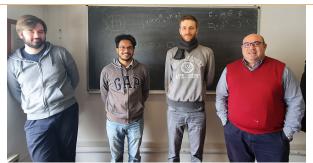
Feynman Integrals and GKZ Hypergeometric Systems

Henrik J. Munch

Loops and Legs in Quantum Field theory April 27 - 2022

Collaborators

Padova



Federico Gasparotto, Manoj K. Mandal, Seva Chestnov, Pierpaolo Mastrolia.

Kobe

Nobuki Takayama.

Kunamoto

Outline

Feynman integrals as A-hypergeometric functions

Pfaffian systems

Macaulay matrix

Simple example

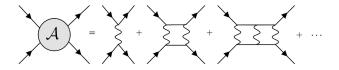
Linear relations

Conclusions

Feynman integrals as A-hypergeometric functions

Motivation for studying Feynman integrals

- Precision calculations in QFT (and beyond) require evaluation of Feynman diagrams at loop level
- · For instance: scattering amplitudes



- IBP reduction and evaluation of Feynman integrals by DEQs can be very demanding
- Seek novel mathematical frameworks for understanding and manipulating Feynman integrals
- 4 Mapping out the space of functions to which Feynman integrals belong

Feynman integrals and special functions

Space of functions for Feynman integrals is extremely rich:

- GPI s
- Elliptics
- Modular forms
- Integrals over Calabi-Yau varieties

Is there an upper bound on the "complexity" of a Feynman integral?

Yes. Any Feynman integral is a special case of an A-hypergeometric function.

[Gel'fand, Kapranov, Zelevinsky '89] [Nasrollahpoursamami '16] [de la Cruz '19] [Vanhove '19] [Klausen '20 & '22] [Feng, Chang, Chen, Zhang '20] [Tellander, Helmer '21]

[GKZ, Hypergometric functions and toral manifolds, '89]

A-hypergeometric functions

GKZ data:

Parameters
$$eta:=(eta_0,\ldots,eta_n)\in\mathbb{C}^{n+1}$$

Variables $z:=(z_1,\ldots,z_N)\in\mathbb{C}^N$
Vectors $a_1,\ldots,a_N\in\mathbb{Z}^{n+1}$

 \vdash Construct $(n+1) \times N$ matrix of integers $A = (a_1 \dots a_N)$

$F_{\beta}(z)$ is an A-hypergeometric function if it satisfies two sets of PDEs:

• (n+1) equations

$$E_j \bullet F_\beta(z) := \left[\sum_{i=1}^N (a_j)_i z_i \frac{\partial}{\partial z_i} - \beta_j \right] \bullet F_\beta(z) = 0$$

• For all integer vectors u satisfying $A \cdot u = 0$

$$\square_{u} \bullet F_{\beta}(z) := \left[\prod_{u_{i}>0}^{N} \left(\frac{\partial}{\partial z_{i}} \right)^{u_{i}} - \prod_{u_{i}<0}^{N} \left(\frac{\partial}{\partial z_{i}} \right)^{-u_{i}} \right] \bullet F_{\beta}(z) = 0$$

A-hypergeometric functions as integrals

A-hypergeometric functions enjoy an integral representation [GKZ '90]

$$F_{\beta}(z) = \int_{\mathcal{C}} g(z,x)^{\beta_0} x_1^{-\beta_1} \cdots x_n^{-\beta_n} \frac{dx}{x} \quad , \quad \frac{dx}{x} := \frac{dx_1}{x_1} \wedge \cdots \wedge \frac{dx_n}{x_n}$$

• g(z,x): Laurent polynomial in x with independent, indeterminate coefficients z

$$g(\mathbf{z}, \mathbf{x}) = \sum_{i=1}^{N} \mathbf{z}_{i} \mathbf{x}^{\alpha_{i}}$$
, $\mathbf{x}^{\alpha_{i}} := \mathbf{x}_{1}^{\alpha_{i,1}} \cdots \mathbf{x}_{n}^{\alpha_{i,n}}$, $\alpha_{i} \in \mathbb{Z}^{n}$

• Encode exponents of x in $a_i := \left(\begin{array}{c} 1 \end{array}, lpha_i \right)^{\mathsf{T}} \in \mathbb{Z}^{n+1} \, o \, ext{A-matrix}$

Example. n = 2 integration variables, N = 3 monomials:

$$g(z,x) = z_1x_1 + z_2x_2 + z_3x_1x_2 = z_1x_1^1x_2^0 + z_2x_1^0x_2^1 + z_3x_1^1x_2^1$$

$$A = (a_1 \ a_2 \ a_3) = \begin{array}{c|cccc} 1 & 1 & 1 \\ 1 & 0 & 1 & x_1 \\ 0 & 1 & 1 & x_2 \\ \hline z_1 & z_2 & z_3 & \end{array}$$

Feynman integrals are A-hypergeometric

A-hypergeometric function

$$F_{\beta}(z) = \int_{\mathcal{C}} g(z, x)^{\beta_0} x_1^{-\beta_1} \cdots x_n^{-\beta_n} \frac{\mathrm{d}x}{x}$$

