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HARD SCATTERING - FIXED ORDER CALCULATIONS
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HARD SCATTERING - FIXED ORDER CALCULATIONS
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2 Qg 2 Qg 2 2
Magogel® = [MEL, |+ (52 ) IMBES [+ (52) TMINES] + ..

qq—9gg I qq4—9gg It Q93— 9gg

Calculations involve Feynman graphs with increasing numbers of loops and legs



MULTILOOP SCATTERING AMPLITUDES: the stanparo way

- - -

\, \ % L
— <> — = [ H dPk; Rk, ..., ki,pis-- -, Pg,m;)
— i=1

SN _—_ -

Standard steps:

1) Obtain the integrand (From Feynman diagrams, Unitarity, ...)
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MULTILOOP SCATTERING AMPLITUDES: the stanparo way

L
B [Hdei Riky, ... kp,pys- s ppm)

1
N
= Z Ri(xl, S ,Xr) ji(xl’ I ,Xn)
i=1

Standard steps:
1) Obtain the integrand (From Feynman diagrams, Unitarity, ...)
2) Reduce this integrand to a basis of master integrals (IBPs, Finite Fields etc...)

3) Compute the master integrals (Diff Equations, Canonical bases, polylogs etc...)



HOW TO GET THE INTEGRAND

First problem is “getting the integrand”:
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Problems:

» Number of diagrams grows factorially
(not a real problem though, at least for
reasonable processes in QCD...)



HOW TO GET THE INTEGRAND

= Z Feynman Diagrams — ?

Problems:

» Number of diagrams grows factorially
(not a real problem though, at least for
reasonable processes in QCD...)

> More serious problem(s): “tensor
decomposition” -> each diagram produces
thousands of terms!



TENSOR DECOMPOSITION

Y A Strip it of Lorentz and Dirac structures




TENSOR DECOMPOSITION

Y A Strip it of Lorentz and Dirac structures

l

N / dk 1 B
(2m)4 k2(k — p2)2(k — pa — p3)2(k — p1 — p2 — p3)?

Scalar Feynman Integrals are
what we know how to compute

Can be achieved in different ways
It can become a real hassle at high loops and multiplicities

A widely used successful method is projector / form factor method



THE PROJECTOR-FORM FACTOR METHOD

The idea is very simple:

1. Use Lorentz invariance, gauge invariance (& any symmetries) to parametrise
the scattering amplitude in terms of tensor structures and scalar form factors

2. Define projector operators to extract these form factors from the corresponding
Feynman diagrams
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Lorentz
Invariance
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THE PROJECTOR-FORM FACTOR METHOD

The idea is very simple:

1. Use Lorentz invariance, gauge invariance (& any symmetries) to parametrise
the scattering amplitude in terms of tensor structures and scalar form factors

2. Define projector operators to extract these form factors from the corresponding
Feynman diagrams

Lorentz
Invariance

MV = ) FTY = (Fi(p,m?) ptp* + Fy(p,m?) g™)

H v =1

g PPN ) 2 .
= | 8" — 2 (p,m~) Gauge Invariance



THE PROJECTOR-FORM FACTOR METHOD
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THE PROJECTOR-FORM FACTOR METHOD
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p.p
To extract F(p, m?) I define a projector operator P, = C(d, p, m?) <8ﬂy — sz)
P

I can then determine the coefficient C(d, p, m?) by imposing PWH/’”’ = F(p,m?)

| p.p
We find P =—<gﬂy— MV)

od—-1



THE PROJECTOR-FORM FACTOR METHOD
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p.p
To extract F(p, m?) 1 define a projector operator PW = C(d, p, m?) <8ﬂy — M;)
P

I can then determine the coefficient C(d, p, m?) by imposing PWH”” = F(p,m?)

| PuPy
Wefind P, =——18,— p

All algebra has to be performed in d space-time dimensions to be able to use the
method in CDR (Conventional Dimensional Regularisation)



THE PROJECTOR-FORM FACTOR METHOD

Works in general, no restrictions of any kinds in principle:

1. Pick your favourite process

2. Use Lorentz + gauge + any symmetry (parity, Bose etc...) to find minimal set of
tensor structures in d space-time dimensions: of = Z F] ]}

3. Derive projectors operators to single out corresponding form factors: @jﬂ = F]

Mij = Z TZTTI ‘@j = Z <M_1)jk le
k

pol

4. Apply these projectors on your favourite representation for the scattering amplitude



PROBLEMS WITH PROJECTORS

Seems neat. Where are the issues?

