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NNLO ��Revolution

Towards higher precision: NNLO and beyond
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NNLO ��Revolution

Gavin Salam→ click to link

[talk by Stefan Kallweit]
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https://indico.cern.ch/event/442390/contributions/1095992/attachments/1290565/1921904/LHCP-QCD-43.pdf


NNLO ��Revolution

NNLO QCD: pp → γγγ + X

H. A. Chawdhry, M. L. Czakon, A. Mitov and R. Poncelet, JHEP 2002 (2020) 057
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NNLO ��Revolution

NNLO QCD: pp → γγγ + X

S. Kallweit, V. Sotnikov and M. Wiesemann, Phys. Lett. B 812 (2021) 136013
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NNLO ��Revolution

NNLO QCD: pp → 3jets + X

M. Czakon, A. Mitov and R. Poncelet, Phys. Rev. Lett. 127 (2021) no.15, 152001 [arXiv:2106.05331 [hep-ph]].

X. Chen, T. Gehrmann, N. Glover, A. Huss and M. Marcoli, [arXiv:2203.13531 [hep-ph]].
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NNLO ��Revolution

- H. A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, “Two-loop leading-colour QCD helicity amplitudes for

two-photon plus jet production at the LHC,” arXiv:2103.04319 [hep-ph].

- H. A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, “Two-loop leading-color helicity amplitudes for three-photon

production at the LHC,” arXiv:2012.13553 [hep-ph].

- S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, “Leading-Color Two-Loop QCD Corrections for

Three-Jet Production at Hadron Colliders,” arXiv:2102.13609 [hep-ph].

- S. Abreu, B. Page, E. Pascual and V. Sotnikov, “Leading-Color Two-Loop QCD Corrections for Three-Photon

Production at Hadron Colliders,” JHEP 2101 (2021) 078

- S. Abreu et al., “Caravel: A C++ Framework for the Computation of Multi-Loop Amplitudes with Numerical

Unitarity,” arXiv:2009.11957 [hep-ph].

- B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi, “Two-loop helicity amplitudes for diphoton plus jet

production in full color,” arXiv:2105.04585 [hep-ph].

- B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi, “Two-loop leading colour QCD corrections to qq̄ → γγg

and qg → γγq,” JHEP 2104 (2021) 201

- S. Badger, H. B. Hartanto and S. Zoia, “Two-loop QCD corrections to Wbb̄ production at hadron colliders,”

arXiv:2102.02516 [hep-ph].

- H. B. Hartanto, S. Badger, C. Brynnum-Hansen and T. Peraro, “A numerical evaluation of planar two-loop helicity

amplitudes for a W-boson plus four partons,” JHEP 1909 (2019) 119

+ rational terms, IBP reduction, computation of Master Integrals, etc.
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Two-loop graph
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5-point 2-loop - one leg off-shell: all families

C. G. Papadopoulos, D. Tommasini and C. Wever, JHEP 04 (2016), 078 [arXiv:1511.09404 [hep-ph]].

C. G. Papadopoulos and C. Wever, JHEP 2002 (2020) 112

S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow and M. Zeng, JHEP 2011 (2020) 117

D. D. Canko, C. G. Papadopoulos and N. Syrrakos, JHEP 2101 (2021) 199

S. Abreu, H. Ita, B. Page and W. Tschernow, JHEP 03 (2022), 182 [arXiv:2107.14180 [hep-ph]].

A. Kardos, C. G. Papadopoulos, A. V. Smirnov, N. Syrrakos and C. Wever, [arXiv:2201.07509 [hep-ph]].

The three planar pentaboxes of the families P1 (left), P2 (middle) and P3 (right) with one external massive leg.

The five non-planar families with one external massive leg.
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Pentabox - one leg off-shell: P1

xp1

xp2

−p1234

p123 − xp12

p4

q1 → p123 − xp12, q2 → p4, q3 → −p1234, q4 → xp1

SDE parametrisation: n off-shell legs → n − 1 off-shell legs + the x variable.

