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HARD SCATTERING - FIXED ORDER CALCULATIONS
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Calculations involve Feynman graphs with increasing numbers of loops and legs

HARD SCATTERING - FIXED ORDER CALCULATIONS



MULTILOOP SCATTERING AMPLITUDES: THE STANDARD WAY

One way to go about it: standard approach (divide et impera)
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Standard steps:


1) Obtain the integrand (From Feynman diagrams, Unitarity, …)


2) Reduce this integrand to a basis of master integrals (IBPs, Finite Fields etc…)


3) Compute the master integrals (Diff Equations, Canonical bases, polylogs etc…)
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First problem is “getting the integrand”: 

HOW TO GET THE INTEGRAND

 ?= ∑ Feynman Diagrams →

Problems:

➤ Number of diagrams grows factorially 
(not a real problem though, at least for 
reasonable processes in QCD…)


➤ More serious problem: “tensor 
decomposition”
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reasonable processes in QCD…)


➤ More serious problem(s): “tensor 
decomposition” -> each diagram produces 
thousands of terms!

First problem is “getting the integrand”: 
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Strip it of Lorentz and Dirac structures  

Scalar Feynman Integrals are 
what we know how to compute

=

Can be achieved in different ways


It can become a real hassle at high loops and multiplicities 


A widely used successful method is projector / form factor method



THE PROJECTOR-FORM FACTOR METHOD

The idea is very simple: 


1. Use Lorentz invariance, gauge invariance (& any symmetries) to parametrise 
the scattering amplitude in terms of tensor structures and scalar form factors


2. Define projector operators to extract these form factors from the corresponding 
Feynman diagrams



THE PROJECTOR-FORM FACTOR METHOD

The idea is very simple: 


1. Use Lorentz invariance, gauge invariance (& any symmetries) to parametrise 
the scattering amplitude in terms of tensor structures and scalar form factors


2. Define projector operators to extract these form factors from the corresponding 
Feynman diagrams

μ ν



THE PROJECTOR-FORM FACTOR METHOD

=
n

∑
i=1

Fi Tμν
i = (F1(p, m2) pμpν + F2(p, m2) gμν) Lorentz 

Invarianceμ ν

The idea is very simple: 


1. Use Lorentz invariance, gauge invariance (& any symmetries) to parametrise 
the scattering amplitude in terms of tensor structures and scalar form factors


2. Define projector operators to extract these form factors from the corresponding 
Feynman diagrams



THE PROJECTOR-FORM FACTOR METHOD

=
n

∑
i=1

Fi Tμν
i = (F1(p, m2) pμpν + F2(p, m2) gμν)

= (gμν −
pμpν

p2 ) F(p, m2) Gauge Invariance

Lorentz 
Invarianceμ ν

The idea is very simple: 


1. Use Lorentz invariance, gauge invariance (& any symmetries) to parametrise 
the scattering amplitude in terms of tensor structures and scalar form factors


2. Define projector operators to extract these form factors from the corresponding 
Feynman diagrams



THE PROJECTOR-FORM FACTOR METHOD

= (gμν −
pμpν

p2 ) F(p, m2) = Πμν

μ ν
Non perturbative



THE PROJECTOR-FORM FACTOR METHOD

= (gμν −
pμpν

p2 ) F(p, m2) = Πμν

To extract  I define a projector operator F(p, m2) Pμν = C(d, p, m2)(gμν −
pμpν

p2 )
I can then determine the coefficient  by imposing  C(d, p, m2) PμνΠμν = F(p, m2)

We find Pμν =
1

d − 1 (gμν −
pμpν

p2 )

μ ν
Non perturbative



THE PROJECTOR-FORM FACTOR METHOD

= (gμν −
pμpν

p2 ) F(p, m2) = Πμν

To extract  I define a projector operator F(p, m2) Pμν = C(d, p, m2)(gμν −
pμpν

p2 )
I can then determine the coefficient  by imposing  C(d, p, m2) PμνΠμν = F(p, m2)

We find Pμν =
1

d − 1 (gμν −
pμpν

p2 )

All algebra has to be performed in d space-time dimensions to be able to use the 
method in CDR (Conventional Dimensional Regularisation)

μ ν
Non perturbative



1. Pick your favourite process


2. Use Lorentz + gauge + any symmetry (parity, Bose etc…) to find minimal set of 
tensor structures in d space-time dimensions:


3. Derive projectors operators to single out corresponding form factors:


4. Apply these projectors on your favourite representation for the scattering amplitude

THE PROJECTOR-FORM FACTOR METHOD

Works in general, no restrictions of any kinds in principle:

Mij = ∑
pol

T†
i Tj

𝒫j𝒜 = Fj

𝒜 = ∑
j

Fj Tj

𝒫j = ∑
k

(M−1)jk
T†

k



PROBLEMS WITH PROJECTORS2. Notation

The processes that we wish to consider in detail are,

0 → qq̄QQ̄, (2.1)

0 → qq̄qq̄. (2.2)

Because the identical quark amplitudes are obtained from the non-identical quark amplitudes by the

exchange of the quark or antiquark momenta, we focus on the scattering of distinct quarks,

0 → q(p1,λ1) + q̄(p2,λ2) +Q(p3,λ3) + Q̄(p4,λ4), (2.3)

where the quarks q and Q are taken to be massless with momenta satisfying,

0 → pµ1 + pµ2 + pµ3 + pµ4 , p2i = 0. (2.4)

Physical processes are obtained by crossing particles into the initial state. The associated Mandelstam

variables are given by

s12 = (p1 + p2)
2, s23 = (p2 + p3)

2, s13 = (p1 + p3)
2, s12 + s23 + s13 = 0. (2.5)

We work in conventional dimensional regularisation and renormalise the ultraviolet divergences in

the MS scheme. The bare coupling α0 is related to the running coupling αs ≡ αs(µ2) at renormalisation

scale µ, by

α0µ
2ε
0 Sε = αs µ

2ε

[
1−

β0
ε

(αs

2π

)
+

(
β20
ε2

−
β1
2ε

) (αs

2π

)2
+O

(
α3
s

)]
, (2.6)

where

Sε = (4π)εe−εγ , γ = 0.5772 . . . = Euler constant (2.7)

is the typical phase-space volume factor in d = 4 − 2ε dimensions and µ2
0 is the mass parameter

introduced in dimensional regularisation [45, 46, 43, 44] to maintain a dimensionless coupling in the

bare QCD Lagrangian density.

The first two coefficients of the QCD beta function, β0 and β1, for NF (massless) quark flavours,

are

β0 =
11CA − 4TRNF

6
, β1 =

17C2
A − 10CATRNF − 6CFTRNF

6
, (2.8)

where N is the number of colours and

CF =
N2 − 1

2N
, CA = N, TR =

1

2
. (2.9)

2.1 The general tensor

The most general tensor structure for the amplitude, |M〉, for the scattering of distinct massless quarks

at up to two loops can be written as

|M〉 =
6∑

I=1

AI(s12, s23) DI + . . . (2.10)

– 3 –

Let’s have a look at a more interesting example: massless quark scattering


Studied up to 2 loops first by N. Glover in hep-ph/0401119 

qq̄ → QQ̄

Seems neat. Where are the issues?


http://arxiv.org/abs/hep-ph/0401119


PROBLEMS WITH PROJECTORS

T ∼ ū(p1)Γμ1,...,μn u(p2) ū(p3)Γμ1,...,μn
u(p4) When do I stop?

Seems neat. Where are the issues?


What is the most general d-dimensional tensor structure?

Let’s have a look at a more interesting example: massless quark scattering


Studied up to 2 loops first by N. Glover in hep-ph/0401119 

qq̄ → QQ̄
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+
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β20
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−
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2π
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+O

(
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s
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where

Sε = (4π)εe−εγ , γ = 0.5772 . . . = Euler constant (2.7)

is the typical phase-space volume factor in d = 4 − 2ε dimensions and µ2
0 is the mass parameter

introduced in dimensional regularisation [45, 46, 43, 44] to maintain a dimensionless coupling in the

bare QCD Lagrangian density.

The first two coefficients of the QCD beta function, β0 and β1, for NF (massless) quark flavours,

are

β0 =
11CA − 4TRNF

6
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A − 10CATRNF − 6CFTRNF

6
, (2.8)

where N is the number of colours and
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1

2
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2.1 The general tensor

The most general tensor structure for the amplitude, |M〉, for the scattering of distinct massless quarks

at up to two loops can be written as

|M〉 =
6∑

I=1

AI(s12, s23) DI + . . . (2.10)

– 3 –



Let’s have a look at a more interesting example: massless quark scattering


Studied up to 2 loops first by N. Glover in hep-ph/0401119 

Problem: -algebra is not closed in d-dimensions 


At arbitrary loops, arbitrary fermion lines with arbitrary numbers of  matrices…

γ

PROBLEMS WITH PROJECTORS

qq̄ → QQ̄

Seems neat. Where are the issues?


What is the most general d-dimensional tensor structure?

2. Notation
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0 → qq̄QQ̄, (2.1)

0 → qq̄qq̄. (2.2)

Because the identical quark amplitudes are obtained from the non-identical quark amplitudes by the

exchange of the quark or antiquark momenta, we focus on the scattering of distinct quarks,

0 → q(p1,λ1) + q̄(p2,λ2) +Q(p3,λ3) + Q̄(p4,λ4), (2.3)

where the quarks q and Q are taken to be massless with momenta satisfying,

0 → pµ1 + pµ2 + pµ3 + pµ4 , p2i = 0. (2.4)

Physical processes are obtained by crossing particles into the initial state. The associated Mandelstam

variables are given by

s12 = (p1 + p2)
2, s23 = (p2 + p3)

2, s13 = (p1 + p3)
2, s12 + s23 + s13 = 0. (2.5)

We work in conventional dimensional regularisation and renormalise the ultraviolet divergences in

the MS scheme. The bare coupling α0 is related to the running coupling αs ≡ αs(µ2) at renormalisation

scale µ, by
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0 is the mass parameter

introduced in dimensional regularisation [45, 46, 43, 44] to maintain a dimensionless coupling in the

bare QCD Lagrangian density.

The first two coefficients of the QCD beta function, β0 and β1, for NF (massless) quark flavours,

are

β0 =
11CA − 4TRNF

6
, β1 =

17C2
A − 10CATRNF − 6CFTRNF

6
, (2.8)

where N is the number of colours and

CF =
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2. Notation

The processes that we wish to consider in detail are,

0 → qq̄QQ̄, (2.1)

0 → qq̄qq̄. (2.2)

Because the identical quark amplitudes are obtained from the non-identical quark amplitudes by the

exchange of the quark or antiquark momenta, we focus on the scattering of distinct quarks,

0 → q(p1,λ1) + q̄(p2,λ2) +Q(p3,λ3) + Q̄(p4,λ4), (2.3)

where the quarks q and Q are taken to be massless with momenta satisfying,

0 → pµ1 + pµ2 + pµ3 + pµ4 , p2i = 0. (2.4)

Physical processes are obtained by crossing particles into the initial state. The associated Mandelstam

variables are given by

s12 = (p1 + p2)
2, s23 = (p2 + p3)

2, s13 = (p1 + p3)
2, s12 + s23 + s13 = 0. (2.5)

We work in conventional dimensional regularisation and renormalise the ultraviolet divergences in

the MS scheme. The bare coupling α0 is related to the running coupling αs ≡ αs(µ2) at renormalisation

scale µ, by
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1−

β0
ε

(αs

2π

)
+
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β20
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−
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(
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, (2.6)

where

Sε = (4π)εe−εγ , γ = 0.5772 . . . = Euler constant (2.7)

is the typical phase-space volume factor in d = 4 − 2ε dimensions and µ2
0 is the mass parameter

introduced in dimensional regularisation [45, 46, 43, 44] to maintain a dimensionless coupling in the

bare QCD Lagrangian density.

