

Third order QCD corrections for inclusive semileptonic B decays

Loops and Legs in Quantum Field Theory – Ettal – 30 Apr. 2022

Matteo Fael | with K. Schönwald and M. Steinhauser

www.kit.edu

Why V_{cb} ?

- $|V_{ub}|$ and $|V_{cb}|$ are SM input parameters.
- |V_{cb}| uncertainties dominates in

•
$$K \to \pi \nu \bar{\nu}, K_L \to \mu \mu \simeq |V_{cb}|^4$$

• $\mathcal{B}(B_s \to \mu^+ \mu^-) \simeq |V_{tb} V_{ts}^*|^2 \simeq |V_{cb}|^2 (1 + O(\lambda))$
• $\epsilon_K \simeq |V_{cb}|^4$

• Test of the SM flavour picture.

The Heavy-Quark Expansion

$$\Gamma_{\rm sl} = \Gamma_{\rm free} + \Gamma_{\mu_{\pi}} \frac{\mu_{\pi}^2}{m_b^2} + \Gamma_{\mu_G} \frac{\mu_G^2}{m_b^2} + \Gamma_{\rho_D} \frac{\rho_D^3}{m_b^3} + \Gamma_{\rho_{LS}} \frac{\rho_{LS}^3}{m_b^3} + \dots$$

Reviews: Benson, Bigi, Mannel, Uraltsev, Nucl.Phys. B665 (2003) 367; Dingfelder, Mannel, Rev.Mod.Phys. 88 (2016) 035008.

- The HQE parameters: $\mu_{\pi}, \mu_{G}, \rho_{D}, \rho_{LS} \sim \langle B | \mathcal{O}_{i}^{\bar{b}b} | B \rangle$.
- HQE parameters are fitted from kinematic moments.
- Γ_i are computed in perturbative QCD.
- Theoretical uncertainties impact on $|V_{cb}|$.

Third order corrections for $B o X_c \ell u_\ell$

Total semileptonic rate

MF, Schönwald, Steinhauser, PRD 104 (2021) 016003, JHEP 10 (2020) 087

Relation between MS mass and the kinetic mass

MF, Schönwald, Steinhauser, PRL 125 (2020) 052003, PRD 103 (2021) 014005

First glance to the spectral moments.

MF, Schönwald, Steinhauser, in preparation

Higher QCD corrections to $b o X_c \ell ar{ u}_\ell$

$$\Gamma_{\text{free}} = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left[X_0(\rho) + C_F \sum_{n \ge 1} \left(\frac{\alpha_s}{\pi}\right)^n X_n(\rho) \right]$$

- Exact dependence on $\rho = m_c/m_b$ only at $O(\alpha_s)$.
- Numerical approach

Melnikov, PLB 666 (2008) 336

- Exploit m_c < m_b for asymptotic expansion Czarnecki, Pak, PRD 78 (2008) 114015
 - Optical theorem
 - Method of Regions

Beneke, Smirnov, NPB 522 (1998) 321.

Karlsruher Institut für Technologie

Second order corrections

Expand around the massless limit $\rho \rightarrow 0$:

$$\Gamma_{\text{free}} = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left[X_0 + C_F \frac{\alpha_s}{\pi} X_1 + C_F \left(\frac{\alpha_s}{\pi}\right)^2 X_2 + \dots \right]$$

- 11 different regions.
- Four-loop diagrams all hard region.
- 33 four-loop master integrals.

• Expansion depth:
$$O(\rho^7)$$
 ($\rho = m_c/m_b$).

Czarnecki, Pak, PRD 78 (2008) 114015; PRL 100 (2008) 241807.

based on Czarnecki, Pak, PRD 78 (2008) 114015; PRL 100 (2008) 241807.

Towards $O(\alpha_s^3)$ corrections

	α_{s}^{2}		$lpha_{s}^{3}$
n. diagrams	62	\rightarrow	1450
n. loops	4	\rightarrow	5
regions	11	\rightarrow	O(20)
expansion depth	7	\rightarrow	?
master integrals	33	\rightarrow	?