C. G. Papadopoulos, “Simplified differential equations approach for Master Integrals,” JHEP 1407 (2014) 088

pi , i = 1 . . . 5, satisfy
∑5

1 pi = 0, with p2
i = 0, i = 1 . . . 5, pi...j := pi + . . .+ pj .

The set of independent invariants: {S12, S23, S34, S45,S51, x}, with Sij := (pi + pj)
2.

q2
1 = (1− x)(S45 − S12x), s12 = (S34 − S12(1− x)) x , s23 = S45, s34 = S51x ,

s45 = S12x
2, s15 = S45 + (S23 − S45)x
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Pentabox - one leg off-shell: P1
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4-point up to two legs off-shell

J. M. Henn, K. Melnikov and V. A. Smirnov, JHEP 1405 (2014) 090

T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, JHEP 06 (2014), 032

F. Caola, J. M. Henn, K. Melnikov and V. A. Smirnov, JHEP 1409 (2014) 043

C. G. Papadopoulos, D. Tommasini and C. Wever, JHEP 1501 (2015) 072

T. Gehrmann, A. von Manteuffel and L. Tancredi, JHEP 09 (2015), 128

As well as planar and nonplanar double box with one off-shell leg expressed in UT basis.
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Pentabox - one leg off-shell: P1-3

G
P1
a1···a11

:= e2γE ε
∫

dd k1

iπd/2

dd k2

iπd/2

1

k
2a1
1 (k1 + q1)2a2 (k1 + q12)2a3 (k1 + q123)2a4

×
1

k
2a5
2 (k2 + q123)2a6 (k2 + q1234)2a7 (k1 − k2)2a8 (k1 + q1234)2a9 (k2 + q1)2a10 (k2 + q12)2a11

,

G
P2
a1···a11

:= e2γE ε
∫

dd k1

iπd/2

dd k2

iπd/2

1

k
2a1
1 (k1 − q1234)2a2 (k1 − q234)2a3 (k1 − q34)2a4

×
1

k
2a5
2 (k2 − q34)2a6 (k2 − q4)2a7 (k1 − k2)2a8 (k2 − q1234)2a9 (k2 − q234)2a10 (k1 − q4)2a11

,

G
P3
a1···a11

:= e2γE ε
∫

dd k1

iπd/2

dd k2

iπd/2

1

k
2a1
1 (k1 + q2)2a2 (k1 + q23)2a3 (k1 + q234)2a4

×
1

k
2a5
2 (k2 + q234)2a6 (k2 − q1)2a7 (k1 − k2)2a8 (k1 − q1)2a9 (k2 + q2)2a10 (k2 + q23)2a11

,

where qi...j := qi + . . . + qj .
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Pentabox - one leg off-shell: P1

J. M. Henn, Phys. Rev. Lett. 110 (2013) 251601

S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow and M. Zeng, JHEP 2011 (2020) 117

D. D. Canko, C. G. Papadopoulos and N. Syrrakos, JHEP 2101 (2021) 199

d~g = ε
∑
a

d log (Wa) M̃a~g

Also from direct differentiation of MI wrt to x . Just g in terms of FI.

d~g

dx
= ε

∑
b

1

x − `b
Mb~g

`b, are independent of x , some depending only on the reduced invariants,
{S12,S23, S34, S45, S51}. Mb are independent of the invariants.

number of letters smaller than in AIMPTZ representation

Main contribution for us from AIMPTZ: the canonical basis (+ numerics)
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Pentabox - one leg off-shell: P1-3

dg

dx
=
∑
a

1

x − `a
Mag

g = ε0b(0)
0 + ε

(∑
GaMab

(0)
0 + b(1)

0

)
+ ε2

(∑
GabMaMbb

(0)
0 +

∑
GaMab

(1)
0 + b(2)

0

)
+ ε3

(∑
GabcMaMbMcb

(0)
0 +

∑
GabMaMbb

(1)
0 +

∑
GaMab

(2)
0 + b(3)

0

)
+ ε4

(∑
GabcdMaMbMcMdb

(0)
0 +

∑
GabcMaMbMcb

(1)
0

+
∑
GabMaMbb

(2)
0 +

∑
GaMab

(3)
0 + b(4)

0

)
+ ...

