Probing EFT operators in top-Z associated production with machine learning.

Nicolas Tonon, Abideh Jafari, David Walter (DESY)

DESY – LHC Physics Discussion

20th September 2021

INTRODUCTION

- No clear sign of new physics (BSM) at LHC so far...
 - Marce accelerators in coming decade(s)
 will increase ∫L, not √s
- Many BSM theories predict sizeable deviations of top quark's couplings w.r.t. SM predictions
- Most of canonical top quark processes at LHC have reached precision era (systematics-limited)

Motivates ambitious top physics programme to **reveal new physics** indirectly **through precision** measurements

EFFECTIVE FIELD THEORY

- Effective Field Theory (EFT) framework allows for systematic & model-independent interpretation of potential deviations in interactions between SM fields
- Expand SM Lagrangian with higher-order operators :

<u>EFT example</u> : Fermi theory of β -decay (W boson \rightarrow 4-fermions interaction)

- BSM effects described by finite number of EFT operators, whose strengths are encoded into Wilson coefficients (WCs) ↔ theory parameters
- Predicts well-defined deviation patterns, correlated in different observables/processes

Well-motivated, global approach to maximize discovery potential of massive BSM states at (HL-)LHC

ANALYSIS OVERVIEW

Existing EFT analyses :

×	Reinterpretations	(sub-optimal	, assumptions)
---	-------------------	--------------	----------------

- Consider 1 single operator & signal process
- 'Cut-and-count'

Target 3 top-Z associated production modes

- Complementary, probe similar EFT operators
- Consider up to 5 operators simultaneously
- Analysis strategy entirely optimized to search for EFT effects
 - Simulated at detector-level (→ Direct measurement ≠ reinterpretation)

Use novel machine-learning techniques to improve sensitivity to WCs

Reference:

- Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at $\sqrt{s}=13$ TeV, arXiv:2107.13896 (Submitted to JHEP)
 - Learning to detect new top-quark interactions, CERN Courier (Sep/Oct 2021)

- At leading dimension-6, $\mathcal{O}(60)$ non-redundant operators involving top quark !
- Focus on subset of five operators that...
 - Involve top quark and gauge bosons
 - Interfere with SM production of $t\bar{t}Z$ or tZq (~ Λ^{-2})
 - Conserve CP, lepton- and baryon-number
 - Ignore top chromomagnetic dipole moment, (probed with much better sensitivity in $t\bar{t}$)

- SM+EFT signal samples simulated at leading-order with Madgraph
 - EFT effects included with *dim6top* model arXiv:1802.07237
 - Full detector simulation ↔ will constrain operators directly at detector-level
 - Validated against official CMS samples (under SM scenario)

$$\mathcal{O}_{tZ},~\mathcal{O}_{tW},~\mathcal{O}_{\phi Q}^{-},~\mathcal{O}_{\phi Q}^{3}$$
 and $\mathcal{O}_{\phi t}$

Brivio et al., arXiv:1910.03606

EFT REWEIGHTING

Cross sections & kinematics parameterized with Wilson coefficients

1) Reweight generator-level events according to many different EFT scenarios

2) Perform **per-event quadratic fit** \rightarrow Extract dependence of each event weight on each WC

3) Parameterization \rightarrow Reweight any distribution according to any EFT scenario

OBJECTS & BACKGROUNDS

Objects

- Leptons $(\ell = e, \mu)$:
 - Prompt lepton ID with dedicated BDT
- Jets :
 - AK4 (PF CHS) jets, p_T > 25 GeV, |η| < 5</p>
- <u>b jets</u> :
 - DNN tagger (ε~75 % / mistag ~1 %)
 - |η| < 2.4 in 2016 (2.5 in 2017/18)

- Z boson candidate ↔ OSSF lepton pair within 15 GeV of Z peak (closest to m_z)
 Event reco.
- Leptonic top quark candidate (in 3ℓ) ↔
 (closest
 - to m_t) + neutrino solution (from MET)

