

Passive strip CMOS detectors

Marta Baselga, Ingrid Gregor, Surabhi Sharma 2nd June 2021

What are passive CMOS sensors What is CMOS?

- Short answer, is a Compatible Metal Oxide Semiconductor
- It is a sensor fabricated in a CMOS foundry
- Has a resolution of some nm
- Has the photolitography with a machine called stepper, it repeats the mask to different reticles of the wafer (stitching)

[From wikipedia]

Semiconductor device fabrication

MOSFET scaling (process nodes) $10 \mu m - 1971$ 6 µm - 1974 3 µm - 1977 $1.5 \mu m - 1981$ $1 \mu m - 1984$ 800 nm - 1987 600 nm - 1990 350 nm - 1993 250 nm - 1996 180 nm - 1999 130 nm - 2001 90 pm - 2003 65 pm - 2005 45 nm - 2007 32 nm - 2009 22 nm - 2012 14 nm = 201410 nm - 2016 7 nm = 20185 nm = 2020Euture 3 nm ~ 2022 2 nm ~ 2023

What changes regarding microelectronic foundries? Photolitography

Microelectronics photolitography

CMOS photolitography

Semiconductor device fabrication

MOSFET scaling (process nodes) $10 \mu m - 1971$ 6 µm - 1974 3 um - 1977 1.5 µm - 1981 $1 \mu m - 1984$ 800 nm - 1987 600 nm - 1990 350 nm - 1993 250 nm - 1996 180 nm - 1999 130 nm - 2001 90 nm - 2003 65 nm - 2005 45 nm - 2007 32 nm - 2009 22 nm - 2012 14 nm - 2014 10 nm - 2016 7 nm = 20185 nm - 2020 Euture 3 nm ~ 2022 2 nm ~ 2023

Passive CMOS

Mask for passive CMOS fabrication

Project

 Collaboration with Uni Freiburg, Uni Bonn and DESY

- Fabricated in LFoundry with 150 nm
- It has strip and pixel sensors (here in DESY only strips)
- reticles are around 1 cm²
- 1A and 2A are the strip ones (1A is the bottom and top of the strip)
- strips are 2 cm² and 4 cm² long

2nd June 2021

Mask for strips

Strips are 1A, 2A and 3A reticles

5 Passive CMOS

.

UNIVERSITÄT

Mask for strips

t.wang@physik.uni-bonn.de

The FE chip may see different pixels at edges

	1B 3A
3A 18 18 18	1B 3A 6
	1B 3A 2A 1A
1À 2A 2A 2A 1A • Strip sensor imple	mented in 1/2A
• Strip pitch: 75.5 μ • Strip pitch: 75.5 μ	n (6 time stitchi
• 2 sensor types =>	each 40 strips

1/22/2019

Strip designs. Sensors have two flavours (acctually they are 3)

- There are 2 strip sensors which 40 strips each
 - 1. 40 regular strips
 - 2. 40 low dose strips (20 strips with $30 \,\mu$ m and 20 strips with $55 \,\mu$ m)

Pictures of the stitching

Regular

Low dose

$\ensuremath{\mathsf{IV}}\xspace$ and $\ensuremath{\mathsf{CVs}}\xspace$

- The detectors show good electrical performance till breakdown 300 V
- Due to differences of the strips, they show differences with the CVs
- ▶ They have full depletion at 30 V and 36 V

2nd June 2021

TCAD simulations

CV comparison

TCAD simulation

Electric field

11 Passive CMOS

2nd June 2021

CV measurement with frequency

They have low capacitance for large frequencies

Regular design

They have strangely low capacitance for high frequencies

Alibava measurements regular sensor

[Arturo Rodriguez, Trento meeting 2021]

- Measurements taken with an ALiBaVa setup with Sr⁹⁰ source at 4 different stitching points of the sensors
- No effect of stitching

Alibava measurements low dose

[Arturo Rodriguez, Trento meeting 2021]

Probably some difference due to higher noise of the sensor (noise plot in backup slides)

TCT measurements

[Cedric Hoenig, RD50 2020]

2nd June 2021

Testbeam at DESY

Sensor setup with ALiBaVa

Testbeam at DESY (TB22)

output from alibava at $100\,\mathrm{V}$

Low dose (separated 20 strips)

Regular

Alibava from testbeam

Signal for two sensors

Cut at 6

- Low dose 1 has a strange pattern, maybe not properly analyzed
- Different cuts show different patterns
- simulate inter strip capacitance

Future steps

Irradiated samples

- measure
- new testbeams
- annealing studies
- Larger area sensors fabrication
- Fabricate future non passive strip sensors

backup

$\mathsf{Alibava}\ \mathsf{measurements} \to \mathsf{Noise}$

No effect of stitching

[Arturo Rodriguez, Trento meeting 2021]

$\mathsf{Alibava}\ \mathsf{measurements}{\rightarrow}\ \mathsf{Noise}$

More difference in the regions, maybe due to higher noise [Arturo Rodriguez, Trento meeting 2021]

Strips layout

