TENSOR DECOMPOSITION FOR MULTILOOP MULTILEG HELICITY AMPLITUDES

Loops and Legs in Quantum Field Theory Ettal – 26/04/2022

Lorenzo Tancredi – Technical University Munich

Collaboration with *Tiziano Peraro* arXiv:2012.00820, arXiv:1906.03298

Technische Universität München

$$\sigma_{q\bar{q}\to gg} = \int [dPS] \left| \mathcal{M}_{q\bar{q}\to gg} \right|^2$$

$$\left|\mathcal{M}_{q\bar{q}\to gg}\right|^{2} = \left|\mathcal{M}_{q\bar{q}\to gg}^{LO}\right|^{2} + \left(\frac{\alpha_{s}}{2\pi}\right) \left|\mathcal{M}_{q\bar{q}\to gg}^{NLO}\right|^{2} + \left(\frac{\alpha_{s}}{2\pi}\right)^{2} \left|\mathcal{M}_{q\bar{q}\to gg}^{NNLO}\right|^{2} + \dots$$

$$\sigma_{q\bar{q}\to gg} = \int [dPS] \left| \mathcal{M}_{q\bar{q}\to gg} \right|^2$$

$$\left|\mathcal{M}_{q\bar{q}\rightarrow gg}\right|^{2} = \left|\mathcal{M}_{q\bar{q}\rightarrow gg}^{LO}\right|^{2} + \left(\frac{\alpha_{s}}{2\pi}\right) \left|\mathcal{M}_{q\bar{q}\rightarrow gg}^{NLO}\right|^{2} + \left(\frac{\alpha_{s}}{2\pi}\right)^{2} \left|\mathcal{M}_{q\bar{q}\rightarrow gg}^{NNLO}\right|^{2} + \dots$$

$$\sigma_{q\bar{q}\to gg} = \int [dPS] \left| \mathcal{M}_{q\bar{q}\to gg} \right|^2$$

$$\sigma_{q\bar{q}\to gg} = \int [dPS] \left| \mathcal{M}_{q\bar{q}\to gg} \right|^2$$

$$\left|\mathcal{M}_{q\bar{q}\to gg}\right|^{2} = \left|\mathcal{M}_{q\bar{q}\to gg}^{LO}\right|^{2} + \left(\frac{\alpha_{s}}{2\pi}\right)\left|\mathcal{M}_{q\bar{q}\to gg}^{NLO}\right|^{2} + \left(\frac{\alpha_{s}}{2\pi}\right)^{2}\left|\mathcal{M}_{q\bar{q}\to gg}^{NNLO}\right|^{2} + \dots$$

Calculations involve Feynman graphs with increasing numbers of loops and legs

MULTILOOP SCATTERING AMPLITUDES: THE STANDARD WAY

One way to go about it: **standard approach** (divide et impera)

Standard steps:

1) Obtain the **integrand** (From Feynman diagrams, Unitarity, ...)

MULTILOOP SCATTERING AMPLITUDES: THE STANDARD WAY

One way to go about it: **standard approach** (divide et impera)

Standard steps:

1) Obtain the **integrand** (From Feynman diagrams, Unitarity, ...)

2) Reduce this integrand to a **basis** of **master integrals** (IBPs, Finite Fields etc...)

MULTILOOP SCATTERING AMPLITUDES: THE STANDARD WAY

One way to go about it: **standard approach** (divide et impera)

Standard steps:

- 1) Obtain the integrand (From Feynman diagrams, Unitarity, ...)
- 2) Reduce this integrand to a **basis** of **master integrals** (IBPs, Finite Fields etc...)
- 3) Compute the master integrals (Diff Equations, Canonical bases, polylogs etc...)

HOW TO GET THE INTEGRAND

First problem is *"getting the integrand"*:

= \sum Feynman Diagrams \rightarrow ?

Problems:

Number of diagrams grows factorially (not a real problem though, at least for reasonable processes in QCD...)

HOW TO GET THE INTEGRAND

First problem is *"getting the integrand"*:

= \sum Feynman Diagrams \rightarrow ?

Problems:

- Number of diagrams grows factorially (not a real problem though, at least for reasonable processes in QCD...)
- More serious problem(s): "tensor decomposition" -> each diagram produces thousands of terms!

TENSOR DECOMPOSITION

Strip it of Lorentz and Dirac structures

TENSOR DECOMPOSITION

Scalar Feynman Integrals are what we know how to compute

Can be achieved in different ways

It can become a real hassle at high loops and multiplicities

A widely used successful method is **projector / form factor method**

The idea is very simple:

1. Use Lorentz invariance, gauge invariance (& any symmetries) to parametrise the scattering amplitude in terms of tensor structures and scalar form factors

2. Define **projector operators** to **extract** these form factors from the corresponding Feynman diagrams

The idea is very simple:

- 1. Use Lorentz invariance, gauge invariance (& any symmetries) to parametrise the scattering amplitude in terms of tensor structures and scalar form factors
- 2. Define **projector operators** to **extract** these form factors from the corresponding Feynman diagrams

The idea is very simple:

- 1. Use Lorentz invariance, gauge invariance (& any symmetries) to parametrise the scattering amplitude in terms of tensor structures and scalar form factors
- 2. Define **projector operators** to **extract** these form factors from the corresponding Feynman diagrams

$$\bigvee_{\mu} \bigvee_{\nu} \sum_{\nu} \sum_{i=1}^{n} F_{i} T_{i}^{\mu\nu} = \left(F_{1}(p, m^{2}) p^{\mu} p^{\nu} + F_{2}(p, m^{2}) g^{\mu\nu} \right)$$

Lorentz Invariance

The idea is very simple:

- 1. Use Lorentz invariance, gauge invariance (& any symmetries) to parametrise the scattering amplitude in terms of tensor structures and scalar form factors
- 2. Define **projector operators** to **extract** these form factors from the corresponding Feynman diagrams

$$\bigvee_{\mu} \bigvee_{\nu} = \sum_{i=1}^{n} F_i T_i^{\mu\nu} = \left(F_1(p, m^2) p^{\mu} p^{\nu} + F_2(p, m^2) g^{\mu\nu} \right)$$

Lorentz Invariance

$$= \left(g^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^2}\right)F(p,m^2)$$

Gauge Invariance

$$\underset{\mu}{\swarrow} \underbrace{ \left(g^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^2} \right)}_{\nu} F(p, m^2) = \Pi^{\mu\nu}$$