Gab... := G(`a, `b, . . . ; x)

D. D. Canko, C. G. Papadopoulos and N. Syrrakos, arXiv:2009.13917 [hep-ph]. Results.txt
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Pentabox - one leg off-shell: Boundary
conditions

starting from the full equation

d~g

dx
= ε

1

x
M0~g +O(x0)

using all letters Wa, with the solution (b :=
∑4

i=0 ε
ib

(i)
0 )

g0 = Seε log(x)DS−1b

S and D are obtained through Jordan decomposition of the M0

Resummed: R0 = Seε log(x)DS−1

What we know about:

R0 =
∑
i

xniεR0i +
∑
j

εxnjε log (x)R0j0
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Pentabox - one leg off-shell: Boundary
conditions

IBP reduction in terms of Master Integrals

g = TG.

D. D. Canko, C. G. Papadopoulos and N. Syrrakos, arXiv:2009.13917 [hep-ph]. Masters.m

Expansion by regions. [no logarithmic terms]

Gi =
x→0

∑
j

xbj+ajεG
(j)
i

Linear equations:

g0 := R0b = lim
x→0

TG

∣∣∣∣
O
(
x

0+ajε
)

Matrix T is horrible-looking depending on x , ε and Sij . But

R0b→ ε, x ,Rationals ⊗ polyLogs G
(j)
i → Simple

[
Sij
]
⊗ polyLogs

so we can afford IBP reduction with only x , ε symbolic: i.e. FIRE6 or Kira2.
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Pentabox - one leg off-shell: Boundary
conditions

No regions in the top-sector are needed.

To obtain expressions for regions, G
(j)
i , in Feynman parameter space, we use FIESTA

asyexpand, for x → 0 limit (SDE).

In most cases integration is straightforward and the resulting 2F1 hypergeometric
functions are expanded with HypExp.

In few cases we use Mellin-Barnes techniques using the MB, MBSums and XSummer along
with the in-house (A. Kardos) package Gsuite.

Boundary terms only depends on 12 Goncharov

G

[
0, 1,−

S12− S34

S51

]
, G

[
1,−

S12− S34

S51

]
, G

[
0, 0, 1,−

S12− S34

S51

]
, G

[
0, 1, 1,−

S12− S34

S51

]
,

G

[
1, 0, 1,−

S12− S34

S51

]
, G

[
0, 0, 0, 1,−

S12− S34

S51

]
, G

[
0, 0, 1, 1,−

S12− S34

S51

]
,

G

[
0, 1, 0, 1,−

S12− S34

S51

]
, G

[
0, 1, 1, 1,−

S12− S34

S51

]
, G

[
1, 0, 0, 1,−

S12− S34

S51

]
, G

[
1, 0, 1, 1,−

S12− S34

S51

]
,

G

[
1, 1, 0, 1,−

S12− S34

S51

]

and 4 Logarithms {Log[−S12], Log[−S45], Log[S12− S34], Log[−S51]}.

D. D. Canko, C. G. Papadopoulos and N. Syrrakos, arXiv:2009.13917 [hep-ph]. Boundaries.m
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Pentabox - one leg off-shell: Kinematical
Regions

Euclidean region:{
S12→ −2, S23→ −3,S34→ −5, S45→ −7, S51→ −11, x →

1

4

}
no letter l in the region [0, x], all boundary terms real. [very fast GiNaC]

Family W=1 W=2 W=3 W=4
P1 (g72) 17 (14) 116 (95) 690 (551) 2740 (2066)
P2 (g73) 25 (14) 170 (140) 1330 (1061) 4950 (3734)
P3 (g84) 22 (12) 132 (90) 1196 (692) 4566 (2488)

Table: Number of GP entering in the solution, as explained in the text.

with timings, running the GiNaC Interactive Shell ginsh, given by 1.9, 3.3, and 2 seconds
for P1, P2 and P3 respectively and for a precision of 32 significant digits

A very different canonical basis, several elements start at ε4.
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Pentabox - one leg off-shell: Kinematical
Regions