The heavy daughter limit

Dowling, Piclum, Czarnecki, PRD 78 (2008) 074024

• The most natural expansion parameter sometime is not the best one.

$$rac{m_c}{m_b}\sim 0.3$$
 $1-rac{m_c}{m_b}\sim 0.7$

• Heavy daughter limit $m_c \sim m_b$:

$$\delta = 1 - \rho = 1 - \frac{m_c}{m_b} \ll 1$$

• Leading power in δ :

$$\Gamma_{\rm sl} \stackrel{m_c o m_b}{\simeq} rac{G_F^2}{192\pi^3} (m_b - m_c)^5 = rac{G_F^2 m_b^5}{192\pi^3} \delta^5$$

Total rate in the heavy daughter limit

$$\begin{split} \Gamma_{\rm sl} &= \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left[\frac{64}{5} \delta^5 - \frac{96}{5} \delta^6 + \frac{288}{35} \delta^7 + \dots \right] \\ \text{where } \delta &= 1 - \frac{m_c}{m_b}. \end{split}$$

Loop momenta are

- hard ~ m_b
- ultrasoft $\sim m_b m_c = m_b \delta$
- Cut propagators must carry ultrasoft momentum.
- Considerably smaller number of regions.

$$rac{1}{(p_b-k)^2-m_c^2}
ightarrow rac{1}{2p_b\cdot k-2m_b\delta}$$

$$\int \frac{d^{d}q \, d^{d}k}{(q^{2})^{n_{1}} (k^{2})^{n_{2}} (2p \cdot k - 2p \cdot q + 2\delta)^{n_{3}}}$$

$$p \rightarrow$$
 $p_{\ell} \rightarrow$ $p_{\ell} \rightarrow$

$$\int \frac{d^d q \, d^d k}{(q^2)^{n_1} (k^2)^{n_2} (2p \cdot k - 2p \cdot q + 2\delta)^{n_3}} \stackrel{k \to k(-2p \cdot q + 2\delta)}{=} \int \frac{d^d q}{(q^2)^{n_1} (-2p \cdot q + 2\delta)^{-d+2n_2+n_3}} \times \int \frac{d^d k}{(k^2)^{n_2} (2p \cdot k + 1)^{n_3}}.$$

5 loop calculation \longrightarrow 3 loop calculation!

order	regions
α_{s}	u, h
α_s^2	uu , hh , hu
α_s^3	uuu, hhh, huu, uhh

Regions in red need IBP reduction

• Tensor integral of a massive one-loop two-point function:

$$\int \frac{d^d k}{(2\pi)^d} \frac{k^{\mu_1} \dots k^{\mu_N}}{(-k^2)^{n_1} (-k^2 + 2p \cdot k)^{n_2}}$$

• Tensor integral of a one-loop ultra-soft two-point function:

$$\int \frac{d^d k}{(2\pi)^d} \frac{k^{\mu_1} \dots k^{\mu_N}}{(-k^2)^{n_1} (-2\rho \cdot k + \delta)^{n_2}}$$

Computational Challenges

- Check loop momentum routing with asy. Pak, Smirnov, EPJC 71 (2011) 1626
- Several subtleties with FORM
 - Propagators expansion up to 10th 12th order.
 - Avoid uncontrolled grow of intermediate expressions size.
 - Intermediate FORM expressions up to O(100) GB.
- Partial fraction and map to a minimal set of families with LIMIT Herren, PhD thesis 2020
- Private version of FIRE6.4 combined with LiteRed. Smirnov, Chuharev, hep-ph/1901.07808; Lee, hep-ph/1212.2685.
- Master Integrals
 - $O(\alpha_s^2)$: 3 (*uu*) and 3 (*hh*).
 - O(\alpha_s^3): 20 (UUU) and 19 (hhh). Melnikov, van Ritbergen, Nucl.Phys.B 591 (2000) 515; MF, Schönwald, Steinhauser, Phys.Rev.Lett. 125 (2020) 5.

Feynman diagrams with Eikonal-massive propagators

$$I_2^{2l} = \int d^d k_1 d^d k_2 \frac{1}{k_1^2 (k_1 - k_2)^2 (2k_1 \cdot p - y)(2k_2 \cdot p)}$$

- Mellin-Barnes: MB package Czakon, Comput. Phys. Commun. 175 (2006) 559; Smirnov², EPJC 62 (2009) 445.
- PSLQ
- Analytic summation of residues

HarmincSums www3.risc.jku.at/research/combinat/software/HarmonicSums/

DEQs in auxiliary variable Kotikov, PLB 254 (1991), 158

Gehrmann, Remiddi, NPB 580 (2000) 485 Henn, PRL 110 (2013), 251601.