Non perturbative

.

$$\bigvee_{\mu} \bigvee_{\nu} = \left(g^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^2}\right) F(p, m^2) = \Pi^{\mu\nu}$$

Non perturbative

To extract
$$F(p, m^2)$$
 I define a projector operator $P_{\mu\nu} = C(d, p, m^2) \left(g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2} \right)$

I can then determine the coefficient $C(d, p, m^2)$ by imposing $P_{\mu\nu}\Pi^{\mu\nu} = F(p, m^2)$

We find
$$P_{\mu\nu} = \frac{1}{d-1} \left(g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2} \right)$$

$$\bigwedge_{\mu} \bigvee_{\nu} = \left(g^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^2}\right) F(p, m^2) = \Pi^{\mu\nu}$$

Non perturbative

To extract
$$F(p, m^2)$$
 I define a projector operator $P_{\mu\nu} = C(d, p, m^2) \left(g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2} \right)$

I can then determine the coefficient $C(d, p, m^2)$ by imposing $P_{\mu\nu}\Pi^{\mu\nu} = F(p, m^2)$

We find $P_{\mu\nu} = \frac{1}{d-1} \left(g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2} \right)$

All **algebra** has to be performed in **d space-time dimensions** to be able to use the method in **CDR** (Conventional Dimensional Regularisation)

Works in general, no restrictions of any kinds in principle:

- 1. Pick your favourite process
- 2. Use Lorentz + gauge + any symmetry (parity, Bose etc...) to find minimal set of tensor structures in d space-time dimensions: $\mathscr{A} = \sum_{i} F_{j} T_{j}$

3. Derive projectors operators to single out corresponding form factors: $\mathcal{P}_{i}\mathcal{A} = F_{i}$

$$M_{ij} = \sum_{pol} T_i^{\dagger} T_j \qquad \mathscr{P}_j = \sum_k \left(M^{-1} \right)_{jk} T_k^{\dagger}$$

4. Apply these projectors on your favourite representation for the scattering amplitude

Seems neat. Where are the **issues**?

Let's have a look at a more interesting example: massless quark scattering $q\bar{q} \rightarrow Q\bar{Q}$ Studied up to 2 loops first by N. Glover in <u>hep-ph/0401119</u>

 $0 \to q(p_1, \lambda_1) + \bar{q}(p_2, \lambda_2) + Q(p_3, \lambda_3) + \bar{Q}(p_4, \lambda_4)$

Seems neat. Where are the **issues**?

Let's have a look at a more interesting example: massless quark scattering $q\bar{q} \rightarrow QQ$ Studied up to 2 loops first by N. Glover in <u>hep-ph/0401119</u>

$$0 \to q(p_1, \lambda_1) + \bar{q}(p_2, \lambda_2) + Q(p_3, \lambda_3) + \bar{Q}(p_4, \lambda_4)$$

What is the most general d-dimensional tensor structure?

$$T \sim \bar{u}(p_1) \Gamma^{\mu_1,...,\mu_n} u(p_2) \ \bar{u}(p_3) \Gamma_{\mu_1,...,\mu_n} u(p_4)$$
 When do I stop?

Seems neat. Where are the **issues**?

Let's have a look at a more interesting example: massless quark scattering $q\bar{q} \rightarrow QQ$ Studied up to 2 loops first by N. Glover in <u>hep-ph/0401119</u>

$$0 \to q(p_1, \lambda_1) + \bar{q}(p_2, \lambda_2) + Q(p_3, \lambda_3) + \bar{Q}(p_4, \lambda_4)$$

What is the most general d-dimensional tensor structure?

Problem: *γ*-algebra is not closed in d-dimensions

At arbitrary loops, arbitrary fermion lines with arbitrary numbers of matrices...

 $0 \to q(p_1, \lambda_1) + \bar{q}(p_2, \lambda_2) + Q(p_3, \lambda_3) + \bar{Q}(p_4, \lambda_4)$

Let's follow standard approach @ 2 loops:

$$\mathscr{A}_{qqQQ}^{(2l)} = \sum_{j=1}^{6} A_j D_j$$

 $0 \to q(p_1, \lambda_1) + \bar{q}(p_2, \lambda_2) + Q(p_3, \lambda_3) + \bar{Q}(p_4, \lambda_4)$

Let's follow standard approach @ 2 loops:

$$\mathscr{A}_{qqQQ}^{(2l)} = \sum_{j=1}^{6} A_j D_j$$

$$\mathcal{D}_1 = \bar{u}(p_1)\gamma_{\mu_1}u(p_2) \ \bar{u}(p_3)\gamma_{\mu_1}u(p_4),$$

- $\mathcal{D}_2 = \bar{u}(p_1) \not p_3 u(p_2) \ \bar{u}(p_3) \not p_1 u(p_4),$
- $\mathcal{D}_3 = \bar{u}(p_1)\gamma_{\mu_1}\gamma_{\mu_2}\gamma_{\mu_3}u(p_2) \ \bar{u}(p_3)\gamma_{\mu_1}\gamma_{\mu_2}\gamma_{\mu_3}u(p_4),$
- $\mathcal{D}_5 = \bar{u}(p_1)\gamma_{\mu_1}\gamma_{\mu_2}\gamma_{\mu_3}\gamma_{\mu_4}\gamma_{\mu_5}u(p_2) \ \bar{u}(p_3)\gamma_{\mu_1}\gamma_{\mu_2}\gamma_{\mu_3}\gamma_{\mu_4}\gamma_{\mu_5}u(p_4),$

Easy to see that at 2 loops we cannot have more than 5 γ matrices per fermion string But at 3 loops I would need also strings with 7 γ , etc etc...

