Status of double virtual NNLO QCD corrections for high multiplicity processes

Vasily Sotnikov

University of Zurich &

Michigan State University

Loops & Legs in Quantum Field Theory 2022, Ettal, Germany

European Research Council Established by the European Commission

1. Introduction

2. Five-point two-loop amplitudes: challenges

3. Overview of recent results

4. One-mass pentagon functions

Introduction

Era of precision physics at the LHC

• LHC will still be running for years, future colliders

- Many observables probed at percent level precision
- Discovery via precision: search anomalous deviations from Standard Model

Theory must reach comparable precision target!

At least NNLO QCD and NLO EW corrections generally required

 $(\oplus$ parton shower, resummation, etc.)

1/20

[ATL-PHYS-PUB-2022-009]

Why fixed order?

• Stabilization of perturbation series

[Czakon, Mitov, Poncelet '21] [Michal's talk]

Why fixed order?

• Stabilization of perturbation series

[Michal's talk]

• Giant K factors

[Kallweit, VS, Wiesemann '20]

Why fixed order?

Clean theoretical prediction

NNLO QCD: status

Les Houches wishlist 2019 [2003.01700]

Five-point two-loop amplitudes: challenges

Scattering amplitudes for phenomenology

Transcendental part: the canonical way

Transcendental part: the canonical way

Transcendental part: the canonical way

Transcendental part: the five-point massless story

Rational coefficients: algebraic complexity

Overview of recent results

Summary two-loop five-point massless amplitudes

	Comment	Complete analytic results	Public numerical code	Cross sections
$pp \rightarrow jjj$	l.c.	[1]	[1]	[8, 9]
$pp \rightarrow \gamma \gamma j$	l.c.*	[2, 3]	[2]	[10]
$pp \to \gamma\gamma\gamma$	l.c.*	[4, 5]	[4]	[11, 12]
$pp \rightarrow \gamma \gamma j$		[6]		
$gg ightarrow \gamma \gamma g$	NLO loop induced	[7]	[7]	[13]

- [1] [Abreu, Febres Cordero, Ita, Page, <u>VS</u> '21]
- [2] [Agarwal, Buccioni, von Manteuffel, Tancredi '21]
- [3] [Chawdry, Czakon, Mitov, Poncelet '21]
- [4] [Abreu, Page, Pascual, <u>VS</u> '20]
- [5] [Chawdry, Czakon, Mitov, Poncelet '20]
- [6] [Agarwal, Buccioni, von Manteuffel, Tancredi '21]

- [8] [Czakon, Mitov, Poncelet '21]
- [9] [Chen, Gehrmann, Glover, Huss, Marcoli '21]
- [10] [Chawdry, Czakon, Mitov, Poncelet '21]
- 11] [Chawdry, Czakon, Mitov, Poncelet '19]
- [12] [Kallweit, <u>VS</u>, Wiesemann '20]
- [13] [Badger, Gehrmann, Marcoli, Moodie '21]
- [7] [Badger, Brønnum-Hansen, Chicherin, Gehrmann, Hartanto, Henn, Marcoli, Moodie, Peraro, Zoia '21]

One-mass Feynman integrals and functions

One-mass kinematics

e.g. $pp \rightarrow Vjj$

One-mass Feynman integrals and functions

DITTEXP [Moriello '19] [Hidding '20] AMFLow [Liu, Ma, Wang '17] [Liu, Ma '21] Initial values, validation, small scale sampling

One-mass two-loop five-point amplitudes

One-mass two-loop five-point amplitudes

[Badger, Hartanto, Kryś, Zoia '21]

Leading color $(N_c \to \infty)^{\star}$

Setup: Feynman diagrams, FiniteFlow (Laporta IBPs), one-mass pentagon functions

Reconstruction: functional reconstruction [Peraro '16]

sample size 1000k

One-mass pentagon functions

Basis construction

[Chicherin, <u>VS</u>, Zoia '21] (see also [Chicherin, <u>VS</u> '20] [Badger, Hartanto, Zoia '21])

Basis construction

[Chicherin, VS, Zoia '21] (see also [Chicherin, VS '20] [Badger, Hartanto, Zoia '21])

Planar integral families

Loop order	Master	Master	
Loop order	integrals, $\sigma_{\rm id}$	integrals, S_4	
1	13	56	
2	167	1361	

The alphabet

[Abreu, Ita, Moriello, Page, Tschernow, Zeng '20]

$$A = \sum_{i} \mathrm{d} \log W_i(\mathbf{s}) \ A_i$$

156 letters, 108 contribute up to weight 4

Rational

- 27 linear, $s_{12} p_1^2$
- 54 quadratic, $s_{12}s_{23} + p_1^2s_{45} s_{12}s_{45}$

