Search for BSM Higgs bosons decaying into b quarks

Paul Asmuss

CMS BSM Hbb Group: Chayanit Asawatangtrakuldee², Sandra Consuegra Rodriguez¹, Elisabetta Gallo^{1,3}, Clemens Lange⁴, Daina Leyva Pernia¹, Rainer Mankel¹, Alexei Raspereza¹, Roberval Walsh¹ 1 - DESY | 2 - Chulalongkorn University | 3 - University of Hamburg 4 - CERN

October 25, 2021

LHC Physics Discussion

Motivation

- Strong indications: Standard Model (SM) is incomplete
- Many BSM theories contain two Higgs doublets (2HDM)
 - Five physical Higgs bosons
 - Example: Minimal supersymmetric extension of the SM (**MSSM**)
- Coupling to b quarks enhanced $\propto \tan \beta = (v_2/v_1)$
 - \Rightarrow large $\tan\beta \rightarrow$ enhanced cross section for b-associated production
- Extending and improving public 2016 analysis with 2017 data

2016 public result: JHEP08(2018)113

Analysis Strategy

- Search for excess in invariant mass of $\ensuremath{p_{T}}\xspace$ -leading two jets, $\ensuremath{m_{12}}\xspace$
 - Candidates for Higgs daughters
 - Main background: QCD multijet
- At least 3 b-tagged jets required for signal region (SR)
- b-jet energy regression included
- FSR recovered for selected jets

CMS DESY.

Trigger

- To address huge amount of QCD multi-jet events: dedicated trigger
- Two steps: L1 and HLT
 - Same kinematic requirements (calorimeter jets for L1, PF jets for HLT)
 - HLT includes b-tag (CSVv2 algorithm); working point allowing 0.33% light-flavor mis-identification probability
- Determination of trigger efficiency in data and Monte Carlo (MC)
 - B-tagging
 - Jet kinematics

Trigger Efficiency

Jet Kinematics

- Use reference trigger objects to calculate efficiency
 - Single jet trigger
 - $\bullet\,$ Select two jets back-to-back \rightarrow unbiased and 100 % efficient reference

Offline Selection

- ≥ 3 jets, anti-k_T algorithm (cone radius parameter 0.4)
- $|\eta| <$ 2.2 (leading three jets)
- ΔR_{ij} between leading three jets ≥ 1.0 $(\Delta R_{ij} = \sqrt{\Delta \eta_{ij}^2 - \Delta \phi_{ij}^2})$
- b-tagging, defining analysis regions with similar m₁₂ distribution:
 - **SR**: 3 b-tags, leading three jets in p_T (discriminant > medium wp)
 - **CR**: 2 b-tags, third jet in p_T not b-tagged (discriminant < loose wp) To determine background shape
 - VR: 2 b-tags, third jet intermediate b-tagging discriminant To validate fitting procedure

b-tagging: DeepJet algorithm

- Medium working point (wp): Mis-identification probability of light-flavor jets $\sim 1\%$
- Loose wp: mis-identification probability $\sim 10\%$

Signal Model

2017 NLO signal MC

- Signal shapes modeled by NLO MadGraph5 MC
- 13 mass points from 300 to 1600 GeV
- ullet Signal efficiency (SR) larger by factor ~ 2 than in previous analysis
 - b-tagging improved: new pixel detector and new b-tagging algorithm
- Strong signal depletion in both CR and VR

Background Model

Strategy

- Data-driven background model used for reliable description
 - QCD three jet topology challenging to model in MC
- m_{12} shape in CR and SR very similar \rightarrow model small differences with slowly varying transfer factor $TF(m_{12})$
- Simultaneous fit of
 - Background parametrization CR, B_{CR}(m₁₂) (relatively complex, orders of magnitude)
 - SR: $B_{CR}(m_{12}) \times TF(m_{12}) + S(m_{12})$ (S: signal template)
- Uncertainties of CR parameters are rigorously taken into account

Background Model Data Control Region

Bernstein polynomial:

 $\mathsf{B}_{i,n}(x) = \sum_{i=1}^{n} c_i \cdot \binom{n}{i} \cdot x^i \cdot (1-x)^{n-i}$

Gaussian error function:

$$\operatorname{erf}(\mathsf{m}_{12}) = rac{2}{\sqrt{\pi}} \int_{0}^{\mathsf{m}_{12}} \mathsf{e}^{(-t^2)} dt$$

- To facilitate parametrization in CR: four overlapping fit ranges (FR)
- Turn-on to account for kinematic thresholds: Gaussian error function
- Exploiting commonly used functions
- Very good modeling

Used n = 6

Data CR

0.6 0 fb⁻¹ (12 Te)

walue - 0.25

2000

m12 [GeV]

Background Model Data Control Region

Extended Novosibirsk function:

$$\mathsf{EN}(\mathsf{m}_{12}) = N \exp\left(-\frac{1}{2w_0^2} \cdot \mathsf{ln}^2 \left(1 - \frac{(\mathsf{m}_{12} - \rho) \cdot \eta}{\nu} - \left(\frac{\rho_1}{\nu} \cdot (\mathsf{m}_{12} - \rho)^2 \cdot \frac{\eta}{\nu}\right)\right) - \frac{w_0^2}{2}\right)$$

$$w_0\sim {
m sinh}^{-1}(\eta)$$
, η : tail, ho : peak, u : width

Background Model

QCD MC

Transfer Factor Parametrization

- Extended modified logistic function in detail on next slide
- FR 4: Extended error function sufficient
 - No significant change of slope observed