Let’s have a look at a more interesting example: massless quark scattering qG — QQ

Studied up to 2 loops first by N. Glover in hep-ph/0401119

0 = q(p1, A1) + @(p2, A2) + Q(p3, A3) + Q(pa, A1)


http://arxiv.org/abs/hep-ph/0401119

PROBLEMS WITH PROJECTORS

Seems neat. Where are the issues?

Let’s have a look at a more interesting example: massless quark scattering qG — QQ

Studied up to 2 loops first by N. Glover in hep-ph/0401119

0 = q(p1, A1) + @(p2, A2) + Q(p3, A3) + Q(pa, A1)

What is the most general d-dimensional tensor structure?

T ~ ﬁ(pl)r'“l """ Hn u(pz) L_t(p3)rﬂ1 ", M(P4) When do I stop?
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PROBLEMS WITH PROJECTORS

Seems neat. Where are the issues?

Let’s have a look at a more interesting example: massless quark scattering qG — QQ

Studied up to 2 loops first by N. Glover in hep-ph/0401119

0 = q(p1, A1) + @(p2, A2) + Q(p3, A3) + Q(pa, A1)

What is the most general d-dimensional tensor structure?

Problem: y-algebra is not closed in d-dimensions

At arbitrary loops, arbitrary fermion lines with arbitrary numbers of matrices...



PROBLEMS WITH PROJECTORS
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PROBLEMS WITH PROJECTORS

>
|
=g

(P1) Y1 w(p2) U(p3)yu, u(pa),

(p1)Psu(p2) u(ps)pru(ps),

(P1) Vi1 Yo Vs W(P2) U(P3)Vpar Vo Vs w(P)
(P1)7 D3V w(P2) U(P3) Yy P17 u(P4),
(p1)

(

CICIER
1 | | .
S S S S

P1)YVp1 Yo Vs Vpa Vs W (p2) ﬂ(p3)7u17#27%7#47#5“@4)7
» D - . QD

Easy to see that at 2 loops we cannot have more than 5 y matrices per fermion string

S
|
=g

But at 3 loops I would need also strings with 7 y, etc etc...



PROBLEMS WITH PROJECTORS

Define the matrix M.. = DT D. its inverse provides us with the projectors
l_] 1 J p p J
pol



PROBLEMS WITH PROJECTORS

Define the matrix M; = Z Df D, its inverse provides us with the projectors
pol

1
P(AQ) = X (

32513553512(d — 5)(d — 7)(d — 3)(d — 4)

— 513(35533d° — 55513593d° + 1046513593d* — 18725%5d + 2432575 — 45455,d*
—6040513593d — 2688525 + 3685%5d% + 1928535d — 20575d° + 11136513593) D1

+ 2813(—28%3d2 — 9813823d2 + 142s13893d — 448513593 + 7833d2 + 1368%3 — 488%3
+28525d — 62525d) DA

+ (—3405%,d3 + 1100852, — 740513593d°> + 44032513593 — 260533d> — 414453,d + 371253,
+15575d* + 28525%5d* — 28864513523d + 1604555d* + 6944513593d* — 9968575d
—|—30813823d4 + 158%3d4)pg

— 813823(12813 + 823d — 4823 — Slgd)’D;

+ (—6s53d 4 24575 + 2513593d” — 40513593d — 145%3d + s33d* + 8535 + s35d° + 192313323)292j

— 2(55%,d> + 5535d° + 10513503d> — 240513503d> — 1005%3d% — 56533d> + 580s%5d

+18325s135923d + 1968%3d — 2088%3 — 8008%3 — 4224813823)@1) :

with growth of number of tensors, the inversion can become extremely expensive!