Define the matrix $M_{ij} = \sum_{pol} D_i^{\dagger} D_j$, its inverse provides us with the projectors

Define the matrix $M_{ij} = \sum D_i^{\dagger} D_j$, its inverse provides us with the projectors pol $\mathcal{P}(A_2) = \frac{1}{32s_{12}^2 s_{22}^2 s_{12}^2 (d-5)(d-7)(d-3)(d-4)} \times \left(\frac{1}{32s_{12}^2 s_{22}^2 s_{12}^2 (d-5)(d-7)(d-3)(d-4)}\right)$ $- s_{13}(35s_{23}^2d^3 - 55s_{13}s_{23}d^3 + 1046s_{13}s_{23}d^2 - 1872s_{13}^2d + 2432s_{13}^2 - 454s_{23}^2d^2$ $-6040s_{13}s_{23}d - 2688s_{23}^2 + 368s_{13}^2d^2 + 1928s_{23}^2d - 20s_{13}^2d^3 + 11136s_{13}s_{23})\mathcal{D}_1^{\dagger}$ $+ 2s_{13}(-2s_{13}^2d^2 - 9s_{13}s_{23}d^2 + 142s_{13}s_{23}d - 448s_{13}s_{23} + 7s_{23}^2d^2 + 136s_{23}^2 - 48s_{13}^2$ $+28s_{13}^2d-62s_{23}^2d)\mathcal{D}_3^{\dagger}$ + $(-340s_{13}^2d^3 + 11008s_{13}^2 - 740s_{13}s_{23}d^3 + 44032s_{13}s_{23} - 260s_{23}^2d^3 - 4144s_{23}^2d + 3712s_{23}^2d^3 - 4144s_{23}^2d + 3712s_{23}^2d^3 - 4144s_{23}^2d^3 - 4144s_{23$ $+15s_{13}^2d^4 + 2852s_{13}^2d^2 - 28864s_{13}s_{23}d + 1604s_{23}^2d^2 + 6944s_{13}s_{23}d^2 - 9968s_{13}^2d$ $+30s_{13}s_{23}d^4+15s_{23}^2d^4)\mathcal{D}_2^{\dagger}$ $-s_{13}s_{23}(12s_{13}+s_{23}d-4s_{23}-s_{13}d)\mathcal{D}_{5}^{\dagger}$ + $(-6s_{23}^2d + 24s_{13}^2 + 2s_{13}s_{23}d^2 - 40s_{13}s_{23}d - 14s_{13}^2d + s_{13}^2d^2 + 8s_{23}^2 + s_{23}^2d^2 + 192s_{13}s_{23})\mathcal{D}_6^{\dagger}$ $-2(5s_{13}^2d^3 + 5s_{23}^2d^3 + 10s_{13}s_{23}d^3 - 240s_{13}s_{23}d^2 - 100s_{13}^2d^2 - 56s_{23}^2d^2 + 580s_{13}^2d^2$ $+1832s_{13}s_{23}d + 196s_{23}^2d - 208s_{23}^2 - 800s_{13}^2 - 4224s_{13}s_{23})\mathcal{D}_4^\dagger$

with growth of number of tensors, the inversion can become extremely expensive!

Define the matrix $M_{ij} = \sum D_i^{\dagger} D_j$, its inverse provides us with the projectors pol $\mathcal{P}(A_2) = \frac{1}{32s_{13}^2 s_{23}^2 s_{12}^2 (d-5)(d-7)(d-3)(d-4)} \times \left(\frac{1}{32s_{13}^2 s_{23}^2 s_{12}^2 (d-5)(d-7)(d-3)(d-4)}\right)$ $-s_{13}(35s_{23}^2d^3 - 55s_{13}s_{23}d^3 + 1046s_{13}s_{23}d^2 - 1872s_{13}^2d + 2432s_{13}^2 - 454s_{23}^2d^2$ $-6040s_{13}s_{23}d - 2688s_{23}^2 + 368s_{13}^2d^2 + 10002^2 d - 202^2 d^3 + 111000 d - 2000^2 d - 10000^2 d - 1000^2 d - 10000^2 d - 10$ $+ 2s_{13}(-2s_{13}^2d^2 - 9s_{13}s_{23}d^2 + 142s_1)$ Artificial poles in $d \rightarrow 4$ $+28s_{13}^2d-62s_{23}^2d)\mathcal{D}_3^{\dagger}$ $+ (-340s_{13}^2d^3 + 11008s_{13}^2 - 740s_{13}s_{13})$ They arise because the tensors we have $712s_{23}^2$ chosen are actually NOT independent in $+15s_{13}^2d^4 + 2852s_{13}^2d^2 - 28864s_{13}$ d=4 $+30s_{13}s_{23}d^4+15s_{23}^2d^4)\mathcal{D}_2^{\dagger}$ $-s_{13}s_{23}(12s_{13}+s_{23}d-4s_{23}-s_{13}d)$ Matrix not invertible in d=4 $+ (-6s_{23}^2d + 24s_{13}^2 + 2s_{13}s_{23}d^2 - 40.$ $\mathcal{I}s_{13}s_{23})\mathcal{D}_6^{\dagger}$ $-2(5s_{13}^2d^3 + 5s_{23}^2d^3 + 10s_{13}s_{23}d^3 - 240s_{13}s_{23}d^2 - 100s_{13}^2d^2 - 56s_{23}^2d^2 + 580s_{13}^2d^2$ $+1832s_{13}s_{23}d + 196s_{23}^2d - 208s_{23}^2 - 800s_{13}^2 - 4224s_{13}s_{23})\mathcal{D}_4^\dagger \Big),$

If we want to push this to **3 loops for** $q\bar{q} \rightarrow Q\bar{Q}$, it becomes more cumbersome...

- more structures
- more complicated projectors
- to be applied on much more complex Feynman diagrams

Can we do something about it?

See also alternative or complementary approaches by [Chen '19], [Davies et al '20]; [Abreu et al '18]

Ultimately, we are interested in **helicity amplitudes**, in d=4 in **'t Hooft-Veltman scheme**

Fix helicities, assuming that **external states** are in d = 4 dimensions.

$$\mathscr{A} = \sum_{i=1}^{n} F_j T_j \qquad \longrightarrow \qquad \mathscr{A}(\lambda_1, \dots, \lambda_E) = \sum_{i=1}^{n} F_j T_j(\lambda_1, \dots, \lambda_E) = \sum_{j=1}^{m < n} \overline{F}_j S_j(\lambda_1, \dots, \lambda_E)$$

All "internal" indices are in d dimensions

Ultimately, we are interested in **helicity amplitudes**, in d=4 in **'t Hooft-Veltman scheme**

Fix helicities, assuming that **external states** are in d = 4 **dimensions**.

