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Feynman integrals as
A-hypergeometric functions




Motivation for studying Feynman integrals

Precision calculations in QFT (and beyond) require evaluation of Feynman
diagrams at loop level

For instance: scattering amplitudes

IBP reduction and evaluation of Feynman integrals by DEQs can be very

demanding

L, Seek novel mathematical frameworks for understanding and manipulating
Feynman integrals

L, Mapping out the space of functions to which Feynman integrals belong



Feynman integrals and special functions

Space of functions for Feynman integrals is extremely rich:
e GPLs
e Elliptics
e Modular forms
e Integrals over Calabi-Yau varieties

Is there an upper bound on the "complexity” of a Feynman integral?

Yes. Any Feynman integral is a special case of an A-hypergeometric function.

[Gel'fand, Kapranov, Zelevinsky '89] [Nasrollahpoursamami‘16] [de la Cruz '19] [Vanhove "19] [Klausen '20 & '22]
[Feng, Chang, Chen, Zhang '20] [Tellander, Helmer '21]

with systems of the form (0.2) there are the integrals SHP, (O L T t,F,"dtl LL.dty
where P; are polynomials, i.e., practically all integrals which arise in quantum field theory.

[GKZ, Hypergometric functions and toral manifolds, '89]



A-hypergeometric functions

GKZ data:
Parameters | 3 := (Bo,...,[3,) € C"*1
Variables z:=(z1,...,2y) € C"

Vectors ay,...,ay € Z't1

L Construct (n 4+ 1) X N matrix of integers m

Fg (2) is an A-hypergeometric function if it satisfies two sets of PDEs:

+ (n+ 1) equations

N

£ o Fs(z) == [Z(O/)izfai - 5/1 °F3(2) =0

i=1
For all integer vectors u satisfyingA-u =0

e Fsle) = [H () -1I (f)] Fald) =0



A-hypergeometric functions as integrals

A-hypergeometric functions enjoy an integral representation [Gkz 90

_ _ 5 dx dx dxq dx,
Fg(z) = z,x)Pox P A — = — AN —
5( ) Ag( ) 1 n X ) X X1 X,
+ g(z,x): Laurent polynomial in x with independent, indeterminate coefficients z
N

g(z,x) = E XY XM=, e 20
i=1

;
+ Encode exponents of x in g; := ( 1 ,a,—) € 7"t — A-matrix

Example. n = 2 integration variables, N = 3 monomials:

1.0 0.1 1.1
8(z,x) = z1x1 + Zaxo + z3X1X2 = 71 X7 X5 + Z2 X3 X3 + Z3 X1 X3

A= (01 ds 03) =




Feynman integrals are A-hypergeometric

A-hypergeometric function

_ _ g4 dx
Fo2) = [ glen)oxs™ oy

Q

Generalized Feynman integral (GFl):

T (1) := D) (L)Fs(2) , B = (e,—€b,...,—€d) — (do/2, 11, .., Up)
(do) _ ['(do/2—¢€)
N (vy= T((t41)(do/2—€) =371 th—ned) [T, T (v +eo)

« Identify C — (0,00)" , §—=0 , z— Nor (m? p? pi-p;)

+ L Lee-Pomeransky representation of L-loop Feynman integral in d = dy — 2¢
dimensions with propagator powers ; [Lee,Pomeransky '13]

+ & = G =U + F built from Symanzik polynomials U, F

Example. Massless bubble: G(z,x) = z1x1 + zoxo + z3x1x2 , z = (1,1, —p?)



Motivation for GKZ

Crucial difference:
e Generalized Feynman integral (GF): z; are independent
e Standard parametric integral: z; are dependent (say z; = zo = m?)

Motivation for this generalization:

e Wealth of mathematical structure and symmetry

e Combinatorics, algebraic geometry, D-modules, intersection theory . . .

e Algorithms for Landau singularities, series expansions, d-shift . . .
e Strong CASs: asir, polymake, IntegrableConnections, ...

e Study IBPs/DEQs derived from external variables (connection to
Lorentz-invariance relations?)