One square root

• 3+12 letters with
$$\sqrt{\Delta_3^{(i)}}$$
, $\frac{p_1^2 - s_{23} + s_{45} + \sqrt{\Delta_3^{(1)}}}{p_1^2 - s_{23} + s_{45} - \sqrt{\Delta_3^{(1)}}}$

• 1+8 letters with $\sqrt{\Delta_5}$

Square roots:

$$\begin{split} \Delta_5 &= 16\,G(p_1,p_2,p_3,p_4)\\ \Delta_3^{(1)} &= -4\,G\,(p_1,p_2+p_3)\\ \Delta_3^{(2)} &= -4\,G\,(p_1,p_2+p_4)\\ \Delta_3^{(3)} &= -4\,G\,(p_1,p_3+p_4) \end{split}$$

Two square roots

3 letters with
$$\sqrt{\Delta_5}$$
 and one of $\sqrt{\Delta_3^{(i)}}$,
 $\frac{\Omega^- - \Omega^{++}}{\Omega^{++} \Omega^{++-}}$,
 $\Omega^{\pm\pm} = s_{12}s_{15} - s_{12}s_{23} - s_{15}s_{45} \pm s_{34}\sqrt{\Delta_3^{(1)}} \pm \sqrt{\Delta_5}$

Basis features

Weights 1 and 2

Well-defined combinations of $\log,\,\mathrm{Li}_2$ functions

Weights 3 and 4

- Numerical one-fold integration [Caron-Huot, Henn '14] of analytic integrands

 exponential convergence [Takahasi, Mori '73]
- No crossing of physical thresholds \implies no analytic continuation needed
- Dedicated series expansions around spurious singularities

Evaluation of all functions: any one mass planar five-point amplitude in all "crossings"

Sample over physical phase space

Precision	Digits	Timing (s)
double	12	0.19
quadruple	28	159
octuple	60	1695

Available as a C++ library PentagonFunctions++ https://gitlab.com/pentagon-functions/PentagonFunctions-cpp (also Mathematica interface)

Beyond planar

Hexa-box alphabet [Abreu, Ita, Page, Tschernow '21]

204 letters, all appear at weight 4 (+96 from planar)

6 new square roots:

$$\Sigma_5^{(1)} = (s_{12}s_{15} - s_{12}s_{23} - s_{15}s_{45} + s_{34}s_{45} + s_{23}s_{34})^2 - 4s_{23}s_{34}s_{45}(s_{34} - s_{12} - s_{15}) + 5 \text{ permutations}$$

$$\begin{array}{ll} 6+24 \mbox{ letters with } \sqrt{\Sigma_5^{(i)}}, & 6 \mbox{ letters with } \sqrt{\Delta_5} \mbox{ and one of } \sqrt{\Sigma_5^{(i)}}, \\ \frac{s_{12}s_{15}-s_{45}s_{15}-s_{12}s_{23}-s_{23}s_{34}+s_{34}s_{45}-\sqrt{\Sigma_5^{(1)}}}{s_{12}s_{15}-s_{45}s_{15}-s_{12}s_{23}-s_{23}s_{34}+s_{34}s_{45}+\sqrt{\Sigma_5^{(1)}}} & \tilde{\Omega}^{\pm\pm} = p_1^2s_{34} \pm \sqrt{\Delta_5} \pm \sqrt{\Sigma_5^{(1)}} \end{array}$$

Beyond planar

Hexa-box alphabet [Abreu, Ita, Page, Tschernow '21]

204 letters, all appear at weight 4 (+96 from planar)

6 new square roots:

$$\Sigma_5^{(1)} = (s_{12}s_{15} - s_{12}s_{23} - s_{15}s_{45} + s_{34}s_{45} + s_{23}s_{34})^2 - 4s_{23}s_{34}s_{45}(s_{34} - s_{12} - s_{15}) + 5 \text{ permutations}$$

- Nightmare for rationalization-based methods
- A minor inconvenience for our approach: Σ_5 can vanish inside physical phase space \implies new spurious divergences

Conclusions & Outlook

Conclusions & Outlook

Two-loop amplitudes remain major bottleneck in $2 \rightarrow 3$ NNLO QCD computations

- · Leading color for jet and photon production known, full color still in progress
- First results beyond massless scattering
 - · ramp up in complexity, but techniques not stretched to limits
 - planar function basis available, reliable evaluation
 - analytic two-loop amplitudes for Wjj, $Wj\gamma$, $Hb\bar{b}$

Outlook

Need NNLO corrections for Vjj, $Vb\bar{b}$, Hjj, $t\bar{t}j$, $t\bar{t}V$, $t\bar{t}H$, etc.