If we do things right, we'd expect that in 't Hooft-Veltman scheme <u>there cannot be more</u> <u>independent form factors than independent helicity amplitudes</u>

For massless $q\bar{q} \rightarrow Q\bar{Q}$ there are 4 helicities, reduced to **2 by parity invariance...**

To get to minimal complexity, notice that:

- $\mathcal{D}_1 = \bar{u}(p_1)\gamma_{\mu_1}u(p_2) \ \bar{u}(p_3)\gamma_{\mu_1}u(p_4),$
- $\mathcal{D}_2 = \bar{u}(p_1) \not p_3 u(p_2) \ \bar{u}(p_3) \not p_1 u(p_4),$
- $\mathcal{D}_3 = \bar{u}(p_1)\gamma_{\mu_1}\gamma_{\mu_2}\gamma_{\mu_3}u(p_2) \ \bar{u}(p_3)\gamma_{\mu_1}\gamma_{\mu_2}\gamma_{\mu_3}u(p_4),$
- $\mathcal{D}_5 = \bar{u}(p_1)\gamma_{\mu_1}\gamma_{\mu_2}\gamma_{\mu_3}\gamma_{\mu_4}\gamma_{\mu_5}u(p_2) \ \bar{u}(p_3)\gamma_{\mu_1}\gamma_{\mu_2}\gamma_{\mu_3}\gamma_{\mu_4}\gamma_{\mu_5}u(p_4),$

To get to minimal complexity, notice that:

 $\mathcal{D}_{1} = \bar{u}(p_{1})\gamma_{\mu_{1}}u(p_{2}) \ \bar{u}(p_{3})\gamma_{\mu_{1}}u(p_{4}),$ $\mathcal{D}_{2} = \bar{u}(p_{1})\not p_{3}u(p_{2}) \ \bar{u}(p_{3})\not p_{1}u(p_{4}),$

 $\mathcal{D}_{3} = \bar{u}(p_{1})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}u(p_{2}) \bar{u}(p_{3})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}u(p_{4}),$

- $\mathcal{D}_5 = \bar{u}(p_1)\gamma_{\mu_1}\gamma_{\mu_2}\gamma_{\mu_3}\gamma_{\mu_4}\gamma_{\mu_5}u(p_2) \ \bar{u}(p_3)\gamma_{\mu_1}\gamma_{\mu_2}\gamma_{\mu_3}\gamma_{\mu_4}\gamma_{\mu_5}u(p_4),$

► The first two "tensors" are **confined in d=4**, even if I pick **d-dim** γ^{μ} **matrices**!

► They are **independent in d=4**, they span the whole physical space of the helicity ampl.

► Every additional tensor, has extra components in $d=-2\epsilon$, cannot be physical (?)

Let then pick first 2: $T_j = D_j$, j = 1,2 $(M^{2 \times 2})_{ij}^{-1} = \frac{1}{d-3} X_{ij}$ with $X_{ij} = \frac{1}{4s_{12}^2} \begin{pmatrix} 1 & \frac{s_{12} + 2s_{23}}{s_{23}(s_{12} + s_{23})} \\ \frac{s_{12} + 2s_{23}}{s_{23}(s_{12} + s_{23})} & \frac{(d-2)s_{12}^2 + 4s_{23}(s_{12} + s_{23})}{s_{23}^2(s_{12} + s_{23})^2} \end{pmatrix}$ the matrix is smooth in $d \to 4$

Let then pick first 2: $T_j = D_j$, j = 1,2 $(M^{2 \times 2})_{ij}^{-1} = \frac{1}{d-3} X_{ij}$ with $X_{ij} = \frac{1}{4s_{12}^2} \begin{pmatrix} 1 & \frac{s_{12} + 2s_{23}}{s_{23}(s_{12} + s_{23})} \\ \frac{s_{12} + 2s_{23}}{s_{23}(s_{12} + s_{23})} & \frac{(d-2)s_{12}^2 + 4s_{23}(s_{12} + s_{23})}{s_{23}^2(s_{12} + s_{23})^2} \end{pmatrix}$ the matrix is smooth in $d \to 4$

Define the 2 projectors

$$\overline{P}_i = \sum_{j=1}^2 \left(M_{ij}^{(2 \times 2)} \right)^{-1} \overline{T}_j^{\dagger}$$

Let then pick first 2: $T_j = D_j$, j = 1,2 $M_{ij}^{2 \times 2} = T_i^{\dagger} T_j$, $(M^{2 \times 2})_{ij}^{-1} = \frac{1}{d-3} X_{ij}$ with $X_{ij} = \frac{1}{4 s_{12}^2} \begin{pmatrix} 1 & \frac{s_{12} + 2s_{23}}{s_{23}(s_{12} + s_{23})} \\ \frac{s_{12} + 2s_{23}}{s_{23}(s_{12} + s_{23})} & \frac{(d-2)s_{12}^2 + 4s_{23}(s_{12} + s_{23})}{s_{23}^2(s_{12} + s_{23})^2} \end{pmatrix}$ the matrix is smooth in $d \to 4$

Define the 2 projectors

$$\overline{P}_i = \sum_{j=1}^2 \left(M_{ij}^{(2\times 2)} \right)^{-1} \overline{T}_j^{\dagger} \qquad \text{and the res}$$

and the remaining tensors as

$$\overline{T}_i = T_i - \sum_{j=1}^2 \left(\overline{P}_j T_i\right) \overline{T}_j, \quad \text{for} \quad i = 3, 4, 5, 6, \dots$$

Let then pick first 2: $T_j = D_j$, j = 1,2 $(M^{2 \times 2})_{ij}^{-1} = \frac{1}{d-3} X_{ij}$ with $X_{ij} = \frac{1}{4 s_{12}^2} \begin{pmatrix} 1 & \frac{s_{12} + 2s_{23}}{s_{23}(s_{12} + s_{23})} \\ \frac{s_{12} + 2s_{23}}{s_{23}(s_{12} + s_{23})} & \frac{(d-2)s_{12}^2 + 4s_{23}(s_{12} + s_{23})}{s_{23}^2(s_{12} + s_{23})^2} \end{pmatrix}$ the matrix is smooth in $d \to 4$

Define the 2 projectors

$$\overline{P}_i = \sum_{j=1}^2 \left(M_{ij}^{(2 \times 2)} \right)^{-1} \overline{T}_j^{\dagger} \qquad \text{and the rem}$$

$$\overline{T}_i = T_i - \sum_{j=1}^2 \left(\overline{P}_j T_i\right) \overline{T}_j, \quad \text{for} \quad i = 3, 4, 5, 6, \dots$$

We are effectively **block-diagonalising the matrix**!