$$C_F X_3(0.28) = -91.2 \pm 0.4 \, (0.4\%)$$

MF, Schönwald, Steinhauser, Phys.Rev.D 104 (2021) 1, 016003

- Expansion up to δ^{12} .
- Abelian limit up to δ^9 confirmed by

Czakon, Czarnecki, Dowling, Phys.Rev.D 103 (2021) L111301

Karlsruher Institut für Technologie

The kinetic scheme

The total rate in the on-shell scheme:

$$\Gamma_{\rm sl} = \frac{G_F^2 |V_{cb}|^2 (m_b^{\rm OS})^5}{192\pi^3} f(0.28) \left[1 - 1.72 \left(\frac{\alpha_s}{\pi}\right) - 13.1 \left(\frac{\alpha_s}{\pi}\right)^2 - 163.3 \left(\frac{\alpha_s}{\pi}\right)^3 \right] + O\left(\frac{1}{m_b^2}\right)^2 + O\left(\frac{1}{m_b^2}$$

See: Bigi, Shifman, Uraltsev, Vainshtein PRD 50 (1994) 2234; Beneke, Braun, NPB 426 (1994) 301; Ball, Beneke, Braun, PRD 52 (1995) 3929; Melnikov, van Ritbergen, PLB 482 (2000) 99.

In the $\overline{\mathrm{MS}}$ scheme

$$\Gamma_{\rm sl} = \frac{G_{F}^{2} |V_{cb}|^{2} \overline{m}_{b}^{5}}{192\pi^{3}} f(0.28) \left[1 + 3.07 \left(\frac{\alpha_{s}}{\pi}\right) + 13.3 \left(\frac{\alpha_{s}}{\pi}\right)^{2} + 62.7 \left(\frac{\alpha_{s}}{\pi}\right)^{3} \dots \right] + O\left(\frac{1}{m_{b}^{2}}\right)^{2} + O\left(\frac{1}{m_{b}^{2}}\right)^{2}$$

Meson-quark mass relation

$$m_b = M_B - \overline{\Lambda} - rac{\mu_\pi^2}{2m_b} + \dots$$

- $\overline{\Lambda}$: the *B*-meson binding energy.
- μ_{π} : the kinetic energy induced by the residual motion of the heavy quark.

The relevant parameter in $\Gamma_{\rm sl}$ is m_b^5 , not M_B^5 :

$$\Gamma_{
m sl}\simeq rac{G_F^2|V_{cb}|^5}{192\pi^3}(M_B-\overline{\Lambda})^5$$

Bigi, Shifman, Uraltsev, Vainshtein, PRD 56 (1997) 4017

M. Fael 30.4.2022 Loops and Legs 2022

The kinetic mass

Bigi, Shifman, Uraltsev, Vainshtein, PRD 56 (1997) 4017. see also: Czarnecki, Melnikov, Uraltsev, PRL 80 (1998) 3189; Gambino, JHEP 09 (2011) 055:

In pQCD, we can make a short-distance mass definition by identifying:

$$egin{aligned} m_b(\mu) & \to m_b^{
m kin}(\mu) & \overline{M}_B & \to m_b^{
m OS} \ & \overline{\Lambda}(\mu) & o [\overline{\Lambda}(\mu)]_{
m pert} & [\mu_\pi^2(\mu)] & o [\mu_\pi^2(\mu)]_{
m pert} \end{aligned}$$

. . .

$$\overline{M}_B \rightarrow m_b^{\rm OS}$$

$$\sum_{\mathrm{pert}} - rac{[\mu_\pi^2(\mu)]_{\mathrm{pert}}}{2m_b^{\mathrm{kin}}(\mu)} -$$

$${}_{b}^{\mathrm{OS}} - [\overline{\Lambda}(\mu)]_{\mathrm{pert}} - rac{[\mu_{\pi}^{2}(\mu)]_{\mathrm{pert}}}{2m_{b}^{\mathrm{kin}}(\mu)}$$

$$m_b^{\text{kin}}(\mu) = m_b^{\text{OS}} - [\overline{\Lambda}(\mu)]_{\text{pert}} - \frac{\mu_{\pi}(\mu)}{2m_b^{\text{kin}}}$$