Ext. erf:

$$\begin{aligned} f(m_{12}) &= \\ A \operatorname{erf}(C[m_{12} - B]) \cdot (1 - s \cdot m_{12}) \end{aligned}$$

October 25, 2021 10 / 19

Background Model

Transfer Factor Requirements

- \bullet Address small shape differences between SR and CR m_{12} distribution by a transfer factor
 - Slowly varying function, relatively flat in most of the mass range

Functions needs

- \bullet Turn-on behavior (low masses) \rightarrow sigmoid function
- Adapt to slight linear decrease (high masses)
- \Rightarrow Rely on modification of logistic function

$$f(m_{12}) = \frac{1 + \alpha \exp[-k(m_{12} - x_0)]}{1 + \exp[-k(m_{12} - x_0)]}$$

$$\alpha = 0$$
: unmodified logistic
Extension: multiply with $(1 - slope \cdot m_{12})$

Validation of Signal Extraction Procedure

FR 1, 400 GeV

• VR similarities to SR make it suitable to validate approach

• Both regions described very well by simultaneous fit

Systematic Uncertainties (Background)

- **Bias Study**
- Target: Evaluate uncertainty due to choice of TF parametrization
- Bias calculated in toy studies with alternative TF functions and various injected signal strengths
- Mean value of all toys μ_{G} is determined bias
- Bias significantly reduced with respect to previous analyses due to constraints from CR in simultaneous fit

Bias

2017

30 %

10%

2016

100 %

25 %

Systematic Uncertainties (Signal)

Signal Shape and Normalization Uncertainties

- JES/JER impact shape of signal template
- Other uncertainties affect signal yield:
 bold = dominant contribution
- 1-2% Kinematic trigger turn-on scale factor
- $\sim 0.1\,\%$ $\,$ \bullet Pileup reweighting
- 4 10% Online b-tag scale factor
- 9-13% Offline b-tag scale factor
 - 2.3% Luminosity
- $5-15\,\%\,$ $\bullet\,$ In case of model interpretation: Theory cross-section predictions
 - o pdf
 - α_s
 - Normalization scale
 - Factorization scale

Systematic Uncertainties (Signal)

Signal Shape and Normalization Uncertainties

- JES/JER impact shape of signal template
- Other uncertainties affect signal yield:
 bold = dominant contribution
- 1-2% Kinematic trigger turn-on scale factor
- $\sim 0.1\,\%$ Pileup reweighting
- 4 10% Online b-tag scale factor
- 9-13% Offline b-tag scale factor
 - 2.3% Luminosity
- $5-15\,\%$ $\bullet\,$ In case of model interpretation: Theory cross-section predictions
 - o pdf
 - α_s
 - Normalization scale
 - Factorization scale

Onl. b-tag sf

Results

Cross-Section Limits

References:

CMS 2016: JHEP08(2018)113 CMS 2017: DESY-THESIS-2020-012 ATLAS 15/16: Phys. Rev. D 102, 032004

- No excess above 2σ observed
- Extended mass range and improved sensitivity by a factor of \sim 2 with respect to previous analyses
 - CMS 2016, 35.7 fb⁻¹
 - CMS 2017 (semi leptonic), 36.5 fb^{-1}
 - ATLAS 2015 + 2016, 27.8 ${\rm fb}^{-1}$
- Profiting from improved b-tagging and background model

Model Interpretation: Traditional MSSM Benchmark Scenarios

- Models analyzed for comparison with previous analyses
 - Significant improvement in sensitivity
- Limits range down to $\tan\beta = 14$

Paul Asmuss

Results

Model Interpretation: Most Recent MSSM Benchmark Scenarios

- $\mu = higgsino mass$ parameter
- Particularly strong gain of sensitivity for $A/H \rightarrow b\bar{b}$ with negative μ parameter
 - Results for m_h^{125} and m_h^{mod+} similar
- Observed limits reach down to below $\tan\beta=10$

Results

- Studied parameter space (cos($\beta \alpha$), tan β , m_{A/H})
- 2HDM type II scenario at large tan β: Enhanced Yukawa coupling to down-type quarks and leptons
- 2HDM flipped model:
 - Only $A \rightarrow Zh$ and $H \rightarrow hh$ as well as $A/H \rightarrow b\bar{b}$ sensitive
 - Around $\cos(\beta \alpha) = 0$: Unique sensitivity of $A/H \rightarrow b\bar{b}$

Paul Asmuss

CMS

Summary and Outlook

- Many BSM theories comprise extended Higgs sector
 - Searches for additional Higgs bosons crucial, b-associated production and decay into b quarks promising as coupling can be enhanced
- Analyzed 2017 data in the fully hadronic channel
- No signal observed (no excess above 2σ)
- Limits significantly improved with respect to previous analyses
 - New background model and signal extraction method implemented
 - Successfully validated in dedicated data region
- Interpretation in terms of MSSM and 2HDM scenarios
 - Strong increase of sensitivity for A/H \rightarrow bb channel in negative μ MSSM scenarios
 - $\bullet~$ Unique sensitivity of $A/H \rightarrow b\bar{b}$ channel around alignment limit in flipped 2HDM
- Results published in DESY-THESIS-2021-012
- **Plan**: Re-analysis of 2017 (SL/FH) with UL; analysis of 2018 data; combination of Run 2 results

Paul Asmuss