One-scale integrals - closed form

(−s34)−ε = (−S51)−εx−ε

(−s45)−ε = (−S12)−εx−2ε

(−s15)−ε = (−S45)−ε
(

1−
S45 − S23

S45

x

)−ε
(−p1s )−ε = (1− x)−ε(−S45)−ε

(
1−

S12

S45

x

)−ε
(−s12)−ε = x−ε(S12 − S34)−ε

(
1−

S12

S12 − S34

x

)−ε
,

One-scale integrals - expanded form

Log[−p1s− iδ]→ G [1, x] + G

[
S45

S12
, x

]
+ Log[−S45],

Log[−s34− iδ]→ Log[−S51] + Log[x],

Log[−s12− iδ]→ G

[
S12− S34

S12
, x

]
+ Log[S12− S34] + Log[x],

Log[−s45− iδ]→ Log[−S12] + 2 Log[x],

Log[−s15− iδ]→ G

[
S45

−S23 + S45
, x

]
+ Log[−S45]
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Pentabox - one leg off-shell: Kinematical
Regions

In general many letters will be now in [0, x ]. This has two consequences:

1 Need to fix infinitesimal imaginary part of li
x

2 Increasing CPU time in GiNaC.

Since the F polynomial maintains the sign of the i0 prescription of Feynman
propagators with all original invariants assuming sij(p1s)→ sij(p1s) + iδ, we
determine the corresponding infinitesimal imaginary part of li

x from

p1s + iδ = (1− x)(S45 − S12x), s12 + iδ = (S34 − S12(1− x)) x ,

s23 + iδ = S45, s34 + iδ = S51x ,

s45 + iδ = S12x
2, s15 + iδ = S45 + (S23 − S45)x

with Sij → Sij + iδηij , x → x + iδηx ,

Building a Fibration Basis using for instance PolyLogTools.
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Pentabox - one leg off-shell: Validation

All regions of AIMPTZ checked @precision

One-loop pentagon at order O(ε4) [any order, analytic]
N. Syrrakos, “Pentagon integrals to arbitrary order in the dimensional regulator,” arXiv:2012.10635 [hep-ph].

Taken the limit x = 1 in all families to obtain the result for on-shell planar 5box

SDE is not only capable to produce analytic results for off-shell MI but it can also
give, almost for free, the on-shell MI.

Evaluating phase-space points for pp →W+j1j2 generated by HELAC-PHEGAS, i.e.
arbitrary floating points.
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hexabox - one leg off-shell

r1 =
√
λ(p1s , s23, s45)

r2 =
√
λ(p1s , s24, s35)

r3 =
√
λ(p1s , s25, s34)

r4 =
√

detG(q1, q2, q3, q4)

r5 =

√
Σ

(1)
5

r6 =

√
Σ

(2)
5
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hexabox - one leg off-shell

For topology N1, the square roots r1 and r4 appear in its alphabet and are rationalized.

∂xg = ε

lmax∑
i=1

Mi

x − li

 g

lmax = 21 from 39 letters in the original alphabet

For topologies N2 and N3, the square roots appearing are {r1, r2, r4, r5} and
{r1, r3, r4, r6} not simultaneous rationalisation possible !
The more general form of the SDE takes the form:

∂xg = ε

lmax∑
a=1

dLa

dx
Ma

 g

where most of the La are simple rational functions of x , as in (1), whereas the rest are
algebraic functions of x involving the non-rationalisable square roots.
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hexabox - one leg off-shell: weight 2

For instance element 11 of N2 is given as

g
(2)
11 = 8

(
2G(0,−y)

(
G (1, y)− G

(
S̃45

S̃12

, y

))
+ 2G

(
0,

S̃45

S̃12

, y

)
− G (1, y) log

(
S̃45

S̃12

)

+ log

(
S̃45

S̃12

)
G
(
S̃45

S̃12

, y

)
− 2G (0, 1, y)

)

where the new parametrization of the external momenta is given by

q1 → p̃123 − yp̃12, q2 → yp̃2, q3 → −p̃1234, q4 → yp̃1

with the new momenta p̃i , i = 1 . . . 5 satisfying as usual,
∑5

1 p̃i = 0, p̃2
i = 0, i = 1 . . . 5, with

p̃i...j := p̃i + . . .+ p̃j . The set of independent invariants is given by {S̃12, S̃23, S̃34, S̃45, S̃51, y},
with S̃ij :=