The first two coefficients of the QCD beta function, β0 and β1, for NF (massless) quark flavours,

are

β0 =
11CA − 4TRNF

6
, β1 =

17C2
A − 10CATRNF − 6CFTRNF

6
, (2.8)

where N is the number of colours and

CF =
N2 − 1

2N
, CA = N, TR =

1

2
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2.1 The general tensor

The most general tensor structure for the amplitude, |M〉, for the scattering of distinct massless quarks

at up to two loops can be written as

|M〉 =
6∑

I=1

AI(s12, s23) DI + . . . (2.10)

– 3 –

Let’s follow standard approach @ 2 loops: 𝒜(2l)
qqQQ =

6

∑
j=1

Aj Dj
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2. Notation

The processes that we wish to consider in detail are,

0 → qq̄QQ̄, (2.1)

0 → qq̄qq̄. (2.2)

Because the identical quark amplitudes are obtained from the non-identical quark amplitudes by the

exchange of the quark or antiquark momenta, we focus on the scattering of distinct quarks,

0 → q(p1,λ1) + q̄(p2,λ2) +Q(p3,λ3) + Q̄(p4,λ4), (2.3)

where the quarks q and Q are taken to be massless with momenta satisfying,

0 → pµ1 + pµ2 + pµ3 + pµ4 , p2i = 0. (2.4)

Physical processes are obtained by crossing particles into the initial state. The associated Mandelstam

variables are given by

s12 = (p1 + p2)
2, s23 = (p2 + p3)

2, s13 = (p1 + p3)
2, s12 + s23 + s13 = 0. (2.5)

We work in conventional dimensional regularisation and renormalise the ultraviolet divergences in

the MS scheme. The bare coupling α0 is related to the running coupling αs ≡ αs(µ2) at renormalisation

scale µ, by

α0µ
2ε
0 Sε = αs µ

2ε

[
1−
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ε

(αs

2π

)
+

(
β20
ε2

−
β1
2ε

) (αs

2π

)2
+O

(
α3
s

)]
, (2.6)

where

Sε = (4π)εe−εγ , γ = 0.5772 . . . = Euler constant (2.7)

is the typical phase-space volume factor in d = 4 − 2ε dimensions and µ2
0 is the mass parameter

introduced in dimensional regularisation [45, 46, 43, 44] to maintain a dimensionless coupling in the

bare QCD Lagrangian density.

The first two coefficients of the QCD beta function, β0 and β1, for NF (massless) quark flavours,

are

β0 =
11CA − 4TRNF

6
, β1 =

17C2
A − 10CATRNF − 6CFTRNF

6
, (2.8)

where N is the number of colours and

CF =
N2 − 1

2N
, CA = N, TR =

1

2
. (2.9)

2.1 The general tensor

The most general tensor structure for the amplitude, |M〉, for the scattering of distinct massless quarks

at up to two loops can be written as

|M〉 =
6∑

I=1

AI(s12, s23) DI + . . . (2.10)

– 3 –

where the coefficients AI are vectors in colour space and are functions of s12 and s23 (and implicitly

s13 = −s12 − s23) where sij = (pi + pj)2 and the six Dirac structures are

D1 = ū(p1)γµ1u(p2) ū(p3)γµ1u(p4),

D2 = ū(p1)/p3u(p2) ū(p3)/p1u(p4),

D3 = ū(p1)γµ1γµ2γµ3u(p2) ū(p3)γµ1γµ2γµ3u(p4),

D4 = ū(p1)γµ1/p3γµ3u(p2) ū(p3)γµ1/p1γµ3u(p4),

D5 = ū(p1)γµ1γµ2γµ3γµ4γµ5u(p2) ū(p3)γµ1γµ2γµ3γµ4γµ5u(p4),

D6 = ū(p1)γµ1γµ2/p3γµ4γµ5u(p2) ū(p3)γµ1γµ2/p1γµ4γµ5u(p4). (2.11)

This tensor structure is a priori d-dimensional since the Lorentz indices are d-dimensional and the

dimensionality (and helicity) of the external states has not yet been specified. One can in principle

relate the strings of gamma matrices appearing in D3 to D6 to a standard set involving only D1 and

D2 using four-dimensional tricks. However, because these are the structures that naturally arise in

the parity conserving interactions of QCD, we choose to use this extended set as a d-dimensional basis

that is valid at up to two-loops. We note that the Dirac algebra is infinite dimensional for non-integer

d and that the basis set will extend according to the order that |M〉 is computed. For example, at

tree level, only D1 appears, while D2, D3 and D4 first appear at one-loop. D5 and D6 appear for

the first time at two-loops while at three-loops, we will find terms (represented by + . . .) with seven

gamma matrices sandwiched between the quark spinors. These more complicated structures can also

be related to the simpler ones using four-dimensional tricks (which we choose not to do at the present

time).

When the quarks are identical, the general structure of the amplitude is modified,

|M〉 = |M〉 − δqQ|M〉, (2.12)

where

|M〉 = |M〉(p2 ↔ p4). (2.13)

The minus sign is due to the exchange of identical fermions, while the momentum swap corresponds

to exchanging s12 and s23 in the coefficents AI . All appropriate colour indices are also exchanged. In

general we will multiply these additional identical fermion terms with a δqQ which is unity when the

quarks are identical and zero otherwise.

2.2 Projectors for the tensor coefficients

The six coefficients AI may be easily extracted from a Feynman diagram calculation with two distinct

quark flavours using projectors that act on the general tensor of Eq. (2.10) such that

∑

spins

P(AI) |M〉 = AI(s12, s23). (2.14)

The explicit forms for the projectors in d space-time dimensions are,

P(A1) =
1

480s13s223s
2
12(d− 5)(d − 6)(d − 7)(d − 3)(d − 4)

×

(
(2.15)

– 4 –

Let’s follow standard approach @ 2 loops: 𝒜(2l)
qqQQ =

6

∑
j=1

Aj Dj

Easy to see that at 2 loops we cannot have more than 5  matrices per fermion string


But at 3 loops I would need also strings with 7 , etc etc…

γ

γ



PROBLEMS WITH PROJECTORS
Define the matrix   ,  its inverse provides us with the projectorsMij = ∑

pol

D†
i Dj



PROBLEMS WITH PROJECTORS

with growth of number of tensors, the inversion can become extremely expensive!

+ s13(−9240s223d
3 − 35040s13s23d

2 + 52160s213d− 61120s213 + 61620s223d
2

+164320s13s23d+ 202496s223 − 12720s213d
2 − 182480s223d+ 960s213d

3 − 259840s13s23

+525s223d
4 + 2520s13s23d

3)D†
1

− 10s13(24s
2
13d

2 − 952s13s23d+ 102s13s23d
2 − 1568s223 + 2344s13s23 − 264s223d

2

+21s223d
3 + 256s213 − 176s213d+ 1124s223d)D

†
3

− 15(d − 6)(35s223d
3 − 55s13s23d

3 + 1046s13s23d
2 − 1872s213d+ 2432s213 − 454s223d

2

−6040s13s23d− 2688s223 + 368s213d
2 + 1928s223d− 20s213d

3 + 11136s13s23)D
†
2

+ s13s23(−320s13 + 15s23d
2 − 110s23d+ 224s23 + 60s13d)D

†
5

− 5(−102s223d+ 15s223d
2 − 1048s13s23 + 168s223 + 88s213d− 128s213 − 27s13s23d

2

+326s13s23d− 12s213d
2)D†

6

+ 30(21s223d
3 − 37s13s23d

3 + 672s13s23d
2 − 1104s213d+ 1360s213 − 256s223d

2 − 3868s13s23d

−1344s223 + 244s213d
2 + 1036s223d− 16s213d

3 + 7328s13s23)D
†
4

)
,

P(A2) =
1

32s213s
2
23s

2
12(d− 5)(d − 7)(d − 3)(d − 4)

×

(

− s13(35s
2
23d

3 − 55s13s23d
3 + 1046s13s23d

2 − 1872s213d+ 2432s213 − 454s223d
2

−6040s13s23d− 2688s223 + 368s213d
2 + 1928s223d− 20s213d

3 + 11136s13s23)D
†
1

+ 2s13(−2s213d
2 − 9s13s23d

2 + 142s13s23d− 448s13s23 + 7s223d
2 + 136s223 − 48s213

+28s213d− 62s223d)D
†
3

+ (−340s213d
3 + 11008s213 − 740s13s23d

3 + 44032s13s23 − 260s223d
3 − 4144s223d+ 3712s223

+15s213d
4 + 2852s213d

2 − 28864s13s23d+ 1604s223d
2 + 6944s13s23d

2 − 9968s213d

+30s13s23d
4 + 15s223d

4)D†
2

− s13s23(12s13 + s23d− 4s23 − s13d)D
†
5

+ (−6s223d+ 24s213 + 2s13s23d
2 − 40s13s23d− 14s213d+ s213d

2 + 8s223 + s223d
2 + 192s13s23)D

†
6

− 2(5s213d
3 + 5s223d

3 + 10s13s23d
3 − 240s13s23d

2 − 100s213d
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×

(

− s13(24s
2
13d

2 − 952s13s23d+ 102s13s23d
2 − 1568s223 + 2344s13s23 − 264s223d
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– 5 –

Define the matrix   ,  its inverse provides us with the projectorsMij = ∑
pol

D†
i Dj
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Artificial poles in 


They arise because the tensors we have 
chosen are actually NOT independent in 

d=4 


Matrix not invertible in d=4

d → 4

Define the matrix   ,  its inverse provides us with the projectorsMij = ∑
pol

D†
i Dj



If we want to push this to 3 loops for , it becomes more cumbersome…


- more structures


- more complicated projectors


- to be applied on much more complex Feynman diagrams

qq̄ → QQ̄

PROBLEMS WITH PROJECTORS

Can we do something about it?