The remaining tensors

$$\overline{T}_i = T_i - \sum_{j=1}^2 \left(\overline{P}_j T_i\right) \overline{T}_j, \quad \text{for} \quad i = 3, 4, 5, 6, \dots \qquad \text{are such that}$$

$$\bar{T}_j(\lambda_1, \dots, \lambda_E) = 0, \ j = 3, 4, 5, 6, \dots$$

Exactly in d in tHV!

The remaining tensors

$$\overline{T}_i = T_i - \sum_{j=1}^2 \left(\overline{P}_j T_i\right) \overline{T}_j, \quad \text{for} \quad i = 3, 4, 5, 6, \dots \qquad \text{are such that}$$

$$\bar{T}_{j}(\lambda_{1},\ldots,\lambda_{E})=0, \ j=3,4,5,6,\ldots$$

Exactly in d in tHV!

New tensors are *smooth* linear combinations of the old ones:

$$\bar{T}_3 = \left(-3d - \frac{12s_{23}}{s_{12}} - 4\right) \bar{T}_1 - \frac{24}{s_{12}} \bar{T}_2 + T_3$$

The remaining tensors

$$\overline{T}_i = T_i - \sum_{j=1}^2 \left(\overline{P}_j T_i \right) \overline{T}_j, \quad \text{for} \quad i = 3, 4, 5, 6, \dots \qquad \text{are such that}$$

$$\bar{T}_{j}(\lambda_{1},\ldots,\lambda_{E})=0, \ j=3,4,5,6,\ldots$$

Exactly in d in tHV!

New tensors are *smooth* linear combinations of the old ones:

$$\bar{T}_3 = \left(-3d - \frac{12s_{23}}{s_{12}} - 4\right) \bar{T}_1 - \frac{24}{s_{12}} \bar{T}_2 + T_3$$

And the new 6x6 inverse matrix becomes **block-diagonal**

$$\left(\bar{M}_{ij}\right)^{-1} = \begin{pmatrix} \frac{X_{ij}}{d-3} & 0 & \dots & 0\\ 0 & & \\ \vdots & R_{ij} & \\ 0 & & \end{pmatrix}$$

 R_{ii} contains the complexity that we saw before, but actually NEVER need to even compute it!

The provide us with natural basis to derive helicity amplitudes!

$$\bar{\mathcal{A}} = \sum_{i=1}^{2} \mathcal{F}_{i} T_{i}$$

$$T_{1} = \bar{u}(p_{2}) \gamma_{\alpha} u(p_{1}) \times \bar{u}(p_{4}) \gamma^{\alpha} u(p_{3})$$

$$T_{2} = \bar{u}(p_{2}) \not p_{3} u(p_{1}) \times \bar{u}(p_{4}) \not p_{2} u(p_{3})$$

By construction, helicity amplitudes only receive contributions from two form factors!

$$\bar{\mathcal{A}}_{+-+-}^{q\bar{q}\to\bar{Q}Q} = \mathcal{H}_1 \frac{\langle 13 \rangle}{\langle 24 \rangle}, \quad \bar{\mathcal{A}}_{+--+}^{q\bar{q}\to\bar{Q}Q} = \mathcal{H}_2 \frac{\langle 14 \rangle}{\langle 23 \rangle},$$

 $\mathcal{H}_1 = 2t\mathcal{F}_1 - tu\mathcal{F}_2, \quad \mathcal{H}_2 = 2u\mathcal{F}_1 + tu\mathcal{F}_2.$

And the projectors that we need to apply on the Feynman diagrams are much simpler!

The remaining tensors and form factors can be thrown away, except to get CDR results:

$$\sum_{pol} (M^0)^* M^{Ll} = \sum_{i,j=1}^2 c_{ij} F_i^* F_j + \epsilon \sum_{i,j=3}^N c_{ij}(\epsilon) F_i^* F_j$$

Evanescent tensors show up suppressed in ϵ even in CDR.

If interested in tHV, we can ignore them

IMPORTANT: they are instead *EXACTLY ZERO* in 't Hooft-Veltman!

PARTONIC CHANNEL $gg \rightarrow gg$: a subtlety

 $gg \rightarrow gg$: most complicated channel [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi, '21] 8 helicity amplitudes ~ 8 form factors for each color ordered amplitude

In fact: in CDR, 10 Form factors (using Gauge Invariance), reduced to 8 in tHV

$$\begin{split} T_1 &= \epsilon_1 \cdot p_3 \, \epsilon_2 \cdot p_1 \, \epsilon_3 \cdot p_1 \, \epsilon_4 \cdot p_2 \,, \\ T_2 &= \epsilon_1 \cdot p_3 \, \epsilon_2 \cdot p_1 \, \epsilon_3 \cdot \epsilon_4 \,, \quad T_3 = \epsilon_1 \cdot p_3 \, \epsilon_3 \cdot p_1 \, \epsilon_2 \cdot \epsilon_4 \,, \quad T_4 = \epsilon_1 \cdot p_3 \, \epsilon_4 \cdot p_2 \, \epsilon_2 \cdot \epsilon_3 \,, \\ T_5 &= \epsilon_2 \cdot p_1 \, \epsilon_3 \cdot p_1 \, \epsilon_1 \cdot \epsilon_4 \,, \quad T_6 = \epsilon_2 \cdot p_1 \, \epsilon_4 \cdot p_2 \, \epsilon_1 \cdot \epsilon_3 \,, \quad T_7 = \epsilon_3 \cdot p_1 \, \epsilon_4 \cdot p_2 \, \epsilon_1 \cdot \epsilon_2 \,, \\ T_8 &= \epsilon_1 \cdot \epsilon_2 \, \epsilon_3 \cdot \epsilon_4 \,, \quad T_9 = \epsilon_1 \cdot \epsilon_4 \, \epsilon_2 \cdot \epsilon_3 \,, \quad T_{10} = \epsilon_1 \cdot \epsilon_3 \, \epsilon_2 \cdot \epsilon_4 \,. \end{split}$$

PARTONIC CHANNEL $gg \rightarrow gg$: a subtlety

 $gg \rightarrow gg$: most complicated channel [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi, '21] 8 helicity amplitudes ~ 8 form factors for each color ordered amplitude