PROBLEMS WITH PROJECTORS

Define the matrix M; = Z D; D, its inverse provides us with the projectors
pol

1
PU) = o s T
— 513(35533d° — 55513593d° + 1046513593d* — 18725%5d + 2432575 — 454555d*
—6040s13523d — 2688555 + 368575d> 7000 7100 2 T manas o
+ 2813(—28%3d2 — 9813823d2 + 1425
+28525d — 62525d) D

+ (—340s%,d° + 1100859, — 7405135 They arise because the tensors we have 71253,
+1552,d" + 285252, d2 — 2886451 chosen are actually NOT independent in

Artificial polesind — 4

d=4
—|—30813823d4 + 158%3d4)pg
— 513523(12513 + s93d — 45923 — s13d Matrix not invertible in d=4
+ (—6535d + 24575 + 2513893d° — 40. .513523) D}

— 2(55%,d> + 5535d° + 10513503d> — 240513503d> — 1005%3d* — 56553d° + 5805%5d

+18325s135923d + 1968%3d — 2088%3 — 8008%3 — 4224813823)7)1) :



PROBLEMS WITH PROJECTORS

If we want to push this to 3 loops for g5 — QQ, it becomes more cumbersome...

more structures
more complicated projectors

to be applied on much more complex Feynman diagrams

Can we do something about it?

See also alternative or complementary approaches by [Chen ’19], [Davies et al ’20]; [Abreu et al ’18]



HELICITY AMPLITUDES AND PHYSICAL PROJECTORS

Ultimately, we are interested in helicity amplitudes, in d=4 in ’t Hooft-Veltman scheme

Fix helicities, assuming that external states are in d = 4 dimensions.

n n m<n
A=Y FT, —5 d0p....00 =Y FT,.... )= ) FS,.... )
i=1 i=1 =1

All “internal” indices are in d dimensions



HELICITY AMPLITUDES AND PHYSICAL PROJECTORS

Ultimately, we are interested in helicity amplitudes, in d=4 in ’t Hooft-Veltman scheme

Fix helicities, assuming that external states are in d = 4 dimensions.

m<n

A=Y FT, —5 d0p....00 =) FT,.... ) = ) FS,.... )
=1 =1 '

All “internal” indices are in d dimensions

Combinations of

original form
factors Helicity amplitudes, spinor

products, momentum
twistors...

If we do things right, we’d expect that in 't Hooft-Veltman scheme there cannot be more

independent form factors than independent helicity amplitudes

For massless gg — QQ there are 4 helicities, reduced to 2 by parity invariance...



HELICITY AMPLITUDES AND PHYSICAL PROJECTORS
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To get to minimal complexity, notice that:

Dy = u(p1)yu u(p2) w(ps)yu upa),

Dy = u(p1)psu(pz) w(ps)pru(pa),

D3 = u(p1)Yur Yo Yus W(P2) WP3) Vi1 Yz Yz w(P4),

Dy = u(p1)Yu P3Vusu(P2) U(P3) Yy P1Vusu(P4),

D5 = a(p1)Vpua Vo Yirs Ya Vs W(P2) WD3) Vi Vs Vi Yira Vs (P4),
De = w(p1)Vp V2 P3Vpua Vs W(D2) WD3) V1 Vo P1Vpta Vs (P4)-



HELICITY AMPLITUDES AND PHYSICAL PROJECTORS

To get to minimal complexity, notice that:

D3 = u(p1)Vu Yo Vs W(D2) (D3) Yy Yo Vs w(Pa)

Dy = a(p1) Vs P3Vusw(P2) WD3) Vs P1 Vs w(P4),

D5 = u(p1)u Yo Yus Yna Vs W(D2) W(D3)Vpr Visa Vs Visa Vs U(P4),
De = u(P1) V1 Vo D3V Vs W(D2) WD3) V1 Vo D1V Yoz w(P41).




HELICITY AMPLITUDES AND PHYSICAL PROJECTORS
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Let then pick first 2: I;=D;, j=12 ]Wz-QJ-X2 = T;Tj ;
| S19 + 2893
puan—1 1 | B 1 $23(S12 + $23)
(M )z'j — d_ng with X.. =

Yy 4 s 122 S12 + 2853 (d — 2)s3y + 45y3(515 + 553)

$73(812 + $23) $33(812 + 523)?

the matrix is smoothind — 4



HELICITY AMPLITUDES AND PHYSICAL PROJECTORS
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Let then pick first 2 T,=D;, j=12 M?2X2 TTTJ :
| S19 + 2893
2%2\—1 1 , _ 1 $23(812 + $23)
(M )z'j = BXZJ with X =

Yy 4 s 122 S12 + 2853 (d — 2)s3y + 45y3(515 + 553)

$73(812 + $23) $33(812 + 523)?

the matrix is smoothind — 4

Define the 2 projectors

D, — i(M(Qw)) —1 —T

g=1



HELICITY AMPLITUDES AND PHYSICAL PROJECTORS
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Let then pick first 2: I;=D;, j=12 ]\41-23-><2 = T;Tj ;
| S19 + 2893
oxon—1 1 | B 1 $23(S12 + 523)
(M )z'j — d_ng with X.. =