See also alternative or complementary approaches by [Chen ’19], [Davies et al ’20]; [Abreu et al ’18]



𝒜(λ1, . . . , λE) =
n

∑
i=1

Fj Tj(λ1, . . . , λE) =
m<n

∑
j=1

F̄j Sj(λ1, . . . , λE)

HELICITY AMPLITUDES AND PHYSICAL PROJECTORS
Ultimately, we are interested in helicity amplitudes, in d=4 in ’t Hooft-Veltman scheme

𝒜 =
n

∑
i=1

Fj Tj

All “internal” indices are in d dimensions

Fix helicities, assuming that external states are in  dimensions. d = 4



HELICITY AMPLITUDES AND PHYSICAL PROJECTORS

𝒜 =
n

∑
i=1

Fj Tj 𝒜(λ1, . . . , λE) =
n

∑
i=1

Fj Tj(λ1, . . . , λE) =
m<n

∑
j=1

F̄j Sj(λ1, . . . , λE)

Helicity amplitudes, spinor 
products, momentum 

twistors…

Combinations of 
original form 

factors

If we do things right, we’d expect that in ’t Hooft-Veltman scheme there cannot be more 
independent form factors than independent helicity amplitudes

For massless  there are 4 helicities, reduced to 2 by parity invariance…qq̄ → QQ̄

Ultimately, we are interested in helicity amplitudes, in d=4 in ’t Hooft-Veltman scheme

Fix helicities, assuming that external states are in  dimensions. d = 4

All “internal” indices are in d dimensions



HELICITY AMPLITUDES AND PHYSICAL PROJECTORS

To get to minimal complexity, notice that:where the coefficients AI are vectors in colour space and are functions of s12 and s23 (and implicitly

s13 = −s12 − s23) where sij = (pi + pj)2 and the six Dirac structures are

D1 = ū(p1)γµ1u(p2) ū(p3)γµ1u(p4),

D2 = ū(p1)/p3u(p2) ū(p3)/p1u(p4),

D3 = ū(p1)γµ1γµ2γµ3u(p2) ū(p3)γµ1γµ2γµ3u(p4),

D4 = ū(p1)γµ1/p3γµ3u(p2) ū(p3)γµ1/p1γµ3u(p4),

D5 = ū(p1)γµ1γµ2γµ3γµ4γµ5u(p2) ū(p3)γµ1γµ2γµ3γµ4γµ5u(p4),

D6 = ū(p1)γµ1γµ2/p3γµ4γµ5u(p2) ū(p3)γµ1γµ2/p1γµ4γµ5u(p4). (2.11)

This tensor structure is a priori d-dimensional since the Lorentz indices are d-dimensional and the

dimensionality (and helicity) of the external states has not yet been specified. One can in principle

relate the strings of gamma matrices appearing in D3 to D6 to a standard set involving only D1 and

D2 using four-dimensional tricks. However, because these are the structures that naturally arise in

the parity conserving interactions of QCD, we choose to use this extended set as a d-dimensional basis

that is valid at up to two-loops. We note that the Dirac algebra is infinite dimensional for non-integer

d and that the basis set will extend according to the order that |M〉 is computed. For example, at

tree level, only D1 appears, while D2, D3 and D4 first appear at one-loop. D5 and D6 appear for

the first time at two-loops while at three-loops, we will find terms (represented by + . . .) with seven

gamma matrices sandwiched between the quark spinors. These more complicated structures can also

be related to the simpler ones using four-dimensional tricks (which we choose not to do at the present

time).

When the quarks are identical, the general structure of the amplitude is modified,

|M〉 = |M〉 − δqQ|M〉, (2.12)

where

|M〉 = |M〉(p2 ↔ p4). (2.13)

The minus sign is due to the exchange of identical fermions, while the momentum swap corresponds

to exchanging s12 and s23 in the coefficents AI . All appropriate colour indices are also exchanged. In

general we will multiply these additional identical fermion terms with a δqQ which is unity when the

quarks are identical and zero otherwise.

2.2 Projectors for the tensor coefficients

The six coefficients AI may be easily extracted from a Feynman diagram calculation with two distinct

quark flavours using projectors that act on the general tensor of Eq. (2.10) such that

∑

spins

P(AI) |M〉 = AI(s12, s23). (2.14)

The explicit forms for the projectors in d space-time dimensions are,

P(A1) =
1

480s13s223s
2
12(d− 5)(d − 6)(d − 7)(d − 3)(d − 4)

×

(
(2.15)

– 4 –
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➤ The first two “tensors” are confined in d=4, even if I pick d-dim  matrices!


➤ They are independent in d=4, they span the whole physical space of the helicity ampl.


➤ Every additional tensor, has extra components in d= , cannot be physical (?)

γμ

−2ϵ



HELICITY AMPLITUDES AND PHYSICAL PROJECTORS

Let then pick first 2: Tj = Dj , j = 1,2

1.3 qq̄ ! QQ̄ scattering

As the last 2 ! 2 example, we consider the process

q(p1) + q̄(p2) +Q(p3) + Q̄(p4) ! 0 .

This example is particularly interesting because, as it is well known, the algebra of the �-matrices in d-
dimensions is not closed and, if one insisted in working in CDR, the number of independent tensor structures
would be dependent from the number of loops. Indeed, in CDR one finds up to two loops

T1 = ū(p2)�µ1u(p1) ū(p4)�
µ1u(p3) ,

T2 = ū(p2)/p3u(p1) ū(p4)/p1u(p3) ,

T3 = ū(p2)�µ1�µ2�µ3u(p1) ū(p4)�
µ1�µ2�µ3u(p3) ,

T4 = ū(p2)�µ1/p3�µ3u(p1) ū(p4)�
µ1/p1�

µ3u(p3) ,

T5 = ū(p2)�µ1�µ2�µ3�µ4�µ5u(p1) ū(p4)�
µ1�µ2�µ3�µ4�µ5u(p3) ,

T6 = ū(p2)�µ1�µ2/p3�µ4�µ5u(p1) ū(p4)�
µ1�µ2/p1�

µ4�µ5u(p3) ,

................. (19)

where the dots stand for further tensor structures needed at higher number of loops [].
Now here is it very clear that all of these structures cannot be independent in d = 4, where instead the

� algebra closes. Moreover, already the 6 structures presented above are known not to be independent in
d = 4, as they can be all related to the first two tensors T1 and T2 by use of Fiertz identities and similar
d = 4 tricks. Indeed, by defining the matrix

Mij = T †
i Tj

one finds that the matrix is not invertible in d = 4 and, instead, its 2⇥ 2 restriction is the largest invertible
matrix one can find. We define therefore the two independent tensors

T i = Ti , i = 1, 2

and the 2⇥ 2 matrix
M2⇥2

ij = T †
i Tj ,

which now has a smooth inverse in d = 4

�
M2⇥2

��1

ij
=

1

d� 3
Xij , Xij =

 
1

4s2
s+2u

4s2u(s+u)
s+2u

4s2u(s+u)
ds2�2s2+4su+4u2

4s2u2(s+u)2

!
. (20)

We define again the intermediate projectors

P i =
2X

j=1

⇣
M (2⇥2)

ij

⌘�1
T

†
j ,

and with these, the remaining 4 tensors (or more, depending on the number of loops) become

T i = Ti �
2X

j=1

�
P jTi

�
T j , for i = 3, 4, 5, 6, ...

Once more, one can verify that these 4 tensors are all zero in d = 4, for any combination of helicities of the
external particles.
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5

with

the matrix is smooth in d → 4

Xij =
1

4 s2
12

1
s12 + 2s23

s23(s12 + s23)

s12 + 2s23

s23(s12 + s23)
(d − 2)s2

12 + 4s23(s12 + s23)
s2
23(s12 + s23)2
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T4 = ū(p2)�µ1/p3�µ3u(p1) ū(p4)�
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µ1u(p3) ,
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µ1�µ2�µ3u(p3) ,
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µ1/p1�

µ3u(p3) ,
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where the dots stand for further tensor structures needed at higher number of loops [].
Now here is it very clear that all of these structures cannot be independent in d = 4, where instead the

� algebra closes. Moreover, already the 6 structures presented above are known not to be independent in
d = 4, as they can be all related to the first two tensors T1 and T2 by use of Fiertz identities and similar
d = 4 tricks. Indeed, by defining the matrix

Mij = T †
i Tj

one finds that the matrix is not invertible in d = 4 and, instead, its 2⇥ 2 restriction is the largest invertible
matrix one can find. We define therefore the two independent tensors

T i = Ti , i = 1, 2

and the 2⇥ 2 matrix
M2⇥2

ij = T †
i Tj ,

which now has a smooth inverse in d = 4

�
M2⇥2

��1

ij
=

1

d� 3
Xij , Xij =

 
1

4s2
s+2u

4s2u(s+u)
s+2u

4s2u(s+u)
ds2�2s2+4su+4u2

4s2u2(s+u)2

!
. (20)

We define again the intermediate projectors

P i =
2X

j=1

⇣
M (2⇥2)

ij

⌘�1
T

†
j ,

and with these, the remaining 4 tensors (or more, depending on the number of loops) become

T i = Ti �
2X

j=1

�
P jTi

�
T j , for i = 3, 4, 5, 6, ...

Once more, one can verify that these 4 tensors are all zero in d = 4, for any combination of helicities of the
external particles.

5

the matrix is smooth in d → 4

Define the 2 projectors

and the remaining tensors as

We are effectively block-diagonalising the matrix!

Xij =
1

4 s2
12

1
s12 + 2s23

s23(s12 + s23)

s12 + 2s23

s23(s12 + s23)
(d − 2)s2

12 + 4s23(s12 + s23)
s2
23(s12 + s23)2

Let then pick first 2:
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µ1�µ2�µ3u(p3) ,
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We define again the intermediate projectors

P i =
2X

j=1
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M (2⇥2)

ij

⌘�1
T

†
j ,

and with these, the remaining 4 tensors (or more, depending on the number of loops) become

T i = Ti �
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P jTi
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Once more, one can verify that these 4 tensors are all zero in d = 4, for any combination of helicities of the
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5

The remaining tensors 

T̄j(λ1, . . . , λE) = 0 , j = 3,4,5,6,...

are such that

Exactly in d in tHV!
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The remaining tensors 

T̄3 = (−3d −
12s23

s12
− 4) T̄1 −

24
s12

T̄2 + T3

New tensors are smooth linear combinations of the old ones:

are such that

T̄j(λ1, . . . , λE) = 0 , j = 3,4,5,6,... Exactly in d in tHV!



And the new 6x6 inverse matrix becomes block-diagonal      


 contains the complexity that we saw before, but actually NEVER need to even compute it!

(M̄ij)
−1

=

Xij

d − 3 0 . . . 0
0
⋮
0

Rij
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T1 = ū(p2)�µ1u(p1) ū(p4)�
µ1u(p3) ,
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Moreover, the symmetries of the process allow us to compute only the first two helicity

amplitudes (+,�,+,�), (+,�,�,+) and then obtain the other two by acting on the result

with a parity transformation, which flips the signs of the external helicities:

(�1,�2,�3,�4)
P�! (��1,��2,��3,��4) . (3.9)

In what follows, we will focus on the two independent configurations (�1,�2,�3,�4) =

(+,�,+,�), (+,�,�,+).

We adopt the following definition for helicity states of spin-12 fermions

|pi = u(p,+) =


1

2
(1 + �5)

�
u(p), |p] = u(p,�) =


1

2
(1� �5)

�
u(p), (3.10)

hp| = ū(p,+) = ū(p)


1

2
(1 + �5)

�
, [p| = ū(p,�) = ū(p)


1

2
(1� �5)

�
, (3.11)

where we use the well known spinor-helicity formalism [21], and indicate with ± the pro-

jection of the (anti-)particle spin along its four-momentum.

Using this notation and starting from the general structure of the amplitude given in

eqs (3.4) and (3.5), we obtain

Ā
qq̄!Q̄Q
+�+� = H1

h13i
h24i , Ā

qq̄!Q̄Q
+��+ = H2

h14i
h23i , (3.12)

where

H1 = 2tF1 � tuF2, H2 = 2uF1 + tuF2. (3.13)

In eqs. (3.12) we have introduced an explicit label for the process that we are considering,

which will turn out to be useful later on when we describe the other partonic channels.

Since we expect that final analytic results for the helicity amplitudes should display

the maximum degree of simplicity, in what follows we focus directly on the two linear

combinations H1 and H2. We write their expansion in terms of the bare coupling ↵s,b as

Hi = H
(0)
i +

⇣↵s,b

4⇡

⌘
H

(1)
i +

⇣↵s,b

4⇡

⌘2
H

(2)
i +

⇣↵s,b

4⇡

⌘3
H

(3)
i +O

�
↵4
s,b

�
. (3.14)

In the next section, we discuss the computation of H1 and H2 up to three loops in QCD.

