

ICS Simulations Update

Daniel Seipt d.seipt@hi-jena.gsi.de

Helmholtz Institute Jena

May 11th, 2021

Principle of ICS

* frequency is tripling more efficient at 900 nm, https://indico.desy.de/event/29720/ talk by M. Zepf

Daniel Seipt (HI Jena)

May 11th, 2021

HI JENA

ICS Bandwidth

$$\left(\frac{\Delta\omega}{\omega}\right)^2 = \left(\frac{\Delta\omega_L}{\omega_L}\right)^2 + \left(\frac{\xi^2}{2}\right)^2 + \left(2\frac{\Delta\gamma}{\gamma}\right)^2 + \left(\frac{\gamma^2\Delta\theta_e^2}{\#}\right)^2 + \left(\lceil N_{sc} - 1\rceil\eta\right)^2 + \dots$$

- \blacksquare Ti:Sa laser 60 nm FWHM bandwidth @ 800 nm: 1×10^{-3}
- $\xi < 0.1$: 2.5×10^{-5}
- $\Delta \gamma / \gamma = 0.1\%$: 4×10^{-6}
- Projected normalized emittance 1.4 mm mrad: $4 \times 10^{-4} \rightarrow \text{larger}, \# \text{ incorrect in estimate}$
- Number of scatters $N_{sc} = \text{rate} \times \text{pulse duration} < 1: \approx 0$

Curatolo et al, PRAB 20, 080701 (2017)

Input:

Ebeam: energy spread, emittance, finite size in x, y, z: Uncorrelated phase space Laser: finite transverse size w_0 but with ∞ Rayleigh range, finite pulse duration Sim:

- Determine photon emission probability from (modified) Klein-Nishina cross section
- \blacksquare Spectral shape \sim Fourier transformed temporal pulse duration
- ξ -effects are estimated ($\xi < 0.1$)
- Monte Carlo rejection sampling to generate (macro)photons

Output:

 $\gamma\text{-rays:}$ (position, momentum weight) of generated photons in user specified energy range and up to maximum angle

electrons: (position, momentum weight) of electrons that emitted a photon

Benchmark with PTARMIGAN: ⊥ momentum dist

 $\theta_{\max} = 15 \,\mu \text{rad} \Rightarrow \max(k_{\perp}) \approx 120 \,\text{keV}$

www.hi-jena.de

Daniel Seipt (HI Jena)

May 11th, 2021

Benchmark with PTARMIGAN: \perp source dist

www.hi-jena.de

Benchmark with PTARMIGAN: || source dist

www.hi-jena.de

7 / 18

Benchmark with PTARMIGAN: Energy-angle spectrum

www.hi-jena.de

Benchmark with PTARMIGAN: Photonspectrum at IP focus

Daniel Seipt (HI Jena)

May 11th, 2021

9 / 18

Benchmark with PTARMIGAN: Photons at IP focus

ICS code max mean photon weight total photon weight	: 3.147 : 3.1e+05
PTARMIGAN mean single photon weight total photon weight	: 111.5 : 3.174e+05
photon weight ratio PTARMIGAN/ICS	: 1.024
IP-laser spot size: 15.00 micron baseline : 7.50 metres	
ICS code, photon weight in spot, zero so	urce size: 7342.24
PTARMIGAN, photon weight in spot, zero so	ource size: 7913.34
photon weight ratio PTARMIGAN/ICS : 1.07	77

HI JENA Helmholtz Institute Jena

3 Testbeam Simulations

Simulation results for the three testbeams in my public folder on DESY-cluster: /afs/desy.de/user/s/seiptdan/public/testbeams

Params: $\xi = 0.1$, $T_{\rm FWHM} = 1$ ps, 100 pC beam charge, emittance 1.5 mm mrad huge_testbeam.h5: $w_0 = \sigma_T = 5 \ \mu m$ large_testbeam.h5: $w_0 = \sigma_T = 25 \ \mu m$ small_testbeam.h5: $w_0 = \sigma_T = 60 \ \mu m$

Output file format like PTARMIGAN

```
f['config/input-file']
f['final-state/photon/momentum']
f['final-state/photon/position']
f['final-state/photon/weight']
```

Standard units: [momentum] = eV, [position] = micron, [weight] = 1

Photon Spectra

Note: 5 μ m IP focus at 7.5 m baseline: $\theta \lesssim 1 \mu$ rad

www.hi-jena.de

May 11th, 2021

HI JENA

Small Testbeam ($w_0 = \sigma_T = 5 \,\mu$ m)

IP spot size 5 um, photons at IP, zero source size photons at IP, finite source size

: 5918.76

: 6606.77

HI JENA

Large Testbeam ($w_0 = \sigma_T = 25 \,\mu\text{m}$)

IP spot size 5 um, photons at IP, zero source size : 7772.97 photons at IP, finite source size : 7637.78

This case has $(w_{0,large}/w_{0,small})^2 = 25 \times$ more laser energy

www.hi-jena.de

HLJE

Huge Testbeam ($w_0 = \sigma_T = 60 \,\mu\text{m}$)

IP spot size 5 um, photon weight, zero source size : 8111.78 photon weight, finite source size : 6776.13

Electron Spectra (Small Testbeam)

... f['final-state/electron/momentum']

Let the second second

www.hi-jena.de

Daniel Seipt (HI Jena)

. . .

16 / 18

HI JENA

- We have a working ICS code that has been benchmarked against PTARMIGAN
- Testbeam simulation results available for further processing: BW pairs, background, ... /afs/desy.de/user/s/seiptdan/public/testbeams
- Further developments:
 - Correlated electron beam phase space: Ebeam focused to strong-field IP
 - Linear laser polarization
 - Include finite Rayleigh range? Probably not necessary ...
 - \blacksquare Extend to larger $\xi > 0.1$ (using Quasi-Classical Baier-Katkov method)? Probably not necessary ...

- ICS1: Use PTARMIGAN-CP to generate gamma-photon beams; Development and benchmark of ICS simulation code ∅
- ICS1*: IP physics simulations of ICS-NBW and tracking of pairs, background sims (spring 2021)
- ICS2: Some optimiaztion of the ICS in terms of pulse-duration vs. peak intensity, ebeam correlations, laser spot size (late spring/early summer 2021)
- ICS3: Implement LP
- ICS4: Develop quasi-classical ICS simulation code (Baier-Katkov-method, summer/fall 2021)
- ICS5: Include gamma-photon polarization (2022?)