Yy 4 s 122 S12 + 2853 (d — 2)s3y + 45y3(515 + 553)

$73(812 + $23) $33(812 + 523)?

the matrix is smooth ind — 4
2
— (2x2) g d th .
pz. — E (M ) T and the remaining tensors as

2
Tz' :Tz _Z(F]TZ) Tj, for i:3,4,5,6,...



HELICITY AMPLITUDES AND PHYSICAL PROJECTORS
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Let then pick first 2:  T;=D;, j=1,2 ]\427><2 = T,L-TTj :
S19 + 2893
1 1 I $-3(S17 + 593)
1 23812 T 523
J d— 3 4 S122 S1p + 283 (d — 2)s15 + 4555(510 + $23)

$73(812 + $23) $33(812 + 523)?

the matrix is smooth ind — 4
2
— (2x2) g d th .
pz. — E (M ) T and the remaining tensors as

2
Tz' :Tz —Z(?JTZ) Tj, for i:3,4,5,6,...

We are effectively block-diagonalising the matrix!




HELICITY AMPLITUDES AND PHYSICAL PROJECTORS

The remaining tensors

2
Tz’ =1; — Z (FJTZ) Tj , for ¢ = 3, 4, 5, 6, are such that
j=1
7_}-(/11 ..... Ap) =0, j=34)5,6,... Exactly in d in tHV!



HELICITY AMPLITUDES AND PHYSICAL PROJECTORS
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The remaining tensors

T’i:Ti_

J

(?jTZ-) Tj , for 1=23,4,5,0,... are such that

2
=1

T-(/ll ..... Ap) =0, j=34)5,6,... Exactly in d in tHV!

New tensors are smooth linear combinations of the old ones:

, 1255, _ 24 _
512 512



HELICITY AMPLITUDES AND PHYSICAL PROJECTORS

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

The remaining tensors

T’i:Ti_

J

(?jTZ-) Tj , for 1=23,4,5,0,... are such that

2
=1

T-(/ll ..... Ap) =0, j=34)5,6,... Exactly in d in tHV!

New tensors are smooth linear combinations of the old ones:

, 1255, _ 24 _

512 512 - \
N —— 0 0
And the new 6x6 inverse matrix becomes block-diagonal (MU) =| 0 R
: i
\ 0 )

R;; contains the complexity that we saw before, but actually NEVER need to even compute it!



HELICITY AMPLITUDES AND PHYSICAL PROJECTORS
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The provide us with natural basis to derive helicity amplitudes!

2 T = u(p2) Yo w(p1) X w(pa) v u(ps)
=Y F T,
1=1

Ty = u(p2) p, u(p1) x u(pa) P, u(ps)

By construction, helicity amplitudes only receive contributions from two form factors!

193—QQ __ @ qq—>QQ <14>
A Ty A Ty

Hi =2tF —tuFs, Ho =2uF + tuFs.

And the projectors that we need to apply on the Feynman diagrams are much simpler!



HELICITY AMPLITUDES AND PHYSICAL PROJECTORS

The remaining tensors and form factors can be thrown away, except to get CDR results:

2 N
Y MO*MH =N c FEF + e ) c(e)F<F,

pol i,j=1 i,j=3

/

Evanescent tensors show up suppressed in € even in CDR.

If interested in tHV, we can ignore them

IMPORTANT: they are instead EXACTLY ZERO in ’t Hooft-Veltman!



PARTONIC CHANNEL g2 — gg: asusren

22 — gg: most Complicated channel [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi, ’21]

8 helicity amplitudes ~ 8 form factors for each color ordered amplitude

In fact: in CDR, 10 Form factors (using Gauge Invariance), reduced to 8 in tHV
10 8
AZE:ETZ- — A:E Fil;

11 =€ -p3€x-prL€3-P1E4- P2,
T2:€1'p3€2']91€3'€4, T3:€1'p3€3']91€2'€4, T4:€1'p3€4']92€2'€37
T5=€2'P1€3']91€1°€4, T6:€2'p1€4'p2€1'€37 T7=€3'P1€4'p2€1°€2,

T8:€1’€2€3'€47 T9=€1°€4€2'€3, T1o:€1'€3€2'€4-



PARTONIC CHANNEL g2 — gg: asusren

22 — gg: most Complicated channel [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi, ’21]