In fact: in CDR, 10 Form factors (using Gauge Invariance), reduced to 8 in tHV

$$\begin{split} T_1 &= \epsilon_1 \cdot p_3 \, \epsilon_2 \cdot p_1 \, \epsilon_3 \cdot p_1 \, \epsilon_4 \cdot p_2 \,, \\ T_2 &= \epsilon_1 \cdot p_3 \, \epsilon_2 \cdot p_1 \, \epsilon_3 \cdot \epsilon_4 \,, \quad T_3 = \epsilon_1 \cdot p_3 \, \epsilon_3 \cdot p_1 \, \epsilon_2 \cdot \epsilon_4 \,, \quad T_4 = \epsilon_1 \cdot p_3 \, \epsilon_4 \cdot p_2 \, \epsilon_2 \cdot \epsilon_3 \,, \\ T_5 &= \epsilon_2 \cdot p_1 \, \epsilon_3 \cdot p_1 \, \epsilon_1 \cdot \epsilon_4 \,, \quad T_6 = \epsilon_2 \cdot p_1 \, \epsilon_4 \cdot p_2 \, \epsilon_1 \cdot \epsilon_3 \,, \quad T_7 = \epsilon_3 \cdot p_1 \, \epsilon_4 \cdot p_2 \, \epsilon_1 \cdot \epsilon_2 \,, \\ T_8 &= \epsilon_1 \cdot \epsilon_2 \, \epsilon_3 \cdot \epsilon_4 \,, \quad T_9 = \epsilon_1 \cdot \epsilon_4 \, \epsilon_2 \cdot \epsilon_3 \,, \quad T_{10} = \epsilon_1 \cdot \epsilon_3 \, \epsilon_2 \cdot \epsilon_4 \,. \end{split}$$

Question: which one do I remove of the last three $-g^{\mu\nu}g^{\rho\sigma}, g^{\mu\rho}g^{\nu\sigma}, g^{\mu\sigma}g^{\nu\rho} - ?$

PARTONIC CHANNEL $gg \rightarrow gg$: a subtlety

To understand the answer, it is convenient to introduce the extra vector $v_{\perp}^{\mu} = \epsilon^{\mu\nu\rho\sigma} p_{1\nu} p_{2\rho} p_{3\sigma}$ such that p_1, p_2, p_3, v span the full four-dimensional space and $g^{\mu\nu}$ can be dropped!

$$\begin{split} \tilde{T}_1 &= \epsilon_1 \cdot p_3 \, \epsilon_2 \cdot p_1 \, \epsilon_3 \cdot p_1 \, \epsilon_4 \cdot p_2 \,, \\ \tilde{T}_2 &= \epsilon_1 \cdot p_3 \, \epsilon_2 \cdot p_1 \, \epsilon_3 \cdot v_\perp \, \epsilon_4 \cdot v_\perp \,, \quad \tilde{T}_3 = \epsilon_1 \cdot p_3 \, \epsilon_3 \cdot p_1 \, \epsilon_2 \cdot v_\perp \, \epsilon_4 \cdot v_\perp \,, \\ \tilde{T}_4 &= \epsilon_1 \cdot p_3 \, \epsilon_4 \cdot p_2 \, \epsilon_2 \cdot v_\perp \, \epsilon_3 \cdot v_\perp \,, \quad \tilde{T}_5 = \epsilon_2 \cdot p_1 \, \epsilon_3 \cdot p_1 \, \epsilon_1 \cdot v_\perp \, \epsilon_4 \cdot v_\perp \,, \\ \tilde{T}_6 &= \epsilon_2 \cdot p_1 \, \epsilon_4 \cdot p_2 \, \epsilon_1 \cdot v_\perp \, \epsilon_3 \cdot v_\perp \,, \quad \tilde{T}_7 = \epsilon_3 \cdot p_1 \, \epsilon_4 \cdot p_2 \, \epsilon_1 \cdot v_\perp \, \epsilon_2 \cdot v_\perp \,, \\ \tilde{T}_8 &= \epsilon_1 \cdot v_\perp \, \epsilon_2 \cdot v_\perp \, \epsilon_3 \cdot v_\perp \, \epsilon_4 \cdot v_\perp \,. \end{split}$$

Natural basis, entirely confined in d=4 dimensions! To get rid of *v* notice now:

$$T_{1} = \epsilon_{1} \cdot p_{3} \epsilon_{2} \cdot p_{1} \epsilon_{3} \cdot p_{1} \epsilon_{4} \cdot p_{2},$$

$$T_{2} = \epsilon_{1} \cdot p_{3} \epsilon_{2} \cdot p_{1} \epsilon_{3} \cdot \epsilon_{4}, \quad T_{3} = \epsilon_{1} \cdot p_{3} \epsilon_{3} \cdot p_{1} \epsilon_{2} \cdot \epsilon_{4}, \quad T_{4} = \epsilon_{1} \cdot p_{3} \epsilon_{4} \cdot p_{2} \epsilon_{2} \cdot \epsilon_{3},$$

$$T_{5} = \epsilon_{2} \cdot p_{1} \epsilon_{3} \cdot p_{1} \epsilon_{1} \cdot \epsilon_{4}, \quad T_{6} = \epsilon_{2} \cdot p_{1} \epsilon_{4} \cdot p_{2} \epsilon_{1} \cdot \epsilon_{3}, \quad T_{7} = \epsilon_{3} \cdot p_{1} \epsilon_{4} \cdot p_{2} \epsilon_{1} \cdot \epsilon_{2},$$

$$T_{8} = \epsilon_{1} \cdot \epsilon_{2} \epsilon_{3} \cdot \epsilon_{4} + \epsilon_{1} \cdot \epsilon_{4} \epsilon_{2} \cdot \epsilon_{3} + \epsilon_{1} \cdot \epsilon_{3} \epsilon_{2} \cdot \epsilon_{4}$$

For *N* > 4 the method becomes even simpler, because **momenta provide complete set of 4 vectors in d=4 dimensions**!

Take the prototypical case of **5-gluon scattering**:

 $g(p_1) + g(p_2) + g(p_3) + g(p_4) + g(p_5) \to 0$

.

For *N* > 4 the method becomes even simpler, because **momenta provide complete set of 4 vectors in d=4 dimensions**!

Take the prototypical case of **5-gluon scattering**:

$$g(p_1) + g(p_2) + g(p_3) + g(p_4) + g(p_5) \to 0$$

.