(
p̃i + p̃j

)2
. The explicit mapping between the two sets of invariants is given by

q2
1 = (1− y)(S̃45 − S̃12y), s12 = S̃45(1− y) + S̃23y , s23 = −y

(
S̃12 − S̃34 + S̃51

)
,

s34 = S̃51y , s45 = y
(
S̃23 − S̃45 − S̃51

)
, s15 = y

(
S̃34 − S̃12(1− y)

)
.
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hexabox - one leg off-shell: weight 2

By identifying f− = y and f+ = y S̃12

S̃45
, which in terms of (38) are given as

f± =
S45 + x (−S23 − S34 + 2S51 + S12x)± r2

2 (S12 − S34 + S51) x

we can write the DE for this element in the simple and compact form

d

dx
g

(2)
11 = −8

(
dlog

(
f+ − 1

f− − 1

)
log (f−f+)− dlog

(
f+

f−

)
log ((f− − 1) (f+ − 1))

)
.

The form of the DE makes the determination of the ansatz rather straightforward, with
the result

g
(2)
11 = −8

(
− log(f−f+)

(
G(1, f−)− G(1, f+)

)
+ 2G(0, 1, f−)− 2G(0, 1, f+)

)
.

Concerning the other non-rationalisable square root in the family N2, r5, it also appears
for the first time at weight 2 in the basis element 73 only (see the ancillary file), which is
one of the new integrals to be calculated.

g
(2)
73 = 16 log (f−f+)

(
G(1, f−)− G(1, f+)

)
− 32

(
G(0, 1, f−)− G(0, 1, f+)

)
with

f± =
S45 (2S12x − S34x + S51) + x (S23S34 − S12S23 + xS12S51)± r5

2S45 (S12 − S34 + S51)
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hexabox - one leg off-shell: boundary terms

The pure basis elements can be written in general as follows:

g = Ce2γE ε
∫

ddk1

iπd/2

ddk2

iπd/2

P
(
{Di} ,

{
Sij , x

})∏
i∈S̃

D
ai
i

(1)

where Di , i = 1...11, represent the inverse scalar propagators, S̃ the set of indices
corresponding to a given sector, Sij , x the kinematic invariants, P is a polynomial, ai are
positive integers and C a factor depending on Sij , x .

This form is usually decomposed in terms of FI, Fi ,

g = C
∑

ci
({

Sij , x
})

Fi

with ci being polynomials in Sij , x .
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hexabox - one leg off-shell: boundary terms

An alternative approach, would be to build-up the Feynman parameter representation for
the whole basis element, by considering the integral as a tensor integral in its Feynman
parameter representation.

J. Gluza, K. Kajda, T. Riemann and V. Yundin, Eur. Phys. J. C 71 (2011), 1516 [arXiv:1010.1667 [hep-ph]].

S. C. Borowka, [arXiv:1410.7939 [hep-ph]].

Then, by using the expansion by regions approach
B. Jantzen, A. V. Smirnov and V. A. Smirnov, Eur. Phys. J. C 72 (2012), 2139 [arXiv:1206.0546 [hep-ph]].

A. V. Smirnov, Comput. Phys. Commun. 204 (2016), 189-199 [arXiv:1511.03614 [hep-ph]].

b =
∑
I

NI

∫ ∏
i∈SI

dxi U
aI
I F

bi
I ΠI

where I runs over the set of contributing regions, UI and FI are the limits of the usual
Symanzik polynomials, ΠI is a polynomial in the Feynman parameters, xi , and the
kinematic invariants Sij , and SI the subset of surviving Feynman parameters in the limit.

In this way a significant reduction of the number of regions to be calculated is achieved,
namely from 208 to 9. Notice that in contrast to the approach described in the previous
paragraphs, only the regions x−2ε and x−4ε contribute to the final result, making thus the
evaluation of the region-integrals simpler.

Moreover, this approach overpasses the need for an IBP reduction of the basis elements in
terms of MI.
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hexabox - one leg off-shell: integral rep.