4 Computation

We perform our calculations in dimensional regularization with d = 4�2✏ dimensions for all

internal momenta and gluon fields. UV and IR singularities will then manifest themselves

as poles in the dimensional regulator ✏. In order to compute the helicity amplitudes H1

and H2, we begin by producing all relevant Feynman diagrams for the process in eq. (2.1)

with QGRAF [111]. Only 1 diagram contributes at tree level, 9 diagrams at one loop, 158

diagrams at two loops and 3584 at three loops. We give a few representative samples of

the three-loop diagrams in figure 1. We use FORM [112] to apply the tensor projectors of
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Turning to the spin structure of the process, we further decompose the scattering

amplitude in terms of in terms of a basis of Lorentz structures (“tensors”) Ti

Ā =
NLX

i=1

Fi Ti , (3.4)

where the Fi are scalar form factors that only depends on the Mandelstam invariants and

NL is the number of elements of the basis of Lorentz structures. In our calculation, we em-

ploy dimensional regularization to deal with ultraviolet (UV) and infrared (IR) divergences.

This makes the decomposition eq. (3.4) subtle. Indeed, if one works in Conventional Dimen-

sional Regularisation (CDR), one finds that, since the �-algebra in d dimensions does not

close, the number NL of independent structures depends on the loop order [99]. However,

since we are ultimately interested in computing helicity amplitudes in four dimensions, we

find it convenient to work in a scheme, where we can ignore evanescent Lorentz structures

right from the start. In this approach, it is possible to show that the number of Lorentz

structures which are physically relevant is the same at any number of loops (NL = N),

and it equals the number of independent helicity amplitudes [106, 107]. Specifically, we

consider all internal momenta and polarizations in d dimensions, but restrict momenta and

polarizations of the external quarks to a 4-dimensional subspace. A convenient choice for

the two independent Lorentz structures describing our process is [107]:

T1 = ū(p2) �↵ u(p1)⇥ ū(p4) �
↵ u(p3) , T2 = ū(p2) /p3 u(p1)⇥ ū(p4) /p2 u(p3) . (3.5)

These two Lorentz structures are then su�cient at any loop order.

In order to isolate the form factors from the rest of the amplitude, we define tensor

projectors Pi satisfying

Pi · Tj = �ij , (3.6)

where the dot products indicates the sum over the polarisations of the external quarks,

Pi ·Tj =
P

pol PiTj . It then follows from eq. (3.4) that Pi ·Ā = Fi. For the choice eq. (3.5),

the explicit form of the projectors is

P1 =
1

(d� 3)4s2
T †
1 +

t� u

(d� 3)s2tu
T †
2 ,

P2 =
t� u

(d� 3)s2tu
T †
1 +

(d� 4)s2 + 2t2 + 2u2

(d� 3)4s2t2u2
T †
2 .

(3.7)

We recall here that the main advantage of working with scalar form factors Fi is that, by

construction, they only contain scalar integrals, because all the Lorentz tensor structure

has been factorised out by the basis tensors Ti.

3.2 Helicity Amplitudes

Ultimately, we are interested in computing the helicity amplitudes A�1�2�3�4 , for the pro-

cess in eq. (2.1), where we indicate with �j the helicity of the (anti)particle with momen-

tum pj . Since the quarks are massless, helicity is conserved along the quark lines and there

are only four di↵erent possibilities that we need to consider

(�1,�2,�3,�4) = (+,�,+,�), (+,�,�,+), (�,+,+,�), (�,+,�,+) . (3.8)
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2

By construction, helicity amplitudes only receive contributions from two form factors!

And the projectors that we need to apply on the Feynman diagrams are much simpler!

The provide us with natural basis to derive helicity amplitudes!
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The remaining tensors and form factors can be thrown away, except to get CDR results:

∑
pol

(M0)*MLl =
2

∑
i, j=1

cijF*i Fj + ϵ
N

∑
i, j=3

cij(ϵ)F*i Fj

Evanescent tensors show up suppressed in  even in CDR. 


If interested in tHV, we can ignore them

ϵ

IMPORTANT: they are instead EXACTLY ZERO in ’t Hooft-Veltman!



PARTONIC CHANNEL  : A SUBTLETYgg → gg
: most complicated channel


8 helicity amplitudes ~ 8 form factors for each color ordered amplitude

gg → gg [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi, ’21]

Turning to the spin structure of the process, we further decompose the scattering

amplitude in terms of in terms of a basis of Lorentz structures (“tensors”) Ti

Ā =
NLX
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Fi Ti , (3.4)
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find it convenient to work in a scheme, where we can ignore evanescent Lorentz structures

right from the start. In this approach, it is possible to show that the number of Lorentz

structures which are physically relevant is the same at any number of loops (NL = N),

and it equals the number of independent helicity amplitudes [106, 107]. Specifically, we

consider all internal momenta and polarizations in d dimensions, but restrict momenta and

polarizations of the external quarks to a 4-dimensional subspace. A convenient choice for

the two independent Lorentz structures describing our process is [107]:

T1 = ū(p2) �↵ u(p1)⇥ ū(p4) �
↵ u(p3) , T2 = ū(p2) /p3 u(p1)⇥ ū(p4) /p2 u(p3) . (3.5)

These two Lorentz structures are then su�cient at any loop order.

In order to isolate the form factors from the rest of the amplitude, we define tensor

projectors Pi satisfying

Pi · Tj = �ij , (3.6)

where the dot products indicates the sum over the polarisations of the external quarks,

Pi ·Tj =
P

pol PiTj . It then follows from eq. (3.4) that Pi ·Ā = Fi. For the choice eq. (3.5),

the explicit form of the projectors is

P1 =
1

(d� 3)4s2
T †
1 +

t� u

(d� 3)s2tu
T †
2 ,

P2 =
t� u

(d� 3)s2tu
T †
1 +

(d� 4)s2 + 2t2 + 2u2

(d� 3)4s2t2u2
T †
2 .

(3.7)

We recall here that the main advantage of working with scalar form factors Fi is that, by

construction, they only contain scalar integrals, because all the Lorentz tensor structure

has been factorised out by the basis tensors Ti.

3.2 Helicity Amplitudes

Ultimately, we are interested in computing the helicity amplitudes A�1�2�3�4 , for the pro-

cess in eq. (2.1), where we indicate with �j the helicity of the (anti)particle with momen-

tum pj . Since the quarks are massless, helicity is conserved along the quark lines and there

are only four di↵erent possibilities that we need to consider

(�1,�2,�3,�4) = (+,�,+,�), (+,�,�,+), (�,+,+,�), (�,+,�,+) . (3.8)
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with the number of different helicity amplitudes for the process considered, which implies that
there is a one-to-one correspondence between the helicity amplitudes and our relevant tensor
structures. Notice also that, since the matrix in eq. (2.11) is in block form, the Q physical
form factors can be computed using projectors that are decomposed purely in terms of the Q
independent tensors: we never need to compute the contractions of the amplitude with the
irrelevant tensors T i, i = Q + 1, ..., N . While these properties are clearly appealing from an
aesthetic point of view, depending on the complexity of the problem at hand they might also
constitute a source of substantial practical simplification.

In the next section we will show how the formal construction works out in practice for
different 4- and 5-point scattering processes, trying to elucidate all points discussed above.

3 Case of study: gg → gg scattering

We start by considering the scattering of four massless spin-1 bosons. For definiteness we
imagine to deal with four-gluon scattering, but this is not necessary for the arguments that
follow. Let us consider the process

g(p1) + g(p2) + g(p3) + g(p4) → 0 , (3.1)

and call εµj the polarisation vector for to the gluon j. We define the usual Mandelstam
invariants to be

s = (p1 + p2)
2 , t = (p1 + p3)

2 , u = (p2 + p3)
2 = −s− t . (3.2)

We indicate the scattering amplitude as A4g(p1, p2, p3). Once stripped of the polarisations of
the external gluons, this amplitude must be a rank-4 Lorentz tensor

A4g(p1, p2, p3) = ε1,µε2,νε3,ρε4,σ Aµνρσ
4g (p1, p2, p3) . (3.3)

The most general Lorentz-covariant decomposition for a rank-4 tensor in d space-time dimen-
sions involves 138 tensor structures, see for example [12]. Imposing transversality for each
external gluon εi · pi = 0, together with fixing the gauge, allows one to reduce these structure
to 10 independent ones. In the case of gluon scattering, given the symmetry of the external
states and the fact that color ordering can be used to isolate simpler primitive amplitudes, a
convenient gauge choice is the cyclic one εi · pi+1 = 0, where we identify p5 = p1. With this
choice the 10 tensors read

T1 = ε1 · p3 ε2 · p1 ε3 · p1 ε4 · p2 ,
T2 = ε1 · p3 ε2 · p1 ε3 · ε4 , T3 = ε1 · p3 ε3 · p1 ε2 · ε4 , T4 = ε1 · p3 ε4 · p2 ε2 · ε3 ,
T5 = ε2 · p1 ε3 · p1 ε1 · ε4 , T6 = ε2 · p1 ε4 · p2 ε1 · ε3 , T7 = ε3 · p1 ε4 · p2 ε1 · ε2 ,
T8 = ε1 · ε2 ε3 · ε4 , T9 = ε1 · ε4 ε2 · ε3 , T10 = ε1 · ε3 ε2 · ε4 . (3.4)

Following the notation introduced in section 2, we then write the amplitude for the scattering
of four gluons as

A4g(p1, p2, p3) =
∑

j

Fj(p1, p2, p3) Tj (3.5)
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In fact: in CDR, 10 Form factors (using Gauge Invariance), reduced to 8 in tHV



PARTONIC CHANNEL  : A SUBTLETYgg → gg
: most complicated channel


8 helicity amplitudes ~ 8 form factors for each color ordered amplitude

gg → gg [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi, ’21]
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physical tensors T̃j consistent with the gauge choices of section 3 can be the following

T̃1 = ε1 · p3 ε2 · p1 ε3 · p1 ε4 · p2 ,
T̃2 = ε1 · p3 ε2 · p1 ε3 · v⊥ ε4 · v⊥ , T̃3 = ε1 · p3 ε3 · p1 ε2 · v⊥ ε4 · v⊥ ,

T̃4 = ε1 · p3 ε4 · p2 ε2 · v⊥ ε3 · v⊥ , T̃5 = ε2 · p1 ε3 · p1 ε1 · v⊥ ε4 · v⊥ ,

T̃6 = ε2 · p1 ε4 · p2 ε1 · v⊥ ε3 · v⊥ , T̃7 = ε3 · p1 ε4 · p2 ε1 · v⊥ ε2 · v⊥ ,

T̃8 = ε1 · v⊥ ε2 · v⊥ ε3 · v⊥ ε4 · v⊥ (A.2)

In practice, however, the presence of v⊥ would make the contractions with the amplitude
unnecessarily involved. It is instead convenient to replace the terms involving orthogonal
momentum v⊥ with terms involving the metric tensor gµν , so that we can replace the tensors
T̃j with linear combinations of the original tensors Tj defined in Eq. (3.4). We can do this by
splitting the d-dimensional metric tensor gµν into a three-dimensional part gµν[3] , which is its
projection into the subspace spanned by the external momenta, and an orthogonal (d − 3)-
dimensional part gµν⊥

gµν = gµν[3] + gµν⊥ . (A.3)