The Kinetic Mass as a Threshold Mass

Heavy quark scattering close to one-particle Threshold limit

$$y = s - m_b^2 \simeq 2m_b \omega \ll m_b^2$$

• Factorization in the Small Velocity limit $q^2 = m_b^2 \vec{v}^2 \ll m_b^2$

$$W(\omega, \vec{v}) \simeq H \cdot U(\omega, \vec{v})$$

The Small Velocity Sum Rules

$$[\overline{\Lambda}(\boldsymbol{\mu})]_{\text{pert}} = \lim_{\vec{v}\to 0} \lim_{m_b\to\infty} \frac{2}{\vec{v}^2} \frac{\int_0^{\boldsymbol{\mu}} d\omega \,\omega \,W(\omega,\vec{v})}{\int_0^{\boldsymbol{\mu}} d\omega \,W(\omega,\vec{v})}$$
$$[\mu_{\pi}^2(\boldsymbol{\mu})]_{\text{pert}} = \lim_{\vec{v}\to 0} \lim_{m_b\to\infty} \frac{3}{\vec{v}^2} \frac{\int_0^{\boldsymbol{\mu}} d\omega \,\omega^2 \,W(\omega,\vec{v})}{\int_0^{\boldsymbol{\mu}} d\omega \,W(\omega,\vec{v})}$$

~ * *

Bigi, Shifman, Uraltsev, Vainshtein, PRD 56 (1997) 4017.

Ingredients for $m_b^{\rm OS} - m_b^{\rm kin}$ at ${\cal O}(lpha_s^3)$

- $W(\omega, \vec{v})$ up to $O(\alpha_s^3)$
- Discontinuity of forward scattering amplitudes:

• Threshold expansion: $y = s - m_b^2$.

Beneke, Smirnov, NPB 522 (1998) 321; Smirnov Springer Tracts Mod. Phys. 250 (2010)

Heavy daughter limit \leftrightarrow one-particle threshold limit.

The Kinetic Mass

$$\begin{split} \frac{m^{\text{kin}}}{m^{\text{OS}}} &= 1 - \frac{\alpha_s^{(n_l)}}{\pi} C_F \left(\frac{4}{3} \frac{\mu}{m^{\text{OS}}} + \frac{1}{2} \frac{\mu^2}{(m^{\text{OS}})^2} \right) + \left(\frac{\alpha_s^{(n_l)}}{\pi} \right)^2 C_F \left\{ \frac{\mu}{m^{\text{OS}}} \left[C_A \left(-\frac{215}{27} + \frac{2\pi^2}{9} + \frac{22}{9} l_\mu \right) + n_l T_F \left(\frac{64}{27} - \frac{8}{9} l_\mu \right) \right] \right] \\ &+ \frac{\mu^2}{(m^{\text{OS}})^2} \left[C_A \left(-\frac{91}{36} + \frac{\pi^2}{12} + \frac{11}{12} l_\mu \right) + n_l T_F \left(\frac{13}{18} - \frac{1}{3} l_\mu \right) \right] \right\} + \left(\frac{\alpha_s^{(n_l)}}{\pi} \right)^3 C_F \left\{ \frac{\mu}{m^{\text{OS}}} \left[C_A^2 \left(-\frac{130867}{1944} \right) + \frac{11}{12} l_\mu \right) + n_l T_F \left(\frac{13}{18} - \frac{1}{27} l_\mu^2 \right) \right] \right\} \\ &+ \frac{511\pi^2}{162} + \frac{19\zeta_3}{2} - \frac{\pi^4}{18} + \left(\frac{2518}{81} - \frac{22\pi^2}{27} \right) l_\mu - \frac{121}{27} l_\mu^2 \right) + C_A n_l T_F \left(\frac{19453}{486} - \frac{104\pi^2}{81} - 2\zeta_3 \right) \\ &+ \left(-\frac{1654}{81} + \frac{8\pi^2}{27} \right) l_\mu + \frac{88}{27} l_\mu^2 \right) + C_F n_l T_F \left(\frac{11}{4} - \frac{4\zeta_3}{3} - \frac{2}{3} l_\mu \right) + n_l^2 T_F^2 \left(-\frac{1292}{243} + \frac{8\pi^2}{81} + \frac{256}{81} l_\mu - \frac{16}{27} l_\mu^2 \right) \right] \\ &+ \frac{\mu^2}{(m^{\text{OS}})^2} \left[C_A^2 \left(-\frac{96295}{5184} + \frac{445\pi^2}{432} + \frac{57\zeta_3}{16} - \frac{\pi^4}{48} + \left(\frac{2155}{216} - \frac{11\pi^2}{36} \right) l_\mu - \frac{121}{72} l_\mu^2 \right) + C_A n_l T_F \left(\frac{13699}{1296} - \frac{23\pi^2}{54} \right) \\ &- \frac{3\zeta_3}{4} + \left(-\frac{695}{108} + \frac{\pi^2}{9} \right) l_\mu + \frac{19}{9} l_\mu^2 \right) + C_F n_l T_F \left(\frac{29}{32} - \frac{\zeta_3}{2} - \frac{1}{4} l_\mu \right) + n_l^2 T_F^2 \left(-\frac{209}{162} + \frac{\pi^2}{27} + \frac{26}{27} l_\mu - \frac{2}{9} l_\mu^2 \right) \right] \right\},$$

MF, Schönwald, Steinhauser, PRL 125 (2020) 052003

- The mass relation is written in terms of $\alpha_s^{(n_l)}$.
- n_l = number of massless quarks, $I_{\mu} = \log(2\mu/\mu_s)$.