8 helicity amplitudes ~ 8 form factors for each color ordered amplitude

In fact: in CDR, 10 Form factors (using Gauge Invariance), reduced to 8 in tHV
10 8
AZE:ETZ- — A:E Fil;

11 =€ -p3€a-pr€3-P1€g- P2,
T2:€1'p3€2']91€3'€4, T3:€1'p3€3']91€2'€4, T4:€1'p3€4'292€2'€37
T5=€2'P1€3']?1€1°€4, T6:€2'p1€4‘p2€1'€37 T7:€3'P1€4'p2€1°€2,

Is =¢€1-€x€3-€4, Tg=¢€1-€s1€x-€3, Ti9g=¢€1"€3€2"¢€4.

Question: which one do I remove of the last three — gh*g?°, gHP g ghCg"’ — ?



PARTONIC CHANNEL g2 — gg: asusren

0000000000000000000000000000000000000000000000000000000000000000000

To understand the answer, it is convenient to introduce the extra vector ¢*

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

UV po
I e’ P1vP2pP30

such that p,, p,, p3, v span the full four-dimensional space and g"* can be dropped!

11 =€) -p3€x-pre€z-préyg-Ppa,
T2:€1'p3€2'p1€3°v¢€4'v¢, T?,:
T4:€1'p3€4'p2€2'?1¢63'v¢, T5=
T6:€2'p1€4'p2€1'v¢€3'?u7 T?-
T8:€1’UL62‘UJ_€3’UL€4°UL

€1 P3€3-P1€2-V] €4V ,
€ P1€3-P1€1 V] €4V ,

€3 - P1€4 P2€1 V] €2V ,

Natural basis, entirely confined in d=4 dimensions! To get rid of v notice now:

H,U oMV Hi,V1,P,0 U, pP0 Vo ol

vivi ~ g —_ VIVIVIVT ~ gh¥gl? + ghPgh® + oo gtP
17 = €1 -p3ea-preg-preg-pa,
Io =€ -p3ea-pre3-€q, A3=¢€1-p3€z-prea-€q, Ty=¢€1-p3€g-paéa-eg,
Is =€y -pres-prer-€a, Tg=¢€y-pres-par€r-€3, 17 =€3-p1€s-pacy-ea,

" €4 €2 €3 4+ €1 " €3€2 " €y



SCATTERING WITH N > 4 EXTERNAL LEGS

For N > 4 the method becomes even simpler, because momenta provide complete
set of 4 vectors in d=4 dimensions!

Take the prototypical case of 5-gluon scattering:

g(py) + g(py) + g(p3) + g(py) + g(ps) = 0



SCATTERING WITH N > 4 EXTERNAL LEGS

For N > 4 the method becomes even simpler, because momenta provide complete
set of 4 vectors in d=4 dimensions!

Take the prototypical case of 5-gluon scattering:

g(py) + g(py) + g(p3) + g(py) + g(ps) = 0

Standard d-dimensional approach:
1. Rank-5 tensor out of g#*, pl.” , 1 =1,...,4 contains 1724 tensor structures!
2. Imposing gauge invariance reduced to 142 independent structures

3. Projectors can (painfully!) be obtained inverting 142x142 matrix — ~ 1GB of text file!




SCATTERING WITH N > 4 EXTERNAL LEGS
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g(py) + g(py) + g(p3) + g(py) + g(ps) — O

Typical tensors will be like: THIF2K3Hs = pl.” lpjﬂzp,f 317;4 4]?5 ’

Ui M3 bals — 1M1 19 H2 913 o Ha M
T12345_pz’pj pkg45

Uik Hsfals — M1 oMo M3 o Halls
I p;'8"g



SCATTERING WITH N > 4 EXTERNAL LEGS
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g(py) + g(py) + g(p3) + g(py) + g(ps) — O

Typical tensors will be like: THi#aHs s = Pl-” 1PJH2P,/: 3plﬂ ) 5{4 :

Ui M3 bals — 1M1 19 H2 913 o Ha M
T12345_pz’pj pkg45

HiHoH3HaHs — 1M1 g HoH3 o Hals
I p;'8"sg

But since p#, ..., p" are complete set in d=4, ¢2"* is not linear independent!
pl,....p) P 8 p

I don’t even need the construction that I have made for 4-point, I can drop all of them!