We can thus exploit the following identities

vµ⊥ vν⊥ ∼ gµν⊥
vµ1

⊥ vµ2

⊥ vµ3

⊥ vµ4

⊥ ∼ gµ1µ2

⊥ gµ3µ4

⊥ + gµ1µ3

⊥ gµ2µ4

⊥ + gµ1µ4

⊥ gµ2µ3

⊥ (A.4)

where the symbol ∼ indicates that the l.h.s. and the r.h.s. become proportional when con-
tracted with tensors depending on the d-dimensional metric gµν and the external momenta pµj
only. We note that the identities can be easily found (including the proportionality coefficient,
which is irrelevant for the purposes of this paper) using standard tensor decomposition meth-
ods, although they must be valid also for symmetry reasons. The identities above allow us to
replace tensors containing v⊥, with suitable combinations of gµν⊥ . Moreover, because gµν and
gµν⊥ only differ by terms proportional to the external momenta, which are already accounted
for in our basis of tensors, we are also allowed to replace gµν⊥ with gµν . Putting everything
together, this implies that, starting from the physical basis of tensors T̃j containing scalar
products of the form εj · v, we can make the replacement

εj · v⊥ εk · v⊥ → εj · εk (A.5)

in any tensor containing only two scalar products involving v⊥, that justifies replacing T̃j → Tj

for j = 1, . . . , 7. For tensors with four scalar products involving v⊥ we can similarly use the
second Eq. (A.4) to replace

T̃8 → T8 + T9 + T10, (A.6)

which then yields the same physical tensors defined in Eq. (3.7).
The same method can be applied to any process with n ≤ 4 external legs. One considers a

set of 5−n orthogonal vectors vµi,⊥ that span the (5−n)-dimensional subspace of the physical
four dimensions which is orthogonal to the external legs. Thus a basis of tensors is built
assuming that they can be contracted only with external momenta pµi or the vectors vµi,⊥.
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PARTONIC CHANNEL  : A SUBTLETYgg → gg

To understand the answer, it is convenient to introduce the extra vector


such that  span the full four-dimensional space and  can be dropped!p1, p2, p3, v gμν

amplitudes in CDR, we showed that they can be entirely neglected when computing the he-
licity amplitudes. A crucial property is that the relevant tensors must be chosen to span the
entire vector space where the helicity amplitudes are defined. After describing the general
idea, we have applied it to a large number of explicit examples for both bosonic and fermionic
amplitudes with 4 and 5 external legs. The new projector operators are smooth in the limit
d → 4, and they are substantially simpler than the ones obtained using the standard approach
in CDR. Importantly, the increase of the number of projectors with the number of legs is much
slower than in CDR, being in particular bounded from above by the number of independent
helicity amplitudes in the problem. Finally, the new projector operators can be applied on
the scattering amplitudes in the very same way as the usual CDR projectors. We believe that
the method proposed here constitutes an improvement compared to the commonly used ap-
proach and that it could prove useful, in the future, to compute complicated 2 → 3 scattering
amplitudes, as well as lower-multiplicity amplitudes at higher loops.
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A Finding a physical basis of tensors for gg → gg

In this paper we have built a basis of physical tensors for several processes, that are comple-
mented by a set of irrelevant tensor which can be ignored in the calculation of the helicity
amplitudes. The physical tensors must, in particular, be a subset of the original tensors, or
linear combinations thereof, that cover the full physical space spanned by the external polar-
izations. As explained in section 6, for the scattering of n ≥ 5 external particles it is always
straightforward to find such a basis by decomposing the tensor structures in terms of four
independent external momenta. For n = 4, instead, this is not always obvious. Therefore,
we show here a more systematic approach based on the decomposition of momenta in the
parallel and orthogonal space, that has already been successfully used in other contexts (see
e.g. ref. [20]). In particular, we focus on the gg → gg example of section 3. Similar arguments
can be applied to other four-point processes.

Because in four-point processes we have three linearly independent momenta, due to mo-
mentum conservation, we can split the physical space into a three-dimensional part spanned
by the external momenta and an orthogonal part. Therefore we can, in principle, cover the
full physical space by adding a fourth four-dimensional momentum v⊥ which is orthogonal to
the external momenta pj , e.g.

vµ⊥ = εµνρσp1νp2ρp3σ. (A.1)

Hence, we may define physical tensors and projectors which only depend on scalar products of
the form εj · pk and εj · v⊥. One can also easily verify that a combination with an odd number
of momenta v⊥ is not allowed in a tensor, since it would vanish when contracted with the
amplitude (this is also true in the presence of external fermions). A choice of 8 independent
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SCATTERING WITH   EXTERNAL LEGSN > 4

For  the method becomes even simpler, because momenta provide complete 
set of 4 vectors in d=4 dimensions!

N > 4

Take the prototypical case of 5-gluon scattering:

g(p1) + g(p2) + g(p3) + g(p4) + g(p5) → 0



Standard d-dimensional approach:


1. Rank-5 tensor out of  contains 1724 tensor structures!


2. Imposing gauge invariance  reduced to 142 independent structures


3. Projectors can (painfully!) be obtained inverting 142x142 matrix  ~ 1GB of text file!

gμν , pμ
i , i = 1,...,4

→

g(p1) + g(p2) + g(p3) + g(p4) + g(p5) → 0

For  the method becomes even simpler, because momenta provide complete 
set of 4 vectors in d=4 dimensions!

N > 4

Take the prototypical case of 5-gluon scattering:

SCATTERING WITH   EXTERNAL LEGSN > 4



g(p1) + g(p2) + g(p3) + g(p4) + g(p5) → 0

Tμ1μ2μ3μ4μ5 = pμ1
i pμ2

j pμ3
k pμ4

l pμ5
sTypical tensors will be like:

Tμ1μ2μ3μ4μ5 = pμ1
i pμ2

j pμ3
k gμ4μ5

Tμ1μ2μ3μ4μ5 = pμ1
i gμ2μ3gμ4μ5

SCATTERING WITH   EXTERNAL LEGSN > 4



g(p1) + g(p2) + g(p3) + g(p4) + g(p5) → 0

Tμ1μ2μ3μ4μ5 = pμ1
i pμ2

j pμ3
k pμ4

l pμ5
sTypical tensors will be like:

Tμ1μ2μ3μ4μ5 = pμ1
i pμ2

j pμ3
k gμ4μ5

Tμ1μ2μ3μ4μ5 = pμ1
i gμ2μ3gμ4μ5

But since  are complete set in d=4,  is not linear independent!


I don’t even need the construction that I have made for 4-point, I can drop all of them!

pμ
1 , . . . , pμ

4 gμν

SCATTERING WITH   EXTERNAL LEGSN > 4



 ~ left with  tensors = # helicity amplitudes


Projectors ~ 500 Kb versus ~1Gb


Problem can be simplified further using symmetries/special combinations of these tensors!

pμ
1 , . . . , pμ

4 25 = 32

g(p1) + g(p2) + g(p3) + g(p4) + g(p5) → 0

Tμ1μ2μ3μ4μ5 = pμ1
i pμ2

j pμ3
k pμ4

l pμ5
sTypical tensors will be like:

Tμ1μ2μ3μ4μ5 = pμ1
i pμ2

j pμ3
k gμ4μ5

Tμ1μ2μ3μ4μ5 = pμ1
i gμ2μ3gμ4μ5

Method used successfully for various 3 loop  calculations in QCD and for first full 
color calculation of a  scattering process 

2 → 2
2 → 3 qq̄ → γγg

(See G. Gambuti’s and A. von Manteuffel’s talks)

arXiv:2105.04585
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CONCLUSIONS

➤ Tensor decomposition is a standard step towards calculation of multiloop 
scattering amplitudes


➤ Standard approach in CDR can be substantially simplified if one is interested 
in helicity amplitudes in tHV


➤ Decomposition proposed is 1-to-1 with # of helicity amplitudes, no spurious / 
evanescent structures are ever computed


➤ Particularly effective in the presence of multiple fermion lines or for  
external legs


➤ Can be easily extended for different theories (masses, parity violating, etc)

N > 4

sommando tutto



THANK YOU FOR YOUR ATTENTION



BACK UP



: most complicated channel


8 helicity amplitudes ~ 8 form factors for each color ordered amplitude

gg → gg

2

where all momenta are taken to be incoming and massless

pµ1 + pµ2 + pµ3 + pµ4 = 0, p2i = 0. (2)

The scattering process above can be parametrised in
terms of the usual set of Mandelstam invariants

s=(p1+p2)
2, t=(p1+p3)

2, u=(p2+p3)
2, (3)

which satisfy the relation u = �t� s. We work in di-
mensional regularization to regulate all ultraviolet and
infrared divergences. More precisely, we adopt the ’t
Hooft-Veltman scheme (tHV) [21], where loop momenta
are taken to be d = 4 � 2✏ dimensional, while momenta
and polarizations associated with external particles are
kept in four dimensions.
The physical scattering process gg ! gg (relevant for
di-jet production) can be obtained from (1) by crossing
p3,4!�p3,4. In order to parametrize the kinematics for
this process, it is useful to define the dimensionless ratio

x = �t/s, (4)

so that in the physical region p1 + p2 ! p3 + p4 we have

s > 0, t < 0, u < 0; 0 < x < 1. (5)

COLOR AND LORENTZ DECOMPOSITION

We write the scattering amplitude for gg ! gg as

Aa1a2a3a4 = 4⇡↵s,b

6X

i=1

A[i]Ci , (6)

where ↵s,b is the bare strong coupling, A[i] are color-
ordered partial amplitudes, and the color basis {Ci} reads

C1 = Tr[T a1T a2T a3T a4 ] + Tr[T a1T a4T a3T a2 ],

C2 = Tr[T a1T a2T a4T a3 ] + Tr[T a1T a3T a4T a2 ],

C3 = Tr[T a1T a3T a2T a4 ] + Tr[T a1T a4T a2T a3 ],

C4 = Tr[T a1T a2 ]Tr[T a3T a4 ],

C5 = Tr[T a1T a3 ]Tr[T a2T a4 ],

C6 = Tr[T a1T a4 ]Tr[T a2T a3 ]. (7)

Here the adjoint representation index ai corresponds to
the i-th external gluon, while T a

ij are the fundamen-

tal SU(Nc) generators normalised such that Tr[T aT b] =
1
2�

ab. As it is well known, the partial amplitudes A[i] are
independently gauge invariant. The advantage of using
a color-ordered decomposition is that, by construction,
the amplitudes A[i] are not all independent under cross-
ings of the external momenta. We can restrict ourselves
to compute only two of the structures above and obtain
all other partial amplitudes by crossing symmetry. For
definiteness, we choose to focus on A[1] and A[4].