Punchlines of this talk

1. GFls can be represented by differential operators

e The operators behave like elements of a Weyl algebra, [0, z] = 1

2. Given an operator basis e (master integrals), can derive Pfaffian system

—e=~PF-e

32, ’

P; = Pfaffian matrix

e System of DEQs obeyed by Mls derived without IBPs

e Derived from novel algorithm based on the Macaulay matrix

3. Pfaffian systems lead to recurrence relations

e IBP-like relations for GFls. DEQs — IBPs.
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Pfaffian systems




Pfaffian systems
+ Function f = f(z), operators D; = Y, qi(z) 0%, K C Nfj , 0% := 9}* - - - O

Le:=(D1of...,D 0f)
+ Pfaffian system: Rational matrices P, € Q™*"(z), i=1,...,N

(9,e: Pi-e 5 Integrability: 6,P1+P}P, = @P,JFP,P/

How to write a GFl in the forme := (Dy o f,...,D, ® f)?
« Claim: 3 operator D such that D e Z(%0=0)(0,...,0) = ZW) (1, ..., 1)

+ Example. (Generalized) massless bubble:

d
0103 ® /(21X1 + 22x2 + 23x1%2) (x102) < 7)( -
€e—2 Iz dx
(€ = 1)e [ (z1x1 + zaxo + z3x1%2) ™~ (x1X2) X1 xixp—
0103
7O (0. 0)=7W (2.1
(e —1)e y (0,0 (2,1)
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Twisted cohomology

« Is there a general formula for D in D e Z(9)(0) = Z(%) ()2

* Yes, due to isomorphism: GKZ = twisted cohomology [see talk by Seva Chestnov]
[Cho, Matsumoto '95]

+ r = #{solutions to GKZ system} = dim(cohomology) = #{master integrals}

+ 7 = pairing between n-form and contour C [Mastrolia, Mizera ‘18] [Frellesvig et al. '19 & 20]
@) = (@) (1) | ]

« For this talk: Z(%) (1) represented as
T (1) — ) (y) = g(z’x)—do/%(vg
X
* In particular,

d
ZO0) +— ¢0(0) = ax



GFIs as operators

» D constructed such that [Matsubara-Heo, Takayama '20]
dx
De— = @) (y)
X

Given (do, ), findR = (r1,....ry) € Z" st A-R=(do/2,v)"

D(do)(ll> = H Urr' H #8,‘” 5 U/, a,' ~ Shlftﬁ by + a;
<0 ri>0

Change of perspective: Let D(%) (1) represent Z(%) (1)

+ Master integrals: e = (D; ¢ Z(0)(0),...,D, 0 Z(V(0)) — e=(Dy,...

The Pfaffian system 0;e = P; - e now livesina

Weyl algebra: [0;,z] = J;
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Building Pfaffian systems

Systems of DEQs for conventional Feynman integrals: Built via IBPs
[Barucchi, Ponzano '72] [Chetyrkin, Tkachov '81] [Kotikov '90] [Remiddi ‘97] [Laporta ‘00] [Gehrmann, Remiddi ‘00]
[Henn "13] [Papadopoulos '14]

Pfaffian systems in algebraic geometry: Built via Grébner bases
[Saito, Sturmfels, Takayama '00] [Takayama 13, ch. 6]

Pfaffians in this work: Built via Macaulay matrices:

e Linear system whose solution expresses higher-order derivatives
in terms of ower-order ones

Example. Basise = (01, 0, 1)’
Pfaffian Py € Q3*3(z) in direction z;
Ore= (07,0102, 00) =Py (01,02, 1)

First row: 02 = ady + b0y + cl

Coefficients a, b, c from a linear system: The Macaulay matrix

14



Macaulay matrix




Building the Macaulay matrix

Recall GKZ PDEs: £ e Fg(z) = [, e Fg(z) = 0,

N
= (@)zo—8 , O,=]]o"-]]o™
i=1 >0 ;<0
+ Choose seeds Dery = {9"| ki + ...+ ky < d} (typicallyd = 1,2)
+ Macaulay matrix of degree d: Act with 9* € Der, on GKZ operators
{0"E;, 0, } o+ cper, = M - Monsy
+ Mons,: All monomials (in 0;) appearing on the LHS

« Used [0}, ] = 0;j to commute O/'s to the right. E.g.