Weight 3:
The differential equation (1) can be written in the form:

∂xg
(3)
I =

∑
a

(
∂x log La

)∑
J

caIJg
(2)
J

Since the lower limit of integration corresponds to x = 0, we need to subtract the appropriate
term so that the integral is explicitly finite. This is achieved as follows:

∂xg
(3)
I =

∑
a

la

x

∑
J

caIJg
(2)
J,0 +

(∑
a

(
∂x log La

)∑
J

caIJg
(2)
J −

∑
a

la

x

∑
J

caIJg
(2)
J,0

)

where g
(2)
I ,0 are obtained by expanding g

(2)
I around x = 0 and keeping terms up to order

O
(

log(x)2
)
, and la ∈ Q are defined through

∂x log La =
la

x
+O

(
x0
)
.
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hexabox - one leg off-shell: integral rep.

The DE can now be integrated from x = 0 to x = x̄ , and the result is given by

g
(3)
I = g

(3)
I ,G + b

(3)
I +

∫ x̄

0
dx

(∑
a

(
∂x log La

)∑
J

caIJg
(2)
J −

∑
a

la

x

∑
J

caIJg
(2)
J,0

)

with b
(3)
I being the boundary terms at O(ε3) and

g
(3)
I ,G =

∫ x̄

0
dx
∑
a

la

x

∑
J

caLJg
(2)
J,0

∣∣∣∣∣
G

with the subscript G, indicating that the integral is represented in terms of GPLs (see ancillary
file), following the convention

x̄∫
0

dx
1

x
G

0, ...0︸ ︷︷ ︸
n

; x

 = G

0, ...0︸ ︷︷ ︸
n+1

; x̄

 .

C.G.Papadopoulos (INPP) Loops and Legs 2022 Ettal 30 / 39



hexabox - one leg off-shell: integral rep.

Weight 4:
At weight 4, the differential equation (1) can be written in the form:

∂xg
(4)
I =

∑
a

(
∂x log La

)∑
J

caIJg
(3)
J

which after doubly-subtracting, in order to obtain integrals that are explicitly finite as in (2), is
written as

∂xg
(4)
I =

∑
a

∂x (log La − LLa)
∑
J

caIJg
(3)
J +

∑
a

∂x (LLa)
∑
J

caIJ(g
(3)
J − g

(3)
J,0) +

∑
a

la

x

∑
J

caIJg
(3)
J,0

where LLa are obtained by expanding log(La) around x = 0 and keeping terms up to order
O
(

log(x)
)
, and

g
(3)
I ,0 = g

(3)
I ,G + b

(3)
I .
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hexabox - one leg off-shell: integral rep.

Now, by integrating by parts and using (2) we can write the final result as follows:

g
(4)
I =g

(4)
I ,G + b

(4)
I +

(∑
a

log La
∑
J

caIJg
(3)
J

)
−
(∑

a

LLa
∑
J

caIJg
(3)
J,0

)

−
∫ x̄

0
dx
∑
a

(log La − LLa)
∑
J

caIJ
∑
b

lb

x

∑
K

cbJKg
(2)
K ,0

−
∫ x̄

0
dx
∑
a

log La
∑
J

caIJ

(∑
b

(∂x log Lb)
∑
K

cbJKg
(2)
K −

∑
b

lb

x

∑
K

cbJKg
(2)
K ,0

)

with a, b running over the set of contributing letters, I , J,K running over the set of basis

elements, b
(4)
I being the boundary terms at O(ε4) and

g
(4)
I ,G =

∫ x̄

0
dx

(∑
a

la

x

∑
J

caIJg
(3)
J,0

)∣∣∣∣∣
G

where the subscript G indicates that the integral is represented in terms of GPLs (see ancillary

file).
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hexabox - one leg off-shell: performance

As a proof of concept, we have implemented the final formulae in Mathematica. We use
NIntegrate to perform the one-dimensional integrals, after expressing all weight-2 functions in
terms of classical polylogarithms following reference

H. Frellesvig, D. Tommasini and C. Wever, JHEP 03 (2016), 189 [arXiv:1601.02649 [hep-ph]].

The user can easily assess the performance of this straightforward implementation by
running the provided codes and look at the minimum number of digits in agreement with
the high-precision results from Abreu et. al, as well as at the number of integrand
evaluations performed by NIntegrate.