Baseline selection

- \geq 3 isolated leptons with $p_T > 25 / 15 / 10 \text{ GeV}$
- ≥1Z boson candidate

+ b-jet

- Prompt backgrounds estimated from simulation, validated in control regions
 - Grouped as : WZ / VV(V) / $t(\overline{t})X$ / Xy
- Nonprompt lepton backgrounds estimated from data with 'loose-to-tight method'
- Mis-identification probabilities binned in lepton (p_T , η)
 - QCD-enriched measurement region [C,D]
 - Dedicated application region [A] for each SR/CR
 - MC closure tests, good data/MC agreement

EVENT SELECTION

- SR-3l drives the analysis' sensitivity
- Will be sub-divided based on MVA discriminant

 \rightarrow Control backgrounds,

added sensitivity

MULTIVARIATE ANALYSIS WITH MACHINE LEARNING

HOW CAN ML HELP ?

- EFT operators usually ...
 - impact both cross section & kinematics
 - introduce new coupling structures leading to subtle kinematics modifications
 - correlate deviations in many different processes/observables (expected patterns)

 \rightarrow No single observable can constrain full parameter space

\Rightarrow Perfect match for machine-learning (ML) techniques !

Multiclass classifier trained to separate tZq/ttZ/others

ARCHITECTURE :

- 3 hidden layers, with 100 neurons each
- <u>Activation function</u> : reLu (softmax for output node)
- <u>Optimizer</u> : Adam
- Loss function : Cross-entropy
- <u>Regularization techniques</u> :
 - Dropout (ignore random nodes during training)
 - Batch normalization (normalize input values at each layer)
 - L2 regularization (penalize large weights)
- Data/MC validation of input distributions and 2D correlations

 Assign events to 3 orthogonal subregions, based on their maximum node value
 → Obtain categories very pure in targeted processes !

12

"NN-SM"

Inputs

ttZ

tZa

Bkgs

DESY. | DESY – LHC Physics Discussions| Nicolas Tonon, Sep 20th 2021

2) SM VS EFT

Or

- Binary classifiers trained to separate events sampled under :

 a) SM hypothesis
 - b) many different non-zero values of EFT operator(s)

- Learn non-trivial patterns due to new physics out of high-dimensional data
 - → Construct optimized observables describing the compatibility of an event with [SM] or [SM+EFT]
 - SM/EFT interference included in training for first time in LHC analysis
 - Difficulty : shapes of kinematic distributions depend on WC values
 Train under many different scenarios, NNs learn to interpolate between WC values
 - Works with state-of-the-art physics generators & full detector simulation
 - Can handle higher-order simulation (but negative weights may reduce training stat.)
 - Fast inference time
 - Optimal in limit of infinite training statistics

2) SM VS EFT

- Binary classifiers trained to separate events sampled for :

 (a) SM hypothesis
 (or)
 - b) many different non-zero values of EFT operator(s)

Learn non-trivial patterns of deviations due to new physics from high-dimensional data
 → Construct optimized observables describing the compatibility of an event with [SM] or [SM+EFT]

Simultaneous template fits in [6 regions x 3 years]

NN distributions used in SRtZq & SRttZ are fit-dependent

DESY. | DESY – LHC Physics Discussions| Nicolas Tonon, Sep 20th 2021

SIGNAL EXTRACTION

WC/Λ^2	95% CL confidence intervals								
$[{ m TeV^{-2}}]$	Other WCs	fixed to SM	5D fit						
	Expected	Observed	Expected	Observed					
c_{tZ}	[-0.97,0.96]	[-0.76, 0.71]	[-1.24, 1.17]	[-0.85, 0.76]					
c_{tW}	[-0.76, 0.74]	[-0.52, 0.52]	[-0.96, 0.93]	[-0.69, 0.70]					
$c_{\varphi Q}^3$	[-1.39, 1.25]	[-1.10, 1.41]	[-1.91, 1.36]	[-1.26, 1.43]					
$c_{\varphi O}^{-}$	[-2.86, 2.33]	[-3.00, 2.29]	[-6.06, 14.09]	[-7.09, 14.76]					
c _{\varphit}	[-3.70, 3.71]	$[-21.65, -14.61] \cup [-2.06, 2.69]$	[-16.18, 10.46]	[-19.15,10.34]					