M. Fael 30.4.2022 Loops and Legs 2022

Implications for $\overline{B} o X_c \ell ar{ u}_\ell$

$$\Gamma_{sl} = \frac{G_F^2 m_b^5 |V_{cb}|^2}{192\pi^3} f(\rho) \left[1 + \sum_n Y_n \left(\frac{\alpha_s}{\pi} \right)^n \right]$$
with $\alpha_s \equiv \alpha_s^{(4)}(m_b)$.
n=1 Jeraber, K0m, Jerabel, K0m, Seraded, PRD 78 (2009) 114015.
n=3 Fael, Schönwald, Steinhauser, hep-ph/2011.13654
 $m_b^{OS} : m_c^{OS} = 1 - 1.78 \left(\frac{\alpha_s}{\pi} \right) - 13.1 \left(\frac{\alpha_s}{\pi} \right)^2 - 163.3 \left(\frac{\alpha_s}{\pi} \right)^3$
 $m_b^{S} : m_c (2 \text{ GeV}) = 1 - 1.24 \left(\frac{\alpha_s}{\pi} \right) - 3.65 \left(\frac{\alpha_s}{\pi} \right)^2 - 1.0 \left(\frac{\alpha_s}{\pi} \right)^3$
 $m_b^{S} : m_c \text{ via HQET} = 1 - 1.38 \left(\frac{\alpha_s}{\pi} \right) - 6.32 \left(\frac{\alpha_s}{\pi} \right)^2 - 33.1 \left(\frac{\alpha_s}{\pi} \right)^3$

0.00

M. Fael 30.4.2022 Loops and Legs 2022

25

Precise $\overline{m}_b - m_b^{\rm kin}$ conversion up to $O(\alpha_s^3)$

Gambino, Schwanda, PRD 89 (2014) 014022 Horizontal error bands superimposed by MF

- Mass relation implemented in (C)RunDec and REvolver Heren, Steinhauser, Comput.Phys.Commun.224, 333 (2018) Hoang, Lepenik, Mateu, Comput.Phys.Commun. 270 108145 (2022)
- Input from FLAG19:
 - $\overline{m}_b(\overline{m}_b) = 4.198(12) \text{ GeV}$
 - $\overline{m}_c(3 \text{ GeV}) = 0.988(7) \text{ GeV}$

 $m_b^{\rm kin}(1~{
m GeV}) = 4.198 + 0.261 + 0.079 + 0.027 = 4.564~{
m GeV}$

- Conversion-uncertainty $\delta m_b = 15$ MeV (half $O(\alpha_s^3)$ correction)
- Uncertainty at $O(\alpha_s^2)$ was $\delta m_b = 40$ MeV

$$m_b^{
m kin}(1~{
m GeV}) = 4.565\,(15)_{
m th}(13)_{
m lat}~{
m GeV} = 4.565\,(20)~{
m GeV}$$

Improvement in |V_{cb}|

- Fit BR and moments from *B* factories.
- No new data added since 2014.
- Global fit strategy from 2014 Gambino, Schwanda, Phys.Rev.D 89 (2014) 014022 Alberti, Gambino, Healey, Nandi, Phys.Rev.Lett. 114 (2015) 6, 061802
- New: $O(\alpha_s^3)$ for $\Gamma_{\rm free}$ and $\overline{m}_b m_b^{\rm kin}$

• NLO correction to ρ_D in Γ_{sl} .

Mannel, Pivovarov, PRD 100 (2019) 093001

• Precise input from FLAG + $\overline{m}_b - m_b^{\text{kin}}$ at $O(\alpha_s^3)$.