012102 = (1 +2,01)02 = 02 + 210102
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Pfaffian from Macaulay

‘Standard’ monomial basis: e = Std = {9"}. Split
6,' Std = CExt -Ext + CStd -Std
Ext (exterior): Monomials from 0; Std not belonging to Std

Macaulay matrix blocks: M = (Mgxt | Msta)

Can show that 0;Std = P; - Std is equivalent to

Cext — C-Mexe =0
Csta — C- Mgeg = P;

for unknown matrix C

Pfaffian from Macaulay:

Solve (1) for C — insert C into (2) to get P;

Solving (1): fast with rational reconstruction over finite fields
[FiniteFlow: Peraro’19] [Firefly: Klappert, Lange '19] [Kira: Klappert,Lange,Maierhofer,Usovitsch 20]

16



Simple example




Box: Setup

2 3
L
1 4
+ Kinematics: p? = ---=p3 =0,5s=2p; -pa, t = 2p3 - p3

* GFl: n = 4 integration variables, N = 6 monomials

d
I(do)(y) - C(dO)(l/) /C g(z’x)efdo/Z X11/1+66 . 'XZ4+66 7)(

G(z,x) = z1x1 + 2aX2 + 23X3 + ZaXa + Z5X1X3 + ZXoXa , A=

OO K

* GKZ homogeneity: Rescale (n + 1) variables z,=1 — N— (n+1)

. ._ 0
* Rescalez; = ---z5 = 1. Interpret z5 = t/s =7z 0:= b

OO OK

oo Or
HOOOR

left

O OFF

OO

17



Box: Bases

+ Integral basis: canonical [Henn'13]
er = (=) 22%(0,1,0,2)
es = (=) 7™ (1,0,2,0)
es = e(—s) 222 (1,1,1,1)

+ Operator basis: e, = A; D; oI(O)(O) with prefactors A; and
e —1 . z

— _ 92
b= (e — l)ed (e — 1)60
 (1—36)(40 —1)e 2(Ted —2¢—1) 2 9
T e—1 b (e—1)e +(6—1)6a
_deb—e—-1, 2z 92
ST (e—1)e (e —1)e

+ Strategy for Pfaffian: Use Macaulay matrix method in the basis
std = (9% 0 1)
L gauge transform to e via e = G- Std, G € Q**3(z,¢,6)



Box: Pfaffian system

+ Pfaffian in Std = (0% 0 1)" basis:
dstd = (8° 9% 9) = P . gta
+ Macaulay matrix method: Solve for C = (c11 C12 c13) in
Cext —C-Mgze =0 , Mgy = (22(2 + 1))
* Matrix (g, from:

08td = Cgye - Ext  +  Csea - Std

=(1)- @+ (i) (%)

+ Solution: C = (% 0 0) — pluginto Cggqg — C- Mgeq = p(std)

- Gauge transform 9 Std = P(5t9) . Std to Je =P - e:

-1 0 0
P=c¢ 0 0 0
__ 2 2 1

2(z+1) z+1 2(z+1) 19




Linear relations




Pfaffian system induces linear relations

+ A-hypergeometric function

1
1) = 5+ 1

« Canshow 0;f(f) = f(8 — a;)

_ d
/g(z,x)ﬂoxl P
c X

* Pick monomial basis D; = 9. We have ; D; = D; 0.

« Then e(3) = (Dy o f(B),...,D, o f(B)) satisfies

die(B) = Pi(B) - e(B) = e(B — a)

+ Opposite shift by Q;(3) := Pi(3+ a;)~*

07" e(B) = Qi(B) - e(B) = e(B + )

* Recurrence relations from matrix multiplication (fast with rational reconstruction)

+ For GFlIs: IBP-like relations from DEQs. Ordinarily: DEQs from IBPs.