- Extract 1D & 5D confidence intervals @ 95 % CL for each Wilson coefficient
 - All intervals contain the SM predictions
- Shape information reduces widths of confidence intervals by 20 up to 70 %
 - \rightarrow Significant sensitivity gains using optimal observables

"NN-SM"

Bkgs

ttZ

tZq

LIKELIHOOD SCANS

SUMMARY

- Constrain top-electroweak EFT operators with t(t)Z production in multilepton channels
 - EFT effects parameterized at detector-level via event weights
- Rely on novel ML techniques to enhance sensitivity to EFT
 - Significant sensitivity gains from shape information
 - Not the 'new default', but complementary tool with great potential active research area !
- Obtain **best direct limits to date** from multilepton final states on several Wilson coefficients
 - > All 95 % CL confidence intervals contain the SM predictions

SYSTEMATIC UNCERTAINTIES

	Source	Туре	Correlation
	Integrated luminosity	Yield	Partial
	Trigger efficiency	Yield	—
lt	Pileup	Both	\checkmark
enta	Lepton identification and isolation	Both	\checkmark
ime	b tagging	Both	Partial
ineri	Jet energy scale	Both	Partial
Exp	Jet energy resolution	Both	_
	Missing transverse momentum	Both	<u> </u>
	L1 ECAL inefficiency		\checkmark
	PDF	Both	\checkmark
etical	$\alpha_{\rm S}$	Both	\checkmark
	ME scales $\mu_{\rm R}, \mu_{\rm F}$	Both	\checkmark
ore	Signal SM cross sections	Yield	\checkmark
The	ISR and FSR	Both	\checkmark
Γ	Additional radiation	Shape	\checkmark
	WZ normalization	Yield	\checkmark
grounds	VV(V) normalization	Yield	\checkmark
	$t(\bar{t})X$ normalization	Yield	\checkmark
	$X\gamma$ normalization	Yield	\checkmark
ack	NPL normalization	Yield	\checkmark
B	NPL misidentification probabilities	Both	\checkmark

Impacts of nuisance groups on each WC

20

Syst. limited

Source	c_{tZ}	$c_{\rm tW}$	t	$c_{\varphi Q}^{-}$	C _{φt}
tZq normalization	< 0.1	< 0.1	1.2	0.1	0.8
ttZ normalization	0.6	< 0.1	0.4	37	38
tWZ normalization	0.1	0.1	< 0.1	0.7	2.1
Background normalizations	< 0.1	< 0.1	6.9	3.6	6.8
NPL background estimation	1.4	0.2	5.6	0.3	3.8
Jet energy scale	< 0.1	< 0.1	0.8	0.7	2.3
Jet energy resolution	< 0.1	< 0.1	< 0.1	< 0.1	1.4
$p_{\mathrm{T}}^{\mathrm{miss}}$	< 0.1	< 0.1	< 0.1	< 0.1	0.2
b tagging	< 0.1	< 0.1	0.9	2.0	0.3
Other (experimental)	< 0.1	< 0.1	1.6	0.8	0.6
Lepton identification and isolation	0.4	0.4	1.2	2.2	0.8
Theory	2.1	1.1	0.4	0.9	0.9

Stat. limited

EFT OPERATORS

- $\mathcal{O}_{t\mathbf{Z}}$ and $\mathcal{O}_{t\mathbf{W}} \leftrightarrow \mathsf{Electroweak}$ dipole operators
- $\mathcal{O}^3_{\phi Q} \leftrightarrow$ Left-handed SU(2) triplet current operator
- $\mathcal{O}_{\phi O}^{-} \leftrightarrow$ Induces anomalous neutral-current interactions
- $\mathcal{O}_{\phi t} \leftrightarrow \text{Right-handed neutral current operator (idem)}$

