 - Difference in how beam dumping is handled in current FLUKA simulation compared to GEANT4
- First problem fixed results shown on next slide
- Second problem requires more detailed adaptions to FLUKA geometry which affect background only, not the main signal simulations

FLUKA Beam Dump Geometry

- FLUKA simulation electron beam passed through vacuum pipe wall into dump
 - Magnetic field 1.2T
 - 16.5 GeV electrons
 - Magnet length 140cm
 - Deflection ~30 mrad
- GEANT4 simulation electron beam directed through triangular fan component rather than beam pipe itself
- Reduces amount of offaxis noise reaching profilers

GEANT4 Geometry

43

Summary

- "Truth" signal generated in detector deposits predominantly within central 2.5 mm for all detector planes
- Track anomalies from FLUKA simulation accounted for simulation needs more detail to compare with GEANT4 simulation; currently results only comparable for rear profilers (sensors 2 & 3 at z = 11.8m)

GBP-MC Simulation Update

Kyle Fleck, Niall Cavanagh and Dr. Gianluca Sarri

08/03/21

Overview

- Analysed background on profiler due to electron beam colliding with beam dump
- Managable S/B ratio on both pairs of detectors (total energy deposition)
 - S/B > 2 across central 2.5mm of plane for forward detectors
 - S/B > 500 across entire plane for rear detectors

S/B Comparison

- S/B ratio > 10 between npixx = 9800 and 10200 for front profilers
- Corresponds to a spatial range of ±1 mm
- S/B ratio > 2 between
 9500 and 10500 ->
 spatial range ±2.5 mm
- S/B ratio > 500 across entire detector for rear profiler pair
- Higher S/B ratio at front profilers due to proximity to electron dump

Charge Collection Estimate

- Rough estimate of charge collected in each strip (pC/BX) $Q_c = \eta e N_{eh}$
- Collection efficiency assumed to be 1.0
- From Marco's slides, energy to create e-h pair for sapphire = 27.0 eV

Particle Types

- Seems that main particles hitting profilers are
 - Electrons
 - Positrons
 - Photons
 - Pions (+/-)
 - Protons

Particle Types

Summary

- Still in process of analysing signal on profiler
- Want to look at electrons generated within each profiler by gamma beam – this is "ideal" signal
 - Main processes to consider photoelectric effect, Compton scattering, pair production etc.
 - •Determine particle fluences on profiler

GBP-MC Simulation Update

Kyle Fleck, Niall Cavanagh and Dr. Gianluca Sarri 22/02/21

Overview

- Previous FLUKA simulations for entire forward spectrometer (PDS photon detection system) done for 1e5 primary electrons
- Higher statistics simulation in FLUKA still running, data should be available soon
- GEANT4 MC data exists for both signal and background for entire LUXE setup now includes beam profilers
- Profilers extend from –50.0 mm to 50.0 mm in x and y; actual profiler size can be determined by restriction –10.0 mm to 10.0 mm
- Background for 0.1855 BX
- For profilers, sapphire (Al2O3) composition
 - Density = 3.98 g/cm**3
 - Pixel volume = 20.0cm/nx * 20.0cm/ny * 0.01 cm (nx, ny = no. bins in x, y resp.)
 - Dose conversion factor: GeV/g -> Gy = 1.60e-7

PDS geometry (FLUKA)

- Profiler locations indicated by red arrows
- Magnet region marked by orange dashed box
- "VOID" is air environment
- Geometry simplified in comparison to full GEANT4 geometry e.g. no supports, simplified electron dump, simplified LANEX screens (green) and Cerenkov detector (yellow)

Production Vertices

- Plots showing z production vertex of particles incident on profilers
- Main component of background comes from z = 7000mm -> electron beam dump
- Rear profiler pair also see some backscattering from shielding at z = 12000mm

Transverse hits profile (horizontal)

- For rear profiler pair, hits distributed uniformly across profiler in x direction
- Due to air environment and components of experiment, forward x distribution of hits not distinguishable at rear profilers
- For front pair, number of hits decreases across the detector
- Left edge (npixx = 0) corresponds to edge closest to electron dump

Orthogonal hits profile (vertical)

- Uniform distribution of hits for rear profilers
- Front profilers have peak at npixy = 10000 -> y = 0.0 mm
- This corresponds to the plane in which electron dump is vertically centred

Transverse tracks profile

- Similar trend to hits profiles
- Rear profiles have a uniform distribution in transverse direction of background
- Front pair is highly skewed due to location of electron dump

Orthogonal tracks profile

Spectrum of deposited energy

Background Energy Deposition

 For all detectors, large number of particles which deposit low amount of energy (E<0.2 MeV)

 Total number of hits given by value "Integral(w)"

Energy Deposition

Absorbed dose

- Calculated from energy deposition map by dividing by bin volume and using scaling factor from slide 2
- For front profilers, total dose ~1e-5 Gy/BX from total energy deposited in previous slide
- Rear profilers experience ~0.5e-2 times this = 5e-8 Gy/BX

Energy deposition in segmented strips

- Npixx range from 8000 to 12000 corresponds to spatial range –10.0mm to 10.0mm with 200 bins
- For forward pair, energy deposition is uniform across strips with Edep ~ 0.05 GeV/BX
- Rear profiler pair has energy deposition ~0.0001 GeV/BX
- Total energy deposited over all strips is given by integral value in GeV/BX

Absorbed dose in segmented strips

- Dose calculated from energy deposition in previous slide using volume of each strip
 - Vol = 2.0/200 * 2.0* 0.01 cm**3
- Total dose can be calculated from total energy deposition over entire 0.04 cm**3 volume of each detector

Summary

- Background has been analysed using GEANT4 data for 0.1855 BX
- For front profiler pair, background which deposits energy is expected to be ~1e7 particles/BX
- For rear pair, background ~5e4 particles/BX
- Background deposition mostly low energy < 0.2 MeV
- Maximum dose per strip depends on profiler location (front or rear) but in either location does not exceed ~3e-5 Gy/BX
- Flux and current response still to be calculated

Backup

Background tracks

Background tracks – vtx_z in electron dump

68

Background tracks – vtx_z in shielding

69