 $\overline{m}_c(3 \text{ GeV}) = 0.988(7) \text{ GeV}$ $m_b^{
m kin}(1 \text{ GeV}) = 4.565(19) \text{ GeV}$

$$|\mathit{V_{cb}}| =$$
 42.16 (30) $_{
m th}$ (32) $_{
m exp}$ (25) $_{\Gamma} imes$ 10 $^{-3} =$ 42.16 (51) $imes$ 10 $^{-3}$

Bordone, Capdevila, Gambino, hep-ph/2107.00604

34% error improvement compared to 2014!

Moments of kinematic distributions

$$M^n[w] = \int_{\mathrm{veto}} \mathrm{d}\Phi \; w^n(p_\ell, q, v_B) rac{d\Gamma}{dq_0 dq^2 dE_\ell}$$

 Extend computation strategy of Γ_{sl} to moments without cuts.

Observable	$w(p_\ell, q, v_B)$
Semileptonic rate	1
Electron energy moments	$p_\ell \cdot v_B$
Hadronic invariant mass	$(M_B v_B - q)^2$
Leptonic invariant mass	q^2

 $w^n(p_\ell,q,v) \times$

• Third order corrections relevant for q^2 and M_X^2 moments. MF. Schönwald, Steinhauser, in preparation.

Outlook & Conclusions

- Inclusive observables in B decays greatly benefit from developments in multi-loop methods.
- New O(\alpha_s^3) corrections
 - $\Gamma(B \to X_c \ell \nu)$.
 - $m^{OS} m^{kin}$ relation.
- 34% error improvement in inclusive $|V_{cb}|$.
- |V_{cb}| puzzle still remains.

What is still needed?

- Short term:
 - NNLO corrections to q^2 moments with cuts and A_{FB} asymmetries.
 - Fully differential NLO corrections to ρ_D (Gambino, Nandi et al.)
 - Kinetic scheme at higher order in $1/m_b$ (and $O(\alpha_s^4)$?).
- Long term:
 - N³LO and NNLO $\times 1/m_b^n$ corrections with cuts for selected observables might be doable.
 - Improve prediction for $b \rightarrow u \ell \nu$. Charm mass effects.

Implications for Muon Decay

$$X_3^{\mu} = -15.3 \pm 2.3$$
 (15%)

MF, Schönwald, Steinhauser, Phys.Rev.D 104 (2021) 1, 016003

Previous estimate: $X_3^{\mu} \simeq -20$

Ferroglia, Ossola, Sirlin, Nucl.Phys.B 560 (1999) 23

Final Error Budget

$$egin{aligned} &rac{\hbar}{ au_{\mu}} = rac{G_F^2 m_{\mu}^5}{192 \pi^2} F(
ho) \left(1 + \Delta q
ight) \ \Delta q = \left(-4\,234\,530|_{\hatlpha} + 36\,332|_{\hatlpha^2} - 196|_{\hatlpha^3} \pm 29|_{\delta \hatlpha^3} \pm 5|_{\delta ext{had}}
ight) imes 10^{-9} \end{aligned}$$

Behrends, Finkelstein, Sirlin Phys.Rev.101 (1956) 866; van Ritbergen, Stuart Phys.Rev.Lett. 82 (1999) 488 ($m_{\theta} = 0$) Czarnecki, Pak, Phys.Rev.Lett. 100 (2008) 241807 ($m_{\theta} \ll m_{\mu}$)

• $\delta(1 + \Delta q) = 0.029 \text{ ppm}$ • $\frac{1}{2} \frac{\delta \tau_{\mu}}{\tau_{\mu}} = 0.5 \text{ ppm}$ • $\frac{5}{2} \frac{\delta m_{\mu}}{m_{\mu}} = 0.05 \text{ ppm}$

- at *O*(*α*²): δ(1 + Δ*q*) = 0.17 ppm van Ritbergen, Stuart, Nucl. Phys. B 564 (2000) 343 Sirlin, Ferroglia, Rev.Mod.Phys. 85 (2013) 1
- Precise MS-on shell conversion of α up to 4 loops