Operator	WC	Mapping to Warsaw-basis coefficients
$\mathcal{O}_{\mathrm{tZ}}$	c_{tZ}	$\operatorname{Re}\left\{-s_{W}c_{uB}^{(33)}+c_{W}c_{uW}^{(33)}\right\}$
$\mathcal{O}_{\mathrm{tW}}$	c_{tW}	$\operatorname{Re}\left\{c_{uW}^{(33)}\right\}$
${\cal O}^3_{arphi { m Q}}$	$c_{\varphi Q}^3$	$c_{arphi q}^{3(33)}$
${\cal O}^{arphi { m Q}}$	$c_{\varphi Q}^{-}$	$c_{\varphi q}^{1(33)} - c_{\varphi q}^{3(33)}$
$\mathcal{O}_{arphi \mathfrak{t}}$	$c_{\varphi t}$	$c_{\varphi \mathrm{u}}^{(33)}$

0

0

0

 C^{33}_{11}

parameter	$t\bar{t}$	single t	tW	tZ	t decay	$t\bar{t}Z$	$t\bar{t}W$
$C_{Qq}^{1,8}$	Λ^{-2}	_	_	_	_	Λ^{-2}	Λ^{-2}
$C_{Qq}^{3,8}$	Λ^{-2}	$\Lambda^{-4} \ [\Lambda^{-2}]$	_	$\Lambda^{-4}~[\Lambda^{-2}]$	$\Lambda^{-4}~[\Lambda^{-2}]$	Λ^{-2}	Λ^{-2}
C_{tu}^8,C_{td}^8	Λ^{-2}	_	_	_	_	Λ^{-2}	_
$C_{Qq}^{1,1}$	$\Lambda^{-4}~[\Lambda^{-2}]$	_	_	_	_	$\Lambda^{-4}~[\Lambda^{-2}]$	$\Lambda^{-4} \ [\Lambda^{-2}]$
$C_{Qq}^{3,1}$	$\Lambda^{-4}~[\Lambda^{-2}]$	Λ^{-2}	_	Λ^{-2}	Λ^{-2}	$\Lambda^{-4}~[\Lambda^{-2}]$	$\Lambda^{-4} \ [\Lambda^{-2}]$
C^1_{tu},C^1_{td}	$\Lambda^{-4}~[\Lambda^{-2}]$	_	_	_	_	$\Lambda^{-4}~[\Lambda^{-2}]$	_
C^8_{Qu}, C^8_{Qd}	Λ^{-2}	_	_	_	_	Λ^{-2}	_
C_{tq}^8	Λ^{-2}	_	_	_	_	Λ^{-2}	Λ^{-2}
C^1_{Qu}, C^1_{Qd}	$\Lambda^{-4}~[\Lambda^{-2}]$	_	_	_	_	$\Lambda^{-4}~[\Lambda^{-2}]$	_
C_{tq}^1	$\Lambda^{-4}~[\Lambda^{-2}]$	_	—	_	_	$\Lambda^{-4}~[\Lambda^{-2}]$	$\Lambda^{-4} \ [\Lambda^{-2}]$
$C^{-}_{\phi Q}$	—	_	_	Λ^{-2}	_	Λ^{-2}	-
$C^3_{\phi Q}$	_	Λ^{-2}	Λ^{-2}	Λ^{-2}	Λ^{-2}	_	_
$C_{\phi t}$	—	_	_	Λ^{-2}	_	Λ^{-2}	_
$C_{\phi tb}$	—	Λ^{-4}	Λ^{-4}	Λ^{-4}	Λ^{-4}	_	_
C_{tZ}	—	_	_	Λ^{-2}	_	Λ^{-2}	_
C_{tW}	_	Λ^{-2}	Λ^{-2}	Λ^{-2}	Λ^{-2}	_	_
C_{bW}	_	Λ^{-4}	Λ^{-4}	Λ^{-4}	Λ^{-4}	_	_
C_{tG}	Λ^{-2}	$[\Lambda^{-2}]$	Λ^{-2}	_	$[\Lambda^{-2}]$	Λ^{-2}	Λ^{-2}