In order to compute A[1] and A[4], it is convenient
to further decompose them with respect to a basis of
Lorentz covariant tensor structures. In the following we
denote the polarization vector of the i-th external gluon
as ✏(pi) = ✏i, which satisfies the transversality condition
✏i·pi = 0. By making the cyclic gauge choice ✏i·pi+1 = 0,
with p5 = p1, and restricting ourselves to physical four-
dimensional external states, one finds [22, 23] that each
partial amplitude can be decomposed as

A[j](s, t) =
8X

i=1

F [j]
i Ti, (8)

where the coe�cient functions F [j]
i are usually referred

to as form factors and the tensors Ti are defined as

T1 = ✏1 ·p3 ✏2 ·p1 ✏3 ·p1 ✏4 ·p2 ,

T2 = ✏1 ·p3 ✏2 ·p1 ✏3 ·✏4, T3 = ✏1 ·p3 ✏3 ·p1 ✏2 ·✏4,
T4 = ✏1 ·p3 ✏4 ·p2 ✏2 ·✏3, T5 = ✏2 ·p1 ✏3 ·p1 ✏1 ·✏4,
T6 = ✏2 ·p1 ✏4 ·p2 ✏1 ·✏3, T7 = ✏3 ·p1 ✏4 ·p2 ✏1 ·✏2,
T8 = ✏1 ·✏2 ✏3 ·✏4 + ✏1 ·✏4 ✏2 ·✏3 + ✏1 ·✏3 ✏2 ·✏4 . (9)

The form factors can be extracted by defining a set of
eight projectors Pi which are in one to one correspon-
dence with the tensors in eq. (9), such that Pi · Tj =P

pol PiTj = �ij .

HELICITY AMPLITUDES

In this letter we are ultimately interested in the he-
licity amplitudes A�, where � = {�1,�2,�3,�4} and �i

is the helicity of the i-th external particle. In the four-
gluon case we need to consider 24 = 16 possible helicity
choices. However, only 8 helicity amplitudes are inde-
pendent as the remaining ones can be obtained by parity
conjugation, which e↵ectively transforms the helicities as
� ! ��. The independent helicity amplitudes are in one
to one correspondence with the Lorentz tensors of eq. (9)
and their color stripped counterparts can in fact be writ-

ten as a linear combination of the form factors F [j]
i . In

order to make this relation explicit, we start from the
tensor decomposition in eq. (8) and employ the spinor-
helicity formalism [24] to fix the helicities of the external
gluons. We write the gluon polarization vectors for fixed
± helicity as

✏µi,+ =
[i+ 1|�µ|iip
2[i|i+ 1]

, ✏µi,� =
[i|�µ|i+ 1ip
2hi+ 1|ii

, (10)

where we used the cyclic gauge choice introduced above,
identifying |5] ⌘ |1] and |5i ⌘ |1i. By inserting the
specific representation of eq. (10) in eq. (8), we can write
the color-ordered partial amplitudes as

A[i]
� = H[i]

� s�, (11)
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where the little group invariant amplitudes H[i]
� only de-

pend on the Mandelstam invariants and s� is a phase that
carries all the spinor weight. The decomposition (11) is
not unique. Here we follow [25] and choose

s++++ =
h12ih34i
[12][34]

, s�+++ =
h12ih14i[24]
h34ih23ih24i ,

s+�++ =
h21ih24i[14]
h34ih13ih14i , s++�+ =

h32ih34i[24]
h14ih21ih24i ,

s+++� =
h42ih14i[12]
h13ih23ih12i , s++�� =

h12i[34]
[12]h34i ,

s+�+� =
h13i[24]
[13]h24i , s+��+ =

h14i[23]
[14]h23i . (12)

A useful feature of this choice is that it preserves the
correct symmetries under permutation.

From now on we will focus on the calculation of H[j]
� ,

which we will refer to as helicity amplitudes, with a slight

abuse of notation. The H[j]
� can be expanded in terms of

the bare QCD coupling in the usual way:

H� =
3X

k=0

↵̄k
s,bH

(k)
� +O(↵̄4

s,b), (13)

where we have omitted the color structure index [j] for
ease of reading and defined ↵̄s,b = ↵s,b/(4⇡). Here we
focus on the computation of the three-loop amplitude

H(3)
� . As a byproduct we also re-computed the tree level,

one- and two-loop amplitudes as a check of our framework
and found prefect agreement with previous results in the
literature [26, 27] .

We use QGRAF [28] to produce the relevant Feyn-
man diagrams: there are 4 di↵erent diagrams at tree
level, 81 at one loop, 1771 at two loops and 48723
at three loops. We then use FORM [29] to apply the
projection operators Pi to suitable combinations of
the Feynman diagrams and in this way write the

helicity amplitudes H[1]
� , H[4]

� as linear combination
of scalar Feynman integrals. The integrals appearing
in the computation of these amplitudes can be written as

Itop
n1,...,nN

= µ2L✏
0 eL✏�E

Z LY

i=1

✓
ddki

i⇡
d
2

◆
1

Dn1
1 . . . DnN

N

(14)

where L stands for the number of loops, ki are the
loop momenta, �E ⇡ 0.5772 is the Euler constant, µ0 is
the dimensional regularization scale and ✏ = (4 � d)/2
is the dimensional regulator. Here “top” can be any
of the planar or non-planar integral families which are
given explicitly in ref. [19]. At three loops we find that
a staggering number of ⇠ O(107) apparently di↵erent
scalar integrals contribute to the amplitude. However,
these integrals are not linearly independent and can be

related using symmetry relations and integration by parts
identities [30, 31]. We performed this reduction with
Reduze 2 [32, 33] and Finred, an in-house implemen-
tation based on Laporta’s algorithm, finite field tech-
niques [34–37] and syzygy algorithms [38–43]. In this way
we were able to express the helicity amplitudes in terms
of the 486 master integrals (MIs), which were first com-
puted in ref. [44] and more recently in ref. [20] in terms
of simple harmonic polylogarithms (HPLs) [2]. After in-
serting the analytic expressions for the master integrals,

we obtain the bare helicity amplitudes H(j)
� as a Laurent

series in ✏ up to O(✏0) in terms of HPLs up to transcen-
dental weight six.

UV RENORMALIZATION AND IR BEHAVIOR

The bare helicity amplitudes contain both ultravio-
let (UV) and infrared (IR) divergencies that manifest as
poles in the series expansions of the dimensional regu-
lator ✏. UV divergences can be removed by expressing
the amplitudes in terms of the MS renormalized strong
coupling ↵s(µ) using

↵̄s,bµ
2✏
0 S✏ = ↵̄s(µ)µ

2✏Z [↵̄s(µ)] , (15)

where ↵̄s(µ) = ↵s(µ)/(4⇡), µ is the renormalization scale
and

Z[↵̄s] = 1� ↵̄s
�0

✏
+ ↵̄2

s

✓
�2
0

✏2
� �1

2✏

◆

� ↵̄3
s

✓
�3
0

✏3
� 7

6

�0�1

✏2
+

�2

3✏

◆
+O(↵̄4

s) . (16)

The explicit form of the �-function coe�cients �i is im-
material for our discussion; for the reader’s convenience,
we provide them in the Supplemental Material. The UV-
renormalized helicity amplitudes H�, ren are obtained by

expanding eq. (6) in ↵̄s(µ). In particular, H(k)
�, ren is the

(color- and helicity-stripped) coe�cient of the ↵̄k
s term.

The renormalized amplitudes still contain poles of IR
origin, whose structure is universal. The infrared struc-
ture of QCD scattering amplitudes was first studied at
two loops in [45] and later extended to general processes
and three loops in [46–54]. Up to three loop order, one
can write [49, 50]

H�, ren = ZIR H�, fin , (17)

where H�, fin are finite remainders and ZIR is a color
matrix that acts on the {Ci} basis (7). It can be written
in terms of the so-called soft anomalous dimension � as

ZIR = P exp

Z 1

µ

dµ0

µ0 �({p}, µ
0)

�
, (18)

where the path ordering operator P reorganizes color
operators in increasing values of µ0 from left to right

Helicity amplitudes

H−+−+ = t2 ( ℱ8

su
−

ℱ3

2s
+

ℱ6

2u
−

ℱ1

4 )

        where 𝒜λ = sλ Hλ λ = { + + + + , − + + + , + − + + , etc}

𝒜 =
8

∑
j=1

ℱi Ti

For example:

[Caola, Chakraborty, Gambuti, Manteuffel, Tancredi, ’21]
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COLOR AND LORENTZ DECOMPOSITION

We write the scattering amplitude for gg ! gg as

Aa1a2a3a4 = 4⇡↵s,b
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where ↵s,b is the bare strong coupling, A[i] are color-
ordered partial amplitudes, and the color basis {Ci} reads

C1 = Tr[T a1T a2T a3T a4 ] + Tr[T a1T a4T a3T a2 ],
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C5 = Tr[T a1T a3 ]Tr[T a2T a4 ],
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Here the adjoint representation index ai corresponds to
the i-th external gluon, while T a

ij are the fundamen-

tal SU(Nc) generators normalised such that Tr[T aT b] =
1
2�

ab. As it is well known, the partial amplitudes A[i] are
independently gauge invariant. The advantage of using
a color-ordered decomposition is that, by construction,
the amplitudes A[i] are not all independent under cross-
ings of the external momenta. We can restrict ourselves
to compute only two of the structures above and obtain
all other partial amplitudes by crossing symmetry. For
definiteness, we choose to focus on A[1] and A[4].

In order to compute A[1] and A[4], it is convenient
to further decompose them with respect to a basis of
Lorentz covariant tensor structures. In the following we
denote the polarization vector of the i-th external gluon
as ✏(pi) = ✏i, which satisfies the transversality condition
✏i·pi = 0. By making the cyclic gauge choice ✏i·pi+1 = 0,
with p5 = p1, and restricting ourselves to physical four-
dimensional external states, one finds [22, 23] that each
partial amplitude can be decomposed as

A[j](s, t) =
8X

i=1

F [j]
i Ti, (8)

where the coe�cient functions F [j]
i are usually referred

to as form factors and the tensors Ti are defined as

T1 = ✏1 ·p3 ✏2 ·p1 ✏3 ·p1 ✏4 ·p2 ,

T2 = ✏1 ·p3 ✏2 ·p1 ✏3 ·✏4, T3 = ✏1 ·p3 ✏3 ·p1 ✏2 ·✏4,
T4 = ✏1 ·p3 ✏4 ·p2 ✏2 ·✏3, T5 = ✏2 ·p1 ✏3 ·p1 ✏1 ·✏4,
T6 = ✏2 ·p1 ✏4 ·p2 ✏1 ·✏3, T7 = ✏3 ·p1 ✏4 ·p2 ✏1 ·✏2,
T8 = ✏1 ·✏2 ✏3 ·✏4 + ✏1 ·✏4 ✏2 ·✏3 + ✏1 ·✏3 ✏2 ·✏4 . (9)

The form factors can be extracted by defining a set of
eight projectors Pi which are in one to one correspon-
dence with the tensors in eq. (9), such that Pi · Tj =P

pol PiTj = �ij .

HELICITY AMPLITUDES

In this letter we are ultimately interested in the he-
licity amplitudes A�, where � = {�1,�2,�3,�4} and �i

is the helicity of the i-th external particle. In the four-
gluon case we need to consider 24 = 16 possible helicity
choices. However, only 8 helicity amplitudes are inde-
pendent as the remaining ones can be obtained by parity
conjugation, which e↵ectively transforms the helicities as
� ! ��. The independent helicity amplitudes are in one
to one correspondence with the Lorentz tensors of eq. (9)
and their color stripped counterparts can in fact be writ-

ten as a linear combination of the form factors F [j]
i . In

order to make this relation explicit, we start from the
tensor decomposition in eq. (8) and employ the spinor-
helicity formalism [24] to fix the helicities of the external
gluons. We write the gluon polarization vectors for fixed
± helicity as

✏µi,+ =
[i+ 1|�µ|iip
2[i|i+ 1]

, ✏µi,� =
[i|�µ|i+ 1ip
2hi+ 1|ii

, (10)

where we used the cyclic gauge choice introduced above,
identifying |5] ⌘ |1] and |5i ⌘ |1i. By inserting the
specific representation of eq. (10) in eq. (8), we can write
the color-ordered partial amplitudes as

A[i]
� = H[i]

� s�, (11)

etc…

PARTONIC CHANNEL  gg → gg
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such that in the physical scattering region, one has

s > 0 , t < 0 , u < 0 ) 0 < x < 1. (3)

We use the helicity of the incoming quark �q and of
the incoming photons �3,4 to label the scattering ampli-
tude of the process. We denote the scattering amplitude
between well-defined helicity states by A�q�3�4 . Using
parity, charge-conjugation and symmetry relations, it is
easy to see that there are only two independent helicity
configurations [10, 12]. In what follows, for clarity we will
compute the over-complete set of four helicity configura-
tions {�q�3�4} = {L � �}, {L � +}, {L + �}, {L + +},
which allow us to obtain the remaining ones for right-
handed quarks by a simple charge-conjugation transfor-
mation, as it will be discussed below.