Baikov, Chetyrkin, Kuhn, Sturm, Nucl.Phys.B 867 (2013) 182

		tree	α_{s}	α_{s}^{2}	α_{s}^{3}	
1		1	1	1	1	Jezabek, Kuhn, NPB 314 (1989) 1; Gambino et al., NPB 719 (2005) 77; Melnikov, PLB 666 (2008) 336; Pak, Czarnecki, PRD 78 (2008) 114015.
$1/m_{b}^{2}$	μ_{π}	1	1			Becher, Boos, Lunghi, JHEP 0712 (2007) 062; Alberti, Ewerth, Gambino, Nandi, NPB 870 (2013) 16
	μ_{G}	1	1			Alberti, Gambino, Nandi, JHEP 1401 (2014) 147; Mannel, Pivovarov, Rosenthal, PRD 92 (2015) 054025.
$1/m_{b}^{3}$	$ ho_D$	1	1			Mannel, Pivovarov, PRD100 (2019) 093001; Mannel, Moreno, Pivovarov, PRD 105 (2022) 054033.
	$ ho_{LS}$		~			
$1/m_b^{4,5}$		1				Dassinger, Mannel, Turczyk, JHEP 0703 (2007) 087, JHEP 1011 (2010) 109 MF, Mannel, Vos, JHEP 02 (2019) 177, JHEP 12 (2019) 067.
$\overline{m}_b - m_b^{ m kin}$			1	1	1	Bigi et al, PRD 56 (1997) 4017; Czarnecki, Melnikov, Uraltsev, PRL 80 (1998) 3189. MF, Steinhauser, Schönwald, PRL 125 (2020) 5, PRD 103 (2021) 014005.

A new puzzle in V_{ub} ?

•
$$\Gamma_{\rm sl}(B \to X_u \ell \nu_\ell)$$
 from $\rho \to 0$ limit: $C_F X_3^u = -269 \pm 26$.

$$\begin{split} \Gamma_{b \to u}(m_b^{\rm kin}) &= \Gamma_0 \Bigg[1 - 0.020 |_{\alpha_s} + 0.014 |_{\alpha_s^2} + 0.031 |_{\alpha_s^3} \Bigg] \\ \Gamma_{b \to u}^{\rm no\, charm}(m_b^{\rm kin}) &= \Gamma_0 \Bigg[1 - 0.020 |_{\alpha_s} + 0.012 |_{\alpha_s^2} + 0.016 |_{\alpha_s^3} \Bigg] \\ \Gamma_{b \to u}(m_b^{\rm 1S}) &= \Gamma_0 \Bigg[1 - 0.116\epsilon - 0.032\epsilon^2 + 0.002\epsilon^3 \Bigg] \end{split}$$

• Relevant for $|V_{ub}|$ in GGOU scheme

Gambino, Giordano, Ossola, Uraltsev, JHEP 10 (2007) 058

- Large m_c effects at $O(\alpha_s^3)$?
- Kinetic mass not good for $b \rightarrow u$?

First glance to α_s^3 corrections for the moments

Centralized moments (no cuts):

$$\left\langle M^n[w] \right
angle = rac{M^n[w]}{M^0[w]} \quad o \quad \left\langle (M[w] - \langle M[w]
angle)^n
ight
angle$$

- QCD corrections up to O(\alpha_s^3) at leading order in the HQE.
- Tree level contribution to $O(1/m_b^2)$ and $O(1/m_b^3)$.
- Results in the kinetic scheme: m_b^{kin} and $\overline{m}_c(3 \text{ GeV})$.

We quote:

- Higher QCD corrections flagged by "αⁿ".
- Power correction up to 1/m³_b flagged by "pw"
- Uncertainties in α_s^n from finite δ expansion.
- Uncertainties from HQE parameters.

Bordone, Capevila, Gambino, PLB 822 (2021) 136679

 q^2 moments: $q_1 = \langle q^2 \rangle$, $q_{n \geq 2} = \langle (q^2 - \langle q^2 \rangle)^n \rangle$

MF, Schönwald, Steinhauser, in preparation

$$\hat{q}_{1} = 0.232947 \Big[1 - 0.0106345_{\alpha_{s}} - 0.008736(15)_{\alpha_{s}^{2}} - 0.00505(13)_{\alpha_{s}^{3}} - 0.0875(97)_{pw} \Big],$$

$$\hat{q}_{2} = 0.0235256 \Big[1 - 0.035937_{\alpha_{s}} - 0.0217035(20)_{\alpha_{s}^{2}} - 0.01118(17)_{\alpha_{s}^{3}} - 0.237(27)_{pw} \Big],$$

$$\hat{q}_{3} = 0.0014511 \Big[1 - 0.0700381_{\alpha_{s}} - 0.035693(73)_{\alpha_{s}^{2}} - 0.01909(12)_{\alpha_{s}^{3}} - 0.726(94)_{pw} \Big],$$

$$\hat{q}_{4} = 0.00120161 \Big[1 - 0.0585199_{\alpha_{s}} - 0.042276(11)_{\alpha_{s}^{2}} - 0.02411(20)_{\alpha_{s}^{3}} - 0.631(77)_{pw} \Big].$$

$$\begin{array}{ll} q_1(q^2>3~{\rm GeV}^2)=6.23\,(8)~{\rm GeV}^2 & (1.3\%) \\ q_2(q^2>3~{\rm GeV}^2)=4.44\,(15)~{\rm GeV}^4 & (3.1\%) \\ q_3(q^2>3~{\rm GeV}^2)=4.13\,(68)~{\rm GeV}^6 & (16\%) \\ q_3(q^2>3~{\rm GeV}^2)=46.6\,(5.6)~{\rm GeV}^8 & (12\%) \end{array}$$