- Full two-loop five-point one-mass function space
- Top quarks in loops: function bases with non-logarithmic kernels?
- N³LO applications

Looking forward to more exciting NNLO phenomenology!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, *Novel structures in scattering amplitudes* (grant agreement No. 725110).

This work has received funding from the Swiss National Science Foundation (SNF) under contract 200020-204200 and from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme grant agreement 101019620 (ERC Advanced Grant TOPUP).

Backup

Initial values

We choose an initial point $X_0 \in \mathcal{P}_{45}^+$,

$$X_0 := \left(p_1^2 = 1, s_{12} = 3, s_{23} = 2, s_{34} = -2, s_{45} = 7, s_{15} = -2 \right),$$

which satisfies the following requirements:

- 1. X_0 introduces the minimal number of distinct prime factors.
- 2. X_0 is invariant under the exchanges of momenta $2 \leftrightarrow 3$ and $4 \leftrightarrow 5$ (automorphisms of \mathcal{P}_{45}).
- 3. The four linear letters which have indefinite sign vanish at X_0 .

Algebraic relations between initial					
values required.		Line (⊕ r	ear span	Irred	ucible
Numerical evaluation of available GPL expressions	Weight	Re	Im	Re	Im
[Canko, Papadopoulos, Syrrakos '20],	1	4*	1	4*	1
[Syrrakos 20] to 3000 digits	2	12	4	5	0
	3	67	23	23	7
• Relations from $PSLQ \implies$	4	305	135	90	40
generating set					

We start with canonical DEs

$$d\tilde{g}_{\tau,\sigma}(X) = \epsilon \, d\tilde{A}_{\tau,\sigma}(X) \, \tilde{g}_{\tau,\sigma}(X) \,,$$
$$d\tilde{A}_{\tau,\sigma}(X) = \sum_{i \in \mathbb{A}} a_{\tau,\sigma}^{(i)} \, d\log W_i(X) \,.$$

for all relevant integral families τ and all permutations σ .

E.g. for planar five-point one-mass $\tau = \{1L, zmz, zzm, zzz, 1L^2\}, \sigma \in S_4$.

Step 2: solution through iterated integrals

- 1. Choose a "good" base point X_0 for all τ and σ inside a physical phase space $\mathcal{P}_{ij},$ $ij \to kl \ldots$
- 2. Determine initial values $ec{g}^{(w)}_{ au,\sigma}(X_0)$ and algebraic relations between them
- 3. Write solutions DEs along a generic path $\gamma(t)$ ($\gamma(0) = X_0$) entirely within \mathcal{P}_{ij} through iterated integrals

$$\vec{g}_{\tau,\sigma}^{(w)} = \sum_{w'=0}^{w} \sum_{i_1,\dots,i_{w'} \in \mathbb{A}} a_{\tau,\sigma}^{(i_1)} \cdot a_{\tau,\sigma}^{(i_2)} \cdots a_{\tau,\sigma'}^{(i_{w'})} \cdot \vec{g}_{\tau,\sigma}^{(w-w')}(X_0) \left[W_{i_1},\dots,W_{i_{w'}} \right]_{X_0}$$

Step 2: solution through iterated integrals

- 1. Choose a "good" base point X_0 for all τ and σ inside a physical phase space $\mathcal{P}_{ij},$ $ij \to kl \ldots$
- 2. Determine initial values $ec{g}^{(w)}_{ au,\sigma}(X_0)$ and algebraic relations between them
- 3. Write solutions DEs along a generic path $\gamma(t)$ ($\gamma(0) = X_0$) entirely within \mathcal{P}_{ij} through iterated integrals

$$\vec{g}_{\tau,\sigma}^{(w)} = \sum_{w'=0}^{w} \sum_{i_1,\dots,i_{w'} \in \mathbb{A}} a_{\tau,\sigma}^{(i_1)} \cdot a_{\tau,\sigma}^{(i_2)} \cdots a_{\tau,\sigma'}^{(i_{w'})} \cdot \vec{g}_{\tau,\sigma}^{(w-w')}(X_0) \left[W_{i_1},\dots,W_{i_{w'}} \right]_{X_0}$$

- $\bigcup_{\tau,\sigma} \vec{g}_{\tau,\sigma}^{(w)}$ spans a vector space at each weight ω
- No analytic continuation required by construction

Iterated integrals

[Chen '77] (see also "Iterated integrals in QFT" [Brown '11])

Let $\omega_1, \ldots, \omega_n$ be differential 1-forms on M (phase space), and path $\gamma : [0, 1] \to M$. Pull the forms back on the path $\omega_i(\mathbf{s}) \xrightarrow{\gamma^*} w_i(t) dt$. Iterated integrals $\langle \text{iints} \rangle$ are

$$M_{s_0} = \int_0^1 w_n(t_n) \, \mathrm{d}t_n \dots \int_0^{t_2} w_1(t_1) \, \mathrm{d}t_1 \tag{ii}$$