In order to compute the helicity amplitudes, we reg-
ulate both infrared and ultraviolet divergences using di-
mensional regularisation, i.e. we work in d = 4 � 2✏
dimensions. By choosing a gauge such that

✏i · pi = 0 , i = 3, 4 and ✏3 · p2 = ✏4 · p1 = 0 , (4)

it is easy to see that, at any order in QCD perturbation
theory, Lorentz covariance dictates that the amplitude
can be parametrised as

A(s, t) =
5X

i=1

Fi(s, t) ū(p2)�
µ⌫
i u(p1)✏3,µ✏4,⌫ (5)

where u and ū are the spinors for the incoming quark and
antiquark, respectively, and the five Lorentz tensors �µ⌫

i
are defined as

�µ⌫
1 = �µp⌫2 , �µ⌫

2 = �⌫pµ1 ,

�µ⌫
3 = /p3 p

µ
1p

⌫
2 , �µ⌫

4 = /p3 g
µ⌫ ,

�µ⌫
5 = �µ/p3 �

⌫ . (6)

The functions Fi(s, t) are scalar form factors which only
depend on the Mandelstam invariants and on the number
of dimensions d. Since the colour structure is straight-
forward, we keep colour indices implicit here. For ease of
typing, we define the five independent structures

Ti = ū(p2)�
µ⌫
i u(p1)✏3,µ✏4,⌫ , (7)

and from now on, with a slight abuse of language, we refer
to the Ti as the independent tensors for the problem at
hand.

At first sight, it may seem puzzling that we find five
independent tensor structures when we have only four
helicity amplitudes (not considering charge conjugation).
This mismatch is however easy to explain: the decompo-
sition Eq. (5) is valid for arbitrary dimension d. For four-
dimensional external states, the five tensor structures Ti

are no longer independent, and four of them are enough
to span the whole space [54, 55]. Since eventually we are

only interested in the d ! 4 limit, it is convenient to
reorganise the tensors Ti and choose for T5 a linear com-
bination which is identically zero when four-dimensional
external states are considered. This can be achieved by
choosing

T i = Ti , i = 1, ..., 4 ,

T 5 = T5 �
u

s
T1 +

u

s
T2 �

2

s
T3 + T4 . (8)

We then write the scattering amplitude as

A(s, t) =
5X

i=1

F i(s, t)T i , (9)

where the form factors F i are suitable linear combina-
tions of the original Fi, whose explicit form will be ir-
relevant in the following. All the non-trivial information
for the process of Eq. (1) is encoded in the form factors
F i. We stress once more that, while all five form factors
are in general required for the result in Conventional Di-
mensional Regularisation (CDR), only the first four are
enough to compute the helicity amplitudes in tHV, see
the supplement material for more details.
Eq. (9) can be inverted to select individual form fac-

tors. This is done by introducing suitable projectors op-
erators defined such that1

X

pol

PiA(s, t) = F i(s, t) , (10)

where we use d dimensional polarization sums. Since
the five T i form a basis for our space, we can write the
projectors as

Pi =
5X

k=1

cikT
†
k . (11)

A straightforward calculation, reported in the supple-
ment material, shows that the matrix cik is block-
diagonal

cik =


C4⇥4 0
0 c55

�
. (12)

As a consequence, the fifth tensor T 5 decouples from the
other four. This, combined with the fact that it always
evaluates to zero for four-dimensional external states,
shows that the helicity amplitudes receive contributions
only from the first four form factors in Eq. (9). In other
words, there is a one-to-one correspondence between he-

licity amplitudes and form factors in the ’t Hooft-Veltman

1 The individual form factors are not gauge-invariant, see Eq. (4),
and the reference vector q3(4) = p2(1) should be used in the
polarisation sums.
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such that in the physical scattering region, one has

s > 0 , t < 0 , u < 0 ) 0 < x < 1. (3)

We use the helicity of the incoming quark �q and of
the incoming photons �3,4 to label the scattering ampli-
tude of the process. We denote the scattering amplitude
between well-defined helicity states by A�q�3�4 . Using
parity, charge-conjugation and symmetry relations, it is
easy to see that there are only two independent helicity
configurations [10, 12]. In what follows, for clarity we will
compute the over-complete set of four helicity configura-
tions {�q�3�4} = {L � �}, {L � +}, {L + �}, {L + +},
which allow us to obtain the remaining ones for right-
handed quarks by a simple charge-conjugation transfor-
mation, as it will be discussed below.

In order to compute the helicity amplitudes, we reg-
ulate both infrared and ultraviolet divergences using di-
mensional regularisation, i.e. we work in d = 4 � 2✏
dimensions. By choosing a gauge such that

✏i · pi = 0 , i = 3, 4 and ✏3 · p2 = ✏4 · p1 = 0 , (4)

it is easy to see that, at any order in QCD perturbation
theory, Lorentz covariance dictates that the amplitude
can be parametrised as

A(s, t) =
5X

i=1

Fi(s, t) ū(p2)�
µ⌫
i u(p1)✏3,µ✏4,⌫ (5)

where u and ū are the spinors for the incoming quark and
antiquark, respectively, and the five Lorentz tensors �µ⌫

i
are defined as
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2 = �⌫pµ1 ,
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3 = /p3 p

µ
1p

⌫
2 , �µ⌫

4 = /p3 g
µ⌫ ,

�µ⌫
5 = �µ/p3 �

⌫ . (6)

The functions Fi(s, t) are scalar form factors which only
depend on the Mandelstam invariants and on the number
of dimensions d. Since the colour structure is straight-
forward, we keep colour indices implicit here. For ease of
typing, we define the five independent structures

Ti = ū(p2)�
µ⌫
i u(p1)✏3,µ✏4,⌫ , (7)

and from now on, with a slight abuse of language, we refer
to the Ti as the independent tensors for the problem at
hand.

At first sight, it may seem puzzling that we find five
independent tensor structures when we have only four
helicity amplitudes (not considering charge conjugation).
This mismatch is however easy to explain: the decompo-
sition Eq. (5) is valid for arbitrary dimension d. For four-
dimensional external states, the five tensor structures Ti

are no longer independent, and four of them are enough
to span the whole space [54, 55]. Since eventually we are

only interested in the d ! 4 limit, it is convenient to
reorganise the tensors Ti and choose for T5 a linear com-
bination which is identically zero when four-dimensional
external states are considered. This can be achieved by
choosing

T i = Ti , i = 1, ..., 4 ,

T 5 = T5 �
u

s
T1 +

u

s
T2 �

2

s
T3 + T4 . (8)

We then write the scattering amplitude as

A(s, t) =
5X

i=1

F i(s, t)T i , (9)

where the form factors F i are suitable linear combina-
tions of the original Fi, whose explicit form will be ir-
relevant in the following. All the non-trivial information
for the process of Eq. (1) is encoded in the form factors
F i. We stress once more that, while all five form factors
are in general required for the result in Conventional Di-
mensional Regularisation (CDR), only the first four are
enough to compute the helicity amplitudes in tHV, see
the supplement material for more details.
Eq. (9) can be inverted to select individual form fac-

tors. This is done by introducing suitable projectors op-
erators defined such that1

X

pol

PiA(s, t) = F i(s, t) , (10)

where we use d dimensional polarization sums. Since
the five T i form a basis for our space, we can write the
projectors as

Pi =
5X

k=1

cikT
†
k . (11)

A straightforward calculation, reported in the supple-
ment material, shows that the matrix cik is block-
diagonal

cik =


C4⇥4 0
0 c55

�
. (12)

As a consequence, the fifth tensor T 5 decouples from the
other four. This, combined with the fact that it always
evaluates to zero for four-dimensional external states,
shows that the helicity amplitudes receive contributions
only from the first four form factors in Eq. (9). In other
words, there is a one-to-one correspondence between he-

licity amplitudes and form factors in the ’t Hooft-Veltman

1 The individual form factors are not gauge-invariant, see Eq. (4),
and the reference vector q3(4) = p2(1) should be used in the
polarisation sums.

𝒜(s, t) =
5

∑
i=1

ℱi(s, t)Ti

To compute helicity amplitudes in standard way, start from generic tensor decomposition
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such that in the physical scattering region, one has

s > 0 , t < 0 , u < 0 ) 0 < x < 1. (3)

We use the helicity of the incoming quark �q and of
the incoming photons �3,4 to label the scattering ampli-
tude of the process. We denote the scattering amplitude
between well-defined helicity states by A�q�3�4 . Using
parity, charge-conjugation and symmetry relations, it is
easy to see that there are only two independent helicity
configurations [10, 12]. In what follows, for clarity we will
compute the over-complete set of four helicity configura-
tions {�q�3�4} = {L � �}, {L � +}, {L + �}, {L + +},
which allow us to obtain the remaining ones for right-
handed quarks by a simple charge-conjugation transfor-
mation, as it will be discussed below.

In order to compute the helicity amplitudes, we reg-
ulate both infrared and ultraviolet divergences using di-
mensional regularisation, i.e. we work in d = 4 � 2✏
dimensions. By choosing a gauge such that

✏i · pi = 0 , i = 3, 4 and ✏3 · p2 = ✏4 · p1 = 0 , (4)

it is easy to see that, at any order in QCD perturbation
theory, Lorentz covariance dictates that the amplitude
can be parametrised as

A(s, t) =
5X

i=1

Fi(s, t) ū(p2)�
µ⌫
i u(p1)✏3,µ✏4,⌫ (5)

where u and ū are the spinors for the incoming quark and
antiquark, respectively, and the five Lorentz tensors �µ⌫

i
are defined as

�µ⌫
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µ⌫ ,
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The functions Fi(s, t) are scalar form factors which only
depend on the Mandelstam invariants and on the number
of dimensions d. Since the colour structure is straight-
forward, we keep colour indices implicit here. For ease of
typing, we define the five independent structures

Ti = ū(p2)�
µ⌫
i u(p1)✏3,µ✏4,⌫ , (7)

and from now on, with a slight abuse of language, we refer
to the Ti as the independent tensors for the problem at
hand.