Standard d-dimensional approach:

- 1. Rank-5 tensor out of $g^{\mu\nu}$, p_i^{μ} , i = 1,...,4 contains **1724 tensor structures!**
- 2. Imposing gauge invariance reduced to 142 independent structures
- 3. Projectors can (*painfully*!) be obtained inverting 142x142 matrix $\rightarrow \sim 1GB \text{ of text file}!$

 $g(p_1) + g(p_2) + g(p_3) + g(p_4) + g(p_5) \to 0$

Typical tensors will be like:

$$T^{\mu_1\mu_2\mu_3\mu_4\mu_5} = p_i^{\mu_1} p_j^{\mu_2} p_k^{\mu_3} p_l^{\mu_4} p_s^{\mu_5}$$
$$T^{\mu_1\mu_2\mu_3\mu_4\mu_5} = p_i^{\mu_1} p_j^{\mu_2} p_k^{\mu_3} g^{\mu_4\mu_5}$$
$$T^{\mu_1\mu_2\mu_3\mu_4\mu_5} = p_i^{\mu_1} g^{\mu_2\mu_3} g^{\mu_4\mu_5}$$

.

 $g(p_1) + g(p_2) + g(p_3) + g(p_4) + g(p_5) \to 0$

Typical tensors will be like:

$$T^{\mu_1\mu_2\mu_3\mu_4\mu_5} = p_i^{\mu_1} p_j^{\mu_2} p_k^{\mu_3} p_l^{\mu_4} p_s^{\mu_5}$$
$$T^{\mu_1\mu_2\mu_3\mu_4\mu_5} = p_i^{\mu_1} p_j^{\mu_2} p_k^{\mu_3} g^{\mu_4\mu_5}$$
$$T^{\mu_1\mu_2\mu_3\mu_4\mu_5} = p_i^{\mu_1} g^{\mu_2\mu_3} g^{\mu_4\mu_5}$$

But since $p_1^{\mu}, \dots, p_4^{\mu}$ are complete set in d=4, $g^{\mu\nu}$ is not linear independent! I don't even need the construction that I have made for 4-point, I can drop all of them!

 $g(p_1) + g(p_2) + g(p_3) + g(p_4) + g(p_5) \to 0$

Typical tensors will be like:

 $p_1^{\mu}, \dots, p_4^{\mu} \sim \text{left with } 2^5 = 32 \text{ tensors} = \# \text{ helicity amplitudes}$

Projectors ~ 500 Kb versus ~1Gb

Problem can be simplified further using symmetries/special combinations of these tensors!

Method used successfully for various 3 loop 2 \rightarrow 2 calculations in QCD and for first full color calculation of a 2 \rightarrow 3 scattering process $q\bar{q} \rightarrow \gamma\gamma g$ arXiv:2105.04585

(See G. Gambuti's and A. von Manteuffel's talks)

CONCLUSIONS

- Tensor decomposition is a standard step towards calculation of multiloop scattering amplitudes
- Standard approach in CDR can be substantially simplified if one is interested in helicity amplitudes in tHV
- Decomposition proposed is 1-to-1 with # of helicity amplitudes, no spurious / evanescent structures are ever computed
- Particularly effective in the presence of multiple fermion lines or for N > 4 external legs
- ► Can be easily extended for different theories (masses, parity violating, etc)

THANK YOU FOR YOUR ATTENTION

BACK UP

PARTONIC CHANNEL $gg \rightarrow gg$

 $gg \rightarrow gg$: most complicated channel [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi, '21] 8 helicity amplitudes ~ 8 form factors for each color ordered amplitude

$$\mathcal{A}^{a_{1}a_{2}a_{3}a_{4}} = 4\pi\alpha_{s,b} \sum_{i=1}^{6} \mathcal{A}^{[i]}\mathcal{C}_{i} \longrightarrow \mathcal{A} = \sum_{j=1}^{8} \mathcal{F}_{i}T_{i}$$

$$\mathcal{C}_{1} = \operatorname{Tr}[T^{a_{1}}T^{a_{2}}T^{a_{3}}T^{a_{4}}] + \operatorname{Tr}[T^{a_{1}}T^{a_{4}}T^{a_{3}}T^{a_{2}}] \quad \text{etc...}$$
Helicity amplitudes
$$\mathcal{A}_{\lambda} = s_{\lambda}H_{\lambda} \quad \text{where } \lambda = \{++++,-+++,+-++,etc\}$$

$$s_{++++} = \frac{\langle 12\rangle\langle 34\rangle}{[12][34]}, \quad s_{-+++} = \frac{\langle 12\rangle\langle 14\rangle[24]}{\langle 34\rangle\langle 23\rangle\langle 24\rangle} \quad \text{For example:}$$

$$s_{+-++} = \frac{\langle 21\rangle\langle 24\rangle[14]}{\langle 34\rangle\langle 13\rangle\langle 14\rangle}, \quad s_{++-+} = \frac{\langle 32\rangle\langle 34\rangle[24]}{\langle 14\rangle\langle 21\rangle\langle 24\rangle} \quad \text{H}_{-+-+} = t^{2}\left(\frac{\mathcal{F}_{8}}{su} - \frac{\mathcal{F}_{3}}{2s} + \frac{\mathcal{F}_{6}}{2u} - \frac{\mathcal{F}_{1}}{4}\right)$$

$$s_{+-+-} = \frac{\langle 13\rangle[24]}{[13]\langle 24\rangle}, \quad s_{+--+} = \frac{\langle 14\rangle[23]}{[14]\langle 23\rangle}.$$

 $q\bar{q} \rightarrow gg$: 4 helicity amplitudes ~ 4 form factors for each color ordered amplitude [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi, To appear]

$$q(p_1) + \bar{q}(p_2) \rightarrow g(p_3) + g(p_4)$$
, with $p_i^2 = 0$

To compute helicity amplitudes in standard way, start from generic tensor decomposition

$$\mathcal{A}(s,t) = \sum_{i=1}^{5} \mathcal{F}_{i}(s,t)T_{i} \qquad T_{i} = \bar{u}(p_{2}) \Gamma_{i}^{\mu\nu} u(p_{1})\epsilon_{3,\mu}\epsilon_{4,\nu}$$
$$\Gamma_{1}^{\mu\nu} = \gamma^{\mu}p_{2}^{\nu}, \ \Gamma_{2}^{\mu\nu} = \gamma^{\nu}p_{1}^{\mu},$$
$$\Gamma_{3}^{\mu\nu} = \not p_{3} p_{1}^{\mu}p_{2}^{\nu}, \ \Gamma_{4}^{\mu\nu} = \not p_{3} g^{\mu\nu}$$
$$\Gamma_{5}^{\mu\nu} = \gamma^{\mu}\not p_{3} \gamma^{\nu}.$$