Conclusions




Conclusions

GKZ:

e Feynman integrals are special cases of A-hypergeometric functions
e Can represent GFls as differential operators

Macaulay matrix:

e Can derive Pfaffian systems (DEQs for Mls) without IBPs
e External variables
e Alternative to Grobner bases (usually adopted by mathematicians)

Pfaffian systems for GFls:

e Linear relations

e Evaluation of intersection numbers [see talk by Seva Chestnov on Friday]

21



Thank you for listening
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Extra slides
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Pentagon: Setup

1 5
+ Kinematics: One off-shellleg. pf 53, =0, p2 :=p*, 5;;:= 2p; - p;

* Integrand: n = 5 integration variables, N = 11 monomials
5
G(2,X) = > 2+ Zex1%3 + 27x1X4 + Z8X1 X5 + ZoXaXa + Z10X2X5 + Z11X3X5
i=1
+ Homogeneity: Rescale z; = ... = zg = 1. Remaining 5 GKZ variables

77.8,0,10,11 = E Ly
i

in terms of 5 kinematic variables

2
_ P _ 513 _ Su4 _S23 _
Vi=—sYo="—,Y3=—"—,Ya= ", )V5=
S12 S12 S12 S12 S12

524
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Pentagon: Bases

e1 = (—812)°1(2,0,0,1,0,1) e = (—s12)1(2,0,1,0,0,1)
e3 = (=12)1(2,0,1,0,1,0) e1 = (—512)7(2,1,0,0,0,1)
es = (—812)°1(2,1,0,0,1,0 e = (—s12)°1(2,1,0,1,0,0)
Integral 5= () ) e
- o1 = e(—s12)°1(4,1,0,1,0,1) e = e(—s12)I(4,0,1,1,1,1) (5.35)
basis: eg = €(2¢ — 1)(—s12)1(6,1,0,1,1,1) €10 = g(_sm)(+1[(471’1’0,1’1)
en = e(=s12)TM(4,1,1,1,0,1) e12 = e(—s12)(4,1,1,1,1,0)
ez = € (—s12) TI(6,1,1,1,1,1).
) — o, fi,g(v) =dwo , (D) =0y, f% =05, cg(v) =0
‘3;;(1)) =€(56 4 1) + 2707 + 2505 + 2909 + 210010 + 211011
P = (406 + e+ 1)1 + 2102 + 2000011 + 210010011
Operator ei®) = 05 (5.38)
basis: ) = be (40€ + 1) D1y + 021103 + 27 (40€ + € + 1) D701 + 29 (50¢ + € + 2) oy + F210€01001
+ 202110707, + 202110007 + 2505011 + 27200706011 + 2721007010011 + 2921000010011
f’l((?) 07010
c,1(1D) = (50¢ + € + 1)d19 + 21005y + 2707010 + 2805910 + 2000010 + 211011010
D) = (56 + € + 1)Dg + 2002 + 270709 + 25500 + 21001009 + 2110110

‘3,1(;)) = (46€ + € + 2)011 8o + 2001103 + 2100100110 + 21107, D .



Pentagon: Pfaffian system

Strategy: Obtain 0; Std = P,-(Std) - Std — gauge to basis e. Here,

Std = (5’93121,3373120’385’11,39311731031173121,37,38,39,310,311)T

Macaulay matrix: Solve for C € Q13*133(z ¢, §) in

Coxt — C Mg =0 |, Mgge € Q133X133(z, €,0) is sparse

Solution: Few minutes on a laptop with FiniteF1low [peraro’19]
Pfaffian for Std: P*Y = Cgrq — C- Mspa

Gauge to ;e = P; - e: Can expand e as

e=Y 6" (0sta) =Y 667 std , KCNj

kek kek

because 0" Std = G£2) - Std known from 0;Std = P,(Std) - Std
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