Belle, PRD 104 (2021) 112011

Electron energy:
$$\ell_1 = \langle E_\ell \rangle, \quad \ell_{n \ge 2} = \langle (E_\ell - \langle E_\ell \rangle)^n \rangle$$

MF, Schönwald, Steinhauser, in preparation

$$\hat{\ell}_{1} = 0.315615 \Big[1 - 0.0101064_{\alpha_{s}} - 0.005082(17)_{\alpha_{s}^{2}} - 0.00227(13)_{\alpha_{s}^{3}} - 0.0192(31)_{pw} \Big], \\ \hat{\ell}_{2} = 0.00900585 \Big[1 - 0.01992_{\alpha_{s}} - 0.006152(41)_{\alpha_{s}^{2}} + 0.0002(21)_{\alpha_{s}^{3}} + 0.017(11)_{pw} \Big], \\ \hat{\ell}_{3} = -0.000464269 \Big[1 - 0.0639319_{\alpha_{s}} - 0.035673(10)_{\alpha_{s}^{2}} - 0.0142(46)_{\alpha_{s}^{3}} - 0.175(22)_{pw} \Big], \\ \hat{\ell}_{4} = 0.00020743 \Big[1 - 0.028854_{\alpha_{s}} - 0.00717(23)_{\alpha_{s}^{2}} - 0.(0.25)_{\alpha_{s}^{3}} + 0.(0.021)_{pw} \Big].$$

$$\ell_1(E_{\ell} > 0.4 \text{ GeV}) = 1393.92(6.73)(3.02) \text{ MeV}$$
(0.5%)

$$\ell_2(E_{\ell} > 0.4 \text{ GeV}) = 168.77(3.68)(1.53) \times 10^{-3} \text{ GeV}^2$$
(2.3%)

$$\ell_3(E_{\ell} > 0.4 \text{ GeV}) = -21.04(1.93)(0.66) \times 10^{-3} \text{ GeV}^3$$
(9.6%)

$$\ell_4(E_{\ell} > 0.4 \text{ GeV}) = 64.153(1.813)(0.935) \times 10^{-3} \text{ GeV}^4$$
(3.2%)

Belle, PRD 75 (2007) 032001

Hadronic mass:
$$h_1 = \langle M_X^2 \rangle$$
, $h_{n \ge 2} = \langle (M_X^2 - \langle M_X^2 \rangle)^n \rangle$

MF, Schönwald, Steinhauser, in preparation

$$\begin{split} \hat{h}_1 &= & 0.00899843 \Big[+ 23.4975 & + 1 + 0.4223(15)_{\alpha_s^2} & + 0.147(11)_{\alpha_s^3} & + 0.04(20)_{\rm pw} \Big], \\ \hat{h}_2 &= & 0.000745468 \Big[+ 0.87352 & + 1 + 0.4505(74)_{\alpha_s^2} & + 0.34(43)_{\alpha_s^3} & + 3.33(59)_{\rm pw} \Big], \\ \hat{h}_3 &= & 0.0000915954 \Big[- 0.0729568 & + 1 + 0.165(62)_{\alpha_s^2} & + 2.29(55)_{\alpha_s^3} & + 7.3(1.1)_{\rm pw} \Big], \\ \hat{h}_4 &= & 0.000091207 \Big[+ 0.0100938 & + 1 + 0.51(17)_{\alpha_s^2} & + 1(145)_{\alpha_s^3} & + 0.380(52)_{\rm pw} \Big]. \end{split}$$

$$h_1 = 4.541 (101) \text{ GeV}^2$$
(2%) $h_2 = 1.56 (0.18) (0.16) \text{ GeV}^4$ (15%) $h_3 = 4.05 (0.74) (0.32) \text{ GeV}^6$ (20%) $h_4 = 21.1 (4.5) (2.1) \text{ GeV}^8$ (23%)

DELPHI, EPJ C 45 (2006) 35