 $q\bar{q} \rightarrow gg$: 4 helicity amplitudes ~ 4 form factors for each color ordered amplitude [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi, To appear]

$$q(p_1) + \bar{q}(p_2) \rightarrow g(p_3) + g(p_4)$$
, with $p_i^2 = 0$

To compute helicity amplitudes in standard way, start from generic tensor decomposition

$$\begin{split} \mathscr{A}(s,t) &= \sum_{i=1}^{5} \mathscr{F}_{i}(s,t)T_{i} \\ T_{i} &= \bar{u}(p_{2}) \,\Gamma_{i}^{\mu\nu} \, u(p_{1})\epsilon_{3,\mu}\epsilon_{4,\nu} \\ \Gamma_{1}^{\mu\nu} &= \gamma^{\mu}p_{2}^{\nu} , \ \Gamma_{2}^{\mu\nu} &= \gamma^{\nu}p_{1}^{\mu} , \\ \Gamma_{3}^{\mu\nu} &= \not p_{3} \, p_{1}^{\mu}p_{2}^{\nu} , \ \Gamma_{4}^{\mu\nu} &= \not p_{3} \, g^{\mu\nu} \\ \Gamma_{5}^{\mu\nu} &= \gamma^{\mu}\not p_{3} \, \gamma^{\nu} . \end{split}$$

Not linearly independent in d=4

 $q\bar{q} \rightarrow gg$: 4 helicity amplitudes ~ 4 form factors for each color ordered amplitude [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi, To appear]

$$q(p_1) + \bar{q}(p_2) \to g(p_3) + g(p_4)$$
, with $p_i^2 = 0$

To compute helicity amplitudes in standard way, start from generic tensor decomposition

$$\begin{aligned} \mathscr{A}(s,t) &= \sum_{i=1}^{5} \mathscr{F}_{i}(s,t)T_{i} \\ & T_{i} = \bar{u}(p_{2}) \,\Gamma_{i}^{\mu\nu} \, u(p_{1})\epsilon_{3,\mu}\epsilon_{4,\nu} \\ & \Gamma_{1}^{\mu\nu} = \gamma^{\mu}p_{2}^{\nu}, \ \ \Gamma_{2}^{\mu\nu} = \gamma^{\nu}p_{1}^{\mu}, \\ & \Gamma_{3}^{\mu\nu} = \not p_{3} \, p_{1}^{\mu}p_{2}^{\nu}, \ \ \Gamma_{4}^{\mu\nu} = \not p_{3} \, g^{\mu\nu} \\ & \Gamma_{5}^{\mu\nu} = \gamma^{\mu}\not p_{3} \, \gamma^{\nu}. \end{aligned}$$
Not linearly independent in d=4
$$\qquad \qquad \lim_{d \to 4} \left(T_{5} - \frac{u}{s}T_{1} + \frac{u}{s}T_{2} - \frac{2}{s}T_{3} + T_{4} \right) = 0 \end{aligned}$$

Helicity amplitudes in tHV can be computed by fixing helicities on the tensors in d=4

$$\mathscr{A}_{\lambda_q \lambda_3 \lambda_4}(s, t) = \sum_{i=1}^5 \mathscr{F}_i(s, t) \left[T_i\right]_{\lambda_q \lambda_3 \lambda_4, d=4}$$

One of five tensors is not independent in d=4

$$\lim_{d \to 4} \left(T_5 - \frac{u}{s} T_1 + \frac{u}{s} T_2 - \frac{2}{s} T_3 + T_4 \right) = 0$$

We can identify one evanescent tensor structure

$$\overline{T}_{i} = T_{i}, \quad i = 1, \dots, 4,$$
$$\overline{T}_{5} = T_{5} - \frac{u}{s}T_{1} + \frac{u}{s}T_{2} - \frac{2}{s}T_{3} + T_{4}$$

In new basis of tensors, **by definition** only **<u>first four contribute to hel amplitudes</u>**

$$\mathscr{A}_{\lambda_q \lambda_3 \lambda_4}(s,t) = \sum_{i=1}^5 \overline{\mathscr{F}}_i(s,t) \left[\overline{T}_i\right]_{\lambda_q \lambda_3 \lambda_4, d=4} = \sum_{i=1}^4 \overline{\mathscr{F}}_i(s,t) \left[\overline{T}_i\right]_{\lambda_q \lambda_3 \lambda_4, d=4}$$

Fifth tensor required to recover **CDR result** starting at $\mathcal{O}(\epsilon)$

$$\begin{split} \sum \ \mathcal{A}^{(n)} \mathcal{A}^{(m)*} &= \frac{2(s-t)t}{u} \,\overline{\mathcal{F}}_{4}^{(n)} \left[-s\overline{\mathcal{F}}_{1}^{(m)*} + s\overline{\mathcal{F}}_{2}^{(m)*} - st\overline{\mathcal{F}}_{3}^{(m)*} - \frac{2\overline{\mathcal{F}}_{4}^{(m)*} \left(-s^{2} - t^{2} + u^{2} \epsilon \right)}{(s-t)} \right] \\ &+ \frac{2st}{u} \,\overline{\mathcal{F}}_{1}^{(n)} \left[-2s(\epsilon-1)\overline{\mathcal{F}}_{1}^{(m)*} - s\overline{\mathcal{F}}_{2}^{(m)*} + st\overline{\mathcal{F}}_{3}^{(m)*} - \overline{\mathcal{F}}_{4}^{(m)*} (s-t) \right] \\ &+ \frac{2st}{u} \,\overline{\mathcal{F}}_{2}^{(n)} \left[-s\overline{\mathcal{F}}_{1}^{(m)*} - 2s(\epsilon-1)\overline{\mathcal{F}}_{2}^{(m)*} - st\overline{\mathcal{F}}_{3}^{(m)*} + \overline{\mathcal{F}}_{4}^{(m)*} (s-t) \right] \\ &+ \frac{2st^{2}}{u} \,\overline{\mathcal{F}}_{3}^{(n)} \left[s\overline{\mathcal{F}}_{1}^{(m)*} - s\overline{\mathcal{F}}_{2}^{(m)*} + st\overline{\mathcal{F}}_{3}^{(m)*} - \overline{\mathcal{F}}_{4}^{(m)*} (s-t) \right] \\ &+ 4tu \, \epsilon \, (2\epsilon-1)\overline{\mathcal{F}}_{5}^{(m)*} \overline{\mathcal{F}}_{5}^{(n)} \,, \end{split}$$