At first sight, it may seem puzzling that we find five
independent tensor structures when we have only four
helicity amplitudes (not considering charge conjugation).
This mismatch is however easy to explain: the decompo-
sition Eq. (5) is valid for arbitrary dimension d. For four-
dimensional external states, the five tensor structures Ti

are no longer independent, and four of them are enough
to span the whole space [54, 55]. Since eventually we are

only interested in the d ! 4 limit, it is convenient to
reorganise the tensors Ti and choose for T5 a linear com-
bination which is identically zero when four-dimensional
external states are considered. This can be achieved by
choosing

T i = Ti , i = 1, ..., 4 ,

T 5 = T5 �
u

s
T1 +

u

s
T2 �

2

s
T3 + T4 . (8)

We then write the scattering amplitude as

A(s, t) =
5X

i=1

F i(s, t)T i , (9)

where the form factors F i are suitable linear combina-
tions of the original Fi, whose explicit form will be ir-
relevant in the following. All the non-trivial information
for the process of Eq. (1) is encoded in the form factors
F i. We stress once more that, while all five form factors
are in general required for the result in Conventional Di-
mensional Regularisation (CDR), only the first four are
enough to compute the helicity amplitudes in tHV, see
the supplement material for more details.
Eq. (9) can be inverted to select individual form fac-

tors. This is done by introducing suitable projectors op-
erators defined such that1

X

pol

PiA(s, t) = F i(s, t) , (10)

where we use d dimensional polarization sums. Since
the five T i form a basis for our space, we can write the
projectors as

Pi =
5X

k=1

cikT
†
k . (11)

A straightforward calculation, reported in the supple-
ment material, shows that the matrix cik is block-
diagonal

cik =


C4⇥4 0
0 c55

�
. (12)

As a consequence, the fifth tensor T 5 decouples from the
other four. This, combined with the fact that it always
evaluates to zero for four-dimensional external states,
shows that the helicity amplitudes receive contributions
only from the first four form factors in Eq. (9). In other
words, there is a one-to-one correspondence between he-

licity amplitudes and form factors in the ’t Hooft-Veltman

1 The individual form factors are not gauge-invariant, see Eq. (4),
and the reference vector q3(4) = p2(1) should be used in the
polarisation sums.
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such that in the physical scattering region, one has

s > 0 , t < 0 , u < 0 ) 0 < x < 1. (3)

We use the helicity of the incoming quark �q and of
the incoming photons �3,4 to label the scattering ampli-
tude of the process. We denote the scattering amplitude
between well-defined helicity states by A�q�3�4 . Using
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easy to see that there are only two independent helicity
configurations [10, 12]. In what follows, for clarity we will
compute the over-complete set of four helicity configura-
tions {�q�3�4} = {L � �}, {L � +}, {L + �}, {L + +},
which allow us to obtain the remaining ones for right-
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5
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ℱi(s, t)Ti

To compute helicity amplitudes in standard way, start from generic tensor decomposition

Not linearly independent in d=4
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external states are considered. This can be achieved by
choosing

T i = Ti , i = 1, ..., 4 ,

T 5 = T5 �
u

s
T1 +

u

s
T2 �

2

s
T3 + T4 . (8)

We then write the scattering amplitude as

A(s, t) =
5X

i=1

F i(s, t)T i , (9)

where the form factors F i are suitable linear combina-
tions of the original Fi, whose explicit form will be ir-
relevant in the following. All the non-trivial information
for the process of Eq. (1) is encoded in the form factors
F i. We stress once more that, while all five form factors
are in general required for the result in Conventional Di-
mensional Regularisation (CDR), only the first four are
enough to compute the helicity amplitudes in tHV, see
the supplement material for more details.
Eq. (9) can be inverted to select individual form fac-

tors. This is done by introducing suitable projectors op-
erators defined such that1

X

pol

PiA(s, t) = F i(s, t) , (10)

where we use d dimensional polarization sums. Since
the five T i form a basis for our space, we can write the
projectors as

Pi =
5X

k=1

cikT
†
k . (11)

A straightforward calculation, reported in the supple-
ment material, shows that the matrix cik is block-
diagonal

cik =


C4⇥4 0
0 c55

�
. (12)

As a consequence, the fifth tensor T 5 decouples from the
other four. This, combined with the fact that it always
evaluates to zero for four-dimensional external states,
shows that the helicity amplitudes receive contributions
only from the first four form factors in Eq. (9). In other
words, there is a one-to-one correspondence between he-

licity amplitudes and form factors in the ’t Hooft-Veltman

1 The individual form factors are not gauge-invariant, see Eq. (4),
and the reference vector q3(4) = p2(1) should be used in the
polarisation sums.
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of dimensions d. Since the colour structure is straight-
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for the process of Eq. (1) is encoded in the form factors
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are in general required for the result in Conventional Di-
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As a consequence, the fifth tensor T 5 decouples from the
other four. This, combined with the fact that it always
evaluates to zero for four-dimensional external states,
shows that the helicity amplitudes receive contributions
only from the first four form factors in Eq. (9). In other
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licity amplitudes and form factors in the ’t Hooft-Veltman
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To compute helicity amplitudes in standard way, start from generic tensor decomposition

Not linearly independent in d=4 lim
d→4 (T5 −

u
s

T1 +
u
s

T2 −
2
s

T3 + T4) = 0



𝒜λqλ3λ4
(s, t) =

5

∑
i=1

ℱi(s, t)[Ti]λqλ3λ4,d=4

PARTONIC CHANNEL qq̄ → gg

One of five tensors is not 
independent in d=4 

lim
d→4 (T5 −

u
s

T1 +
u
s

T2 −
2
s

T3 + T4) = 0

Helicity amplitudes in tHV can be computed by fixing helicities on the tensors in d=4
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such that in the physical scattering region, one has

s > 0 , t < 0 , u < 0 ) 0 < x < 1. (3)

We use the helicity of the incoming quark �q and of
the incoming photons �3,4 to label the scattering ampli-
tude of the process. We denote the scattering amplitude
between well-defined helicity states by A�q�3�4 . Using
parity, charge-conjugation and symmetry relations, it is
easy to see that there are only two independent helicity
configurations [10, 12]. In what follows, for clarity we will
compute the over-complete set of four helicity configura-
tions {�q�3�4} = {L � �}, {L � +}, {L + �}, {L + +},
which allow us to obtain the remaining ones for right-
handed quarks by a simple charge-conjugation transfor-
mation, as it will be discussed below.

In order to compute the helicity amplitudes, we reg-
ulate both infrared and ultraviolet divergences using di-
mensional regularisation, i.e. we work in d = 4 � 2✏
dimensions. By choosing a gauge such that

✏i · pi = 0 , i = 3, 4 and ✏3 · p2 = ✏4 · p1 = 0 , (4)

it is easy to see that, at any order in QCD perturbation
theory, Lorentz covariance dictates that the amplitude
can be parametrised as

A(s, t) =
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The functions Fi(s, t) are scalar form factors which only
depend on the Mandelstam invariants and on the number
of dimensions d. Since the colour structure is straight-
forward, we keep colour indices implicit here. For ease of
typing, we define the five independent structures

Ti = ū(p2)�
µ⌫
i u(p1)✏3,µ✏4,⌫ , (7)

and from now on, with a slight abuse of language, we refer
to the Ti as the independent tensors for the problem at
hand.

At first sight, it may seem puzzling that we find five
independent tensor structures when we have only four
helicity amplitudes (not considering charge conjugation).
This mismatch is however easy to explain: the decompo-
sition Eq. (5) is valid for arbitrary dimension d. For four-
dimensional external states, the five tensor structures Ti

are no longer independent, and four of them are enough
to span the whole space [54, 55]. Since eventually we are

only interested in the d ! 4 limit, it is convenient to
reorganise the tensors Ti and choose for T5 a linear com-
bination which is identically zero when four-dimensional
external states are considered. This can be achieved by
choosing

T i = Ti , i = 1, ..., 4 ,

T 5 = T5 �
u

s
T1 +
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s
T3 + T4 . (8)

We then write the scattering amplitude as

A(s, t) =
5X

i=1

F i(s, t)T i , (9)

where the form factors F i are suitable linear combina-
tions of the original Fi, whose explicit form will be ir-
relevant in the following. All the non-trivial information
for the process of Eq. (1) is encoded in the form factors
F i. We stress once more that, while all five form factors
are in general required for the result in Conventional Di-
mensional Regularisation (CDR), only the first four are
enough to compute the helicity amplitudes in tHV, see
the supplement material for more details.
Eq. (9) can be inverted to select individual form fac-

tors. This is done by introducing suitable projectors op-
erators defined such that1

X

pol

PiA(s, t) = F i(s, t) , (10)

where we use d dimensional polarization sums. Since
the five T i form a basis for our space, we can write the
projectors as

Pi =
5X

k=1

cikT
†
k . (11)

A straightforward calculation, reported in the supple-
ment material, shows that the matrix cik is block-
diagonal

cik =


C4⇥4 0
0 c55
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. (12)

As a consequence, the fifth tensor T 5 decouples from the
other four. This, combined with the fact that it always
evaluates to zero for four-dimensional external states,
shows that the helicity amplitudes receive contributions
only from the first four form factors in Eq. (9). In other
words, there is a one-to-one correspondence between he-

licity amplitudes and form factors in the ’t Hooft-Veltman

1 The individual form factors are not gauge-invariant, see Eq. (4),
and the reference vector q3(4) = p2(1) should be used in the
polarisation sums.
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Supplemental material

The projectors

The projectors defined in Eq. (11) can be found in the following way. Contracting them with the scattering
amplitude in Eq. (9) and summing over the helicities of the external states in d space-time dimensions, we require

X

pol

PiA(s, t) = F i(s, t) . (24)

Note that following the choice in Eq. (4), the d dimensional polarisation sum for the photons reads

X

pol

✏µ3 ✏
⇤⌫
3 = �gµ⌫ +

pµ2p
⌫
3 + pµ3p

⌫
2

p2 · p3

X

pol

✏µ4 ✏
⇤⌫
4 = �gµ⌫ +

pµ1p
⌫
4 + pµ4p

⌫
1

p1 · p4
.

(25)

If we define the matrix Mij =
P

pol T
†
iT j , the coe�cients of the projectors can be expressed rather compactly as

cik =
�
M�1

�
ik

with

M�1 =
1

(d� 3)(s+ u)

✓
X 0
0 �

1
2u(d�4)

◆
, X =

0

BBB@

�
u
2s2 0 �

u
2s2(s+u) 0

0 �
u
2s2

u
2s2(s+u) 0

�
u

2s2(s+u)
u

2s2(s+u) �
du2+4s2+4su
2s2u(s+u)2

2s+u
2su(s+u)

0 0 2s+u
2su(s+u) �

1
2u

1

CCCA
. (26)

As one can observe from Eq. (26), the fifth tensor T 5 decouples from the other four. This, combined with the fact
that it is always zero for four dimensional external states, is enough to prove that the helicity amplitudes in four
dimensions receive contribution only from the first four form factors in Eq. (9), see Eqs (20).

It is possible to use our projectors to compute the generic n-loop ⇥ m-loop contraction in Conventional Dimensional
Regularisation (CDR), summed over colours and polarisations. A simple exercise gives

1

Nc
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pol,col

A
(n)
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+
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4 (s� t)
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(m)⇤
5 F

(n)
5 , (27)

where Nc = 3 is the number of colours. By direct inspection of this formula it is then obvious that, with our choice
of tensors, the fifth form factor is only relevant to obtain results for the higher orders in ✏ of the scattering amplitude
in the CDR scheme.

The infrared structure of the loop amplitude

In this appendix, we define the explicit formulas for the infrared subtraction operators Ii required to define our
finite remainders Eq. (18). We follow the notation of Ref. [89] and refer the reader to that reference for a detailed

Fifth tensor required to recover CDR result starting at  𝒪(ϵ)