SCATTERING WITH N > 4 EXTERNAL LEGS

g(py) + g(py) + g(p3) + g(py) + g(ps) — O

Typical tensors will be like: THiHatsralts = pl.” lpj/’tzp,f 3]91” ) f i

pys...,p, ~ left with 2° = 32 tensors = # helicity amplitudes

Projectors ~ 500 Kb versus ~1Gb

Problem can be simplified further using symmetries/special combinations of these tensors!

Method used successfully for various 3 loop 2 — 2 calculations in QCD and for first full
color calculation of a 2 — 3 scattering process qGg — yyg arXiv:2105.04585

(See G. Gambuti’s and A. von Manteuffel’s talks)



CONCLUSIONS

» Tensor decomposition is a standard step towards calculation of multiloop

scattering amplitudes

» Standard approach in CDR can be substantially simplified if one is interested

in helicity amplitudes in tHV

» Decomposition proposed is 1-to-1 with # of helicity amplitudes, no spurious /

evanescent structures are ever computed

» Particularly eftective in the presence of multiple fermion lines or for N > 4

external legs

» Can be easily extended for different theories (masses, parity violating, etc)



THANK YOU FOR YOUR ATTENTION



BACK UP



PARTONIC CHANNEL gg — gg
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22 — gg: most Complicated channel [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi, ’21]

8 helicity amplitudes ~ 8 form factors for each color ordered amplitude

6 8
41024394 — Arag ZAM&; —p I = 2 F 1
i—1 =1

Cy = Te[TT2T3T] + T[T T“T*T*?]  etc...

Helicity amplitudes A, =s5,H, where A={++++,—+++,+—++,erc}
(12)(34) (12)(14)[24

Sttt = 12][34] S—ptt = (30 (23) (24) For example:
(21)(24)[14] (32)(34)[24

T T sy ) T T a4y (21 (24)
(42)(14)[12] (12)[34] _o(Ts _F3  Fe 97'1>

TR T3y @s)(12) T T [121(34) —> =t < su 25 2u 4
(13)[24] (14)[23]

T T 13](24) THF T [14](23)




PARTONIC CHANNEL g5 — g¢

qq — £&: 4 helicity amplitudes ~ 4 form factors for each color ordered amplitude
[Caola, Chakraborty, Gambuti, Manteuffel, Tancredi, To appear]

q(p)) + G(py) = g(ps3) +g(py), with p,-2 =0

To compute helicity amplitudes in standard way, start from generic tensor decomposition
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PARTONIC CHANNEL g — g¢
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qq — £g: 4 helicity amplitudes ~ 4 form factors for each color ordered amplitude

[Caola, Chakraborty, Gambuti, Manteuffel, Tancredi, To appear]

q(p) + q(py) = g(p;3) + g(psy) with pl-2 =0

To compute helicity amplitudes in standard way, start from generic tensor decomposition

5
As,1)= Y, F (50T, T, = alps) T4 u(py)es s
=1

Not linearly independent in d=4




PARTONIC CHANNEL g — g¢
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Helicity amplitudes in tHV can be computed by fixing helicities on the tensors in d=4

5
A S, 1) = Z F (s, )|T:
)“q/13)“4( ’ ) l( ’ )[ l] /Iq/13/14,d=4
i=1
One of five tensors is not We can identify one
independent in d=4 evanescent tensor structure

l

. u u 2
llm <T5 — _Tl + _T2 — _T3 + T4> — 0
d—4 \) S \)



PARTONIC CHANNEL g — g¢
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q Asdyd=4
i=1 ! i=1 7R
Fifth tensor required to recover CDR result starting at O(e)
—(m)* 2 42, .2
2 — )t —(n —(m)* —(m)* —(m)* 2F — — 17 4+
YA A (s 1) ]:i){—s]-"g I Ay = (A (s u’e)
U (s —1t)
28t —(n) T —(m)x* —(m)* —(m)x* —(m)* i
+ 2 F 22— DR = s B 4 stF - F (s - 0
28t —(n) T —(m)* —(m)x* —(m)x* —(m)* i
—|—%F;) —sﬂ ) —23(6—1)./7; ) —St]-"é ) ‘|‘~7'_z(1 ) (s —1)
2t2—n —(m)* —(m)* —(m)* —(m)*
—I—STF:(;)[S]:g ) —SF; ) —|—St./_":(3 ) —}"4(1 ) (s—t)}

==(m)*==(n)

+ dtue(2e — 1) Fs ~ Fg ',