Brivio et al., arXiv:1910.03606

MVA INPUT FEATURES

Variable	NN-SM	NN-c _{tZ} -tZ	NN-c _{tZ} -tĪZ	NN-c _{tW} -tZ	NN-c _{tW} -tĒ	NN-c ³ _Q-tZ	NN-c ³ _{\$Q} -t <u>ī</u>	NN-5D-tZ	NN-5D-t ī Z
$p_{\rm T}$	_	•	•	v	V	v	V	v	•
$\eta(\mathbf{Z})$	•	v	v	_	_	•	_	_	v
$\Delta \varphi(\ell_1 \ell_2)$	~	V	V	\checkmark	~	~	\checkmark	V	V
$p_{\rm T}(t)$	\checkmark	~	V		~	V		V	v
$\eta(\mathbf{t})$		V	v	V	V	V			v
$m(\mathbf{t}, \boldsymbol{\Sigma})$									
$n_{r}(i')$	• ./							×	
$AR(h \ell_{\rm c})$	• 	• ./		•					
$\Delta R(i',\ell_1)$	\checkmark	-		-					
$\Delta R(t,Z)$		\checkmark	\checkmark	\checkmark		\checkmark			\checkmark
$\Delta n(Z, i')$		√						\checkmark	
ΔR between t and the closest lepton		√		\checkmark					
ΔR between i' and the closest lepton								\checkmark	
$m_{3\ell}$	\checkmark		_		\checkmark		\checkmark		\checkmark
$m_{\rm T}^{\rm W}$	\checkmark	\checkmark	\checkmark						\checkmark
$p_{\rm T}^{\rm miss}$	\checkmark								_
Lepton asymmetry	\checkmark		_	\checkmark	\checkmark			\checkmark	_
$\cos \theta_Z^{\star}$	_	_	\checkmark	_		\checkmark		_	\checkmark
Max. $p_{\rm T}$ among jet pairs	_						\checkmark		\checkmark
Max. DEEPJET discriminant	\checkmark	_	_			_		_	_
b jet multiplicity	\checkmark	_	_		_				
Three-momenta of the three leading leptons	\checkmark								
Three-momenta of the three leading jets	\checkmark								
DEEPJET discriminants of the three leading jets	\checkmark				_		_		
Number of variables	33	11	8	8	6	7	4	7	10

NN-EFT – EVENT SAMPLING

- In practice, the data set is *unweighted* ↔ sum of all event weights normalized to unity, so that each event weight can be interpreted as a probability for an event under a given hypothesis
 - Can then sample a subset of events of any size, representative of a given hypothesis
 - Must allow for replacement (↔ the same event may be selected multiple times)
- The range of WC values over which training events are sampled is a hyperparameter
 - Generally chosen a few times larger than existing constraints
 (> avoid bias on previous results, and easier for NN to learn features at larger WC values)

SIGNAL EXTRACTION

(SOME) PROMISING DIRECTIONS

- Successful proof-of-concept studies by Jonas Rübenach (<u>link</u>)
- Likelihood-free inference : regress on true likelihood ratio
 - Set limits directly from NN response
 - Outperforms limited summary statistics
 - Only deal with few theory systematics for now
- <u>Augmented data</u> : maximize use of generator info. in training
 - Better performance with less training data
- Morphing-aware architectures
 - Impose EFT structure on ML architecture
 - Model SM / interference / EFT components with individual estimators (> Sum)
- ... and more !

10.1103/PhysRevD.98.052004