We need only logarithmic forms $\omega_i = d \log(W_i)$, use notation

$$[W_1,\ldots,W_n]_{\gamma} \coloneqq I_{\gamma}[\omega_1,\ldots,\omega_n]$$

Shuffle product

$$I_{\gamma}[\omega_1,\ldots,\omega_r] \ I_{\gamma}[\omega_{r+1},\ldots,\omega_n] = \sum_{i \in \{1,\ldots,r\} \sqcup \{r+1,n\}} I_{\gamma}[\omega_{i_1},\ldots,\omega_{i_n}] \tag{U}$$

- All functional relations manifest
- Similar to symbol, but complete information preserved

Step 3: construct basis

Proceed recursively order-by-order in ϵ (or transcendental weight w).

Denote weight w basis as $\{f_i^{(w)}\}$.

Start from w = 0: integrals are rational numbers $\iff \{f_i^{(0)}\} \coloneqq \{1\}.$

- Consider subspace $\mathbf{G}^{(w)} \coloneqq \bigcup_{\tau,\sigma} \vec{g}_{\tau,\sigma}^{(w)}$ in vector space spanned by all iints in $\mathbf{G}^{(w)}$
- Add all products of lower-weight functions $\{f_i^{(w' < w)}\}$ to $\mathbf{G}^{(w)},$

$$\mathbf{F}^{(w)} \coloneqq \mathbf{G}^{(w)} \bigcup_{\vec{w}, \vec{i}} f_{\vec{i}}^{(\vec{w})}, \qquad f_{\vec{i}}^{(\vec{w})} = f_{i_1}^{(w_1)} \cdots f_{i_2}^{(w_n)}, \qquad \sum_k w_k = w$$

Use shuffle algebra of iints to linearize identities in $\mathbf{F}^{(w)}$.

Use linear algebra to choose a basis in F^(w), preferring products of lower-weight functions. This basis is functions {f_i^(w)}.

Explicit real-analytic \log, Li_2, Cl_2 functions, e.g.

$$g_{1,4}^{(1)} \equiv [W_4] = \log(s_{45})$$

$$g_{2,10}^{(1)} = [W_{31}] + \frac{i\pi}{2} + \frac{\log(3)}{2} = \log(\sqrt{\Delta})$$

$$g_{1,3}^{(2)} \equiv -[W_2, W_2] + [W_2, W_{14}] + [W_4, W_2] - [W_4, W_{14}] + ([W_2] - [W_4])\log(2) + \frac{\pi^2}{12}$$

$$= -\operatorname{Li}_2\left(\frac{s_{45}}{s_{23}}\right) - \log\left(-\frac{s_{45}}{s_{23}}\right)\log\left(1 - \frac{s_{45}}{s_{23}}\right)$$

Positivity properties of the alphabet are important!

Weight 3 functions are one-fold integrals of weight 2 functions by definition

$$f_i^{(3)}(X) = \sum_{j,k} c_{i,j,k} \int_0^1 \mathrm{d}\log W_j(t) \, h_k^{(2)}(t) + \tau_i^{(3)}$$

Integrands analytic on the integration domain \implies integration well-defined.

- Efficient numerical integration possible
- Some care to avoid numerical cancellations if $d \log(W_j)$ can vanish along the path

Weight 4: one-fold integral representation

Change order of integration [Caron-Huot, Henn '14]

$$I_{\gamma}[\omega_{1}, \dots, \omega_{n}] = \int_{0}^{1} (\gamma^{\star} \circ \omega_{n})(t) \int_{0}^{t} (\gamma^{\star} \circ \omega_{n-1})(u) I_{\gamma(u)}[\omega_{1}, \dots, \omega_{n-2}] = \int_{0}^{1} (\gamma^{\star} \circ \omega_{n-1})(u) \left(\int_{u}^{1} (\gamma^{\star} \circ \omega_{n})(t) \right) I_{\gamma(u)}[\omega_{1}, \dots, \omega_{n-2}] \qquad 0 \qquad 1 \qquad u$$

For logarithmic forms the last integration is trivial

$$\int_{u}^{1} (\gamma^{\star} \circ \omega_n)(t) = \int_{u}^{1} \mathrm{d}\log\left(W_n(t)\right) = \log(W_n(1)) - \log(W_n(u))$$

Integrands are analytic, except possibly at loci of vanishing spurious letters, where integrable logarithmic divergences can occur.

- Linear letters: only at X₀
- Quadratic: anywhere along the path \implies efficient numerical integration over multiple line segments