Notice that the integrand expressions involve logarithms and classical polylogarithms Li2
that are evaluated using very little CPU time.

The parts of the formulae that can be represented in terms of GPLs up to weight four, as
well as the results for the N1 family, for which we have all basis elements in terms of GPLs
up to weight four, are evaluated with GiNaC, as implemented in PolyLogTools.

J. Vollinga, Nucl. Instrum. Meth. A 559 (2006), 282-284 [arXiv:hep-ph/0510057 [hep-ph]].

C. Duhr and F. Dulat, JHEP 08 (2019), 135 [arXiv:1904.07279 [hep-th]].
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hexabox - one leg off-shell: performance

In the current implementation we use the default parameters for GiNaC and the default
parameters for NIntegrate with the exception of WorkingPrecision and PrecisionGoal,
in order to obtain reasonable results within reasonable time, taking into account that the
provided implementation serves merely as a demonstration of the correctness of our
representations.

For the Euclidean point the precision is typically of the order of 32 digits, which is
compatible with GiNaC setup.

For the physical point, the typical precision is of the order of 25 digits, which is
compatible with the expected one taking into account the numerical value of the
infinitesimal imaginary part assigned to the kinematical invariants.
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5-point 2-loop - one leg off-shell: Outlook

Non-planar families

We have completed the hexa-box families, N1, N2, N3.
Preliminary checks against AIMPTZ group results successful.
Next task: double-pentagon families, N4, N5.

SDE approach: all MI up to 4-point with up to 2 off shell legs and 5-point with up to one
off-shell leg.

Speed-up numerical evaluation

Improving GPLs analytic continuation.
Study letters ordering in physical regions, use different mappings and/or fibrations.
Combine analytics with numerics.

Massive internal particles.

HELAC2LOOP: generic approach to amplitude reduction and evaluation
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SDE@1-loop N. Syrrakos, “One-loop Feynman integrals for 2→ 3 scattering involving many scales

including internal masses,” JHEP 10 (2021), 041 [arXiv:2107.02106 [hep-ph]].

SDE@3-loop D. D. Canko and N. Syrrakos, “Planar three-loop master integrals for 2→ 2 processes with

one external massive particle,” [arXiv:2112.14275 [hep-ph]].
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Pentabox - one leg off-shell: P2-3

p123 − xp12

p4

xp1

−p1234

xp2

The two-loop diagram representing the decoupling basis element.

Basis element 46 for P2 (53 for P3) known from double box P23 family; starts at O(ε4). [decoupling]

q1 → P123 − yP12, q2 → yP1, q3 → P4, q4 → −P1234, q5 → yP2

q1 → p123 − xp12, q2 → p4, q3 → −p1234, q4 → xp1, q5 → xp2

q2
1 = (1− y)(S′45 − S′12y), s12 = S′45 − (S12 + S′23)y, s23 =

(
S′34 − S12(1− y)

)
y,

s34 = S′45, s45 = −(S′12 − S′34 + S′51)y, s15 = S′45 + S′23y

q2
1 = (1− x)(S45 − S12x), s12 = (S34 − S12(1− x)) x, s23 = S45, s34 = S51x,

s45 = S12x
2
, s15 = S45 + (S23 − S45)x
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Pentabox - one leg off-shell: P2-3

d~g =

[∑
b

d log (x − `b)Mb +
∑
c

d log (y − `c) M̄c + d log (W58 (x , y)) M̃58

]
~g

all letters Wa, except W58, are linear functions only of x or y .

M matrices have zeroes in the row and the column corresponding to the basis
element 46 for P2 (53 for P3).

M̄ matrices have non-zero matrix elements only in the row and the column
corresponding to the basis element 46 for P2 (53 for P3).

M̃ matrix have non-zero matrix elements only in the column corresponding to the
basis element 46 for P2 (53 for P3).

d~g ′

dx
=
∑
a

1

x − `a
Ma~g

′
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