Generalized Feynman integral (GFI):

$$\mathcal{I}^{(d_0)}(\nu) := c^{(d_0)}(\nu) F_{\beta}(z) \quad , \quad \beta = (\epsilon, -\epsilon\delta, \dots, -\epsilon\delta) - (\frac{d_0/2}{2}, \nu_1, \dots, \nu_n)$$
$$c^{(d_0)}(\nu) = \frac{\Gamma(d_0/2 - \epsilon)}{\Gamma((\iota+1)(d_0/2 - \epsilon) - \sum_{i=1}^n \nu_i - n\epsilon\delta) \prod_{i=1}^n \Gamma(\nu_i + \epsilon\delta)}$$

- Identify $\mathcal{C} o (0,\infty)^n$, $\delta o 0$, $z o \mathbb{N}$ or $(\mathit{m}^2,\,\mathit{p}^2,\,\mathit{p}_i\cdot\mathit{p}_j)$
- Lee-Pomeransky representation of *L*-loop Feynman integral in $d=d_0-2\epsilon$ dimensions with propagator powers ν_i [Lee,Pomeransky'13]
- $extit{g}
 ightarrow \mathcal{G} = \mathcal{U} + \mathcal{F}$ built from Symanzik polynomials $\,\mathcal{U},\,\mathcal{F}\,$

Example. Massless bubble: $G(z, x) = z_1x_1 + z_2x_2 + z_3x_1x_2$, $z = (1, 1, -p^2)$

Motivation for GKZ

Crucial difference:

- **Generalized** Feynman integral (GFI): z_i are *independent*
- Standard parametric integral: z_i are dependent (say $z_1 = z_2 = m^2$)

Motivation for this generalization:

- Wealth of mathematical structure and symmetry
- ullet Combinatorics, algebraic geometry, \mathcal{D} -modules, intersection theory \dots
- Algorithms for Landau singularities, series expansions, *d*-shift . . .
- Strong CASs: asir, polymake, IntegrableConnections, ...
- Study IBPs/DEQs derived from external variables (connection to Lorentz-invariance relations?)

Punchlines of this talk

- 1. GFIs can be represented by differential operators
 - ullet The operators behave like elements of a **Weyl algebra**, $[\partial,z]=1$
- 2. Given an operator basis *e* (master integrals), can derive **Pfaffian system**

$$\boxed{\frac{\partial}{\partial z_i} \mathbf{e} = P_i \cdot \mathbf{e}} \quad , \quad P_i = \text{ Pfaffian matrix}$$

- System of DEQs obeyed by MIs derived without IBPs
- Derived from novel algorithm based on the Macaulay matrix
- 3. Pfaffian systems lead to **recurrence relations**
 - ullet IBP-like relations for GFIs. DEQs o IBPs.

Pfaffian systems

Pfaffian systems

• Function f=f(z), operators $D_i=\sum_{k\in\mathcal{K}}q_k(z)\ \partial^k$, $\mathcal{K}\subset\mathbb{N}_0^N$, $\partial^k:=\partial_1^{k_1}\cdots\partial_N^{k_N}$

$$\downarrow e := (D_1 \bullet f, \ldots, D_r \bullet f)$$

• **Pfaffian system**: Rational matrices $P_i \in \mathbb{Q}^{r \times r}(z)$, $i = 1, \dots, N$

$$\partial_i e = P_i \cdot e$$
 , Integrability: $\partial_i P_j + P_j \cdot P_i = \partial_j P_i + P_i \cdot P_j$

How to write a GFI in the form $e := (D_1 \bullet f, \dots, D_r \bullet f)$?

- Claim: \exists operator D such that $D \bullet \mathcal{I}^{(d_0=0)}(0,\ldots,0) = \mathcal{I}^{(d_0)}(\nu_1,\ldots,\nu_n)$
- Example. (Generalized) massless bubble:

$$\partial_{1}\partial_{3} \bullet \int (\mathbf{z}_{1}\mathbf{x}_{1} + \mathbf{z}_{2}\mathbf{x}_{2} + \mathbf{z}_{3}\mathbf{x}_{1}\mathbf{x}_{2})^{\epsilon}(\mathbf{x}_{1}\mathbf{x}_{2})^{\epsilon\delta} \frac{d\mathbf{x}}{\mathbf{x}} =$$

$$(\epsilon - 1)\epsilon \int (\mathbf{z}_{1}\mathbf{x}_{1} + \mathbf{z}_{2}\mathbf{x}_{2} + \mathbf{z}_{3}\mathbf{x}_{1}\mathbf{x}_{2})^{\epsilon-2} (\mathbf{x}_{1}\mathbf{x}_{2})^{\epsilon\delta} \frac{\mathbf{x}_{1}}{\mathbf{x}_{1}}\mathbf{x}_{1}\mathbf{x}_{2} \frac{d\mathbf{x}}{\mathbf{x}}$$

$$\iff \frac{\partial_{1}\partial_{3}}{(\epsilon - 1)\epsilon} \bullet \mathcal{I}^{(0)}(0, 0) = \mathcal{I}^{(4)}(2, 1)$$

Twisted cohomology

- Is there a general formula for D in $D \bullet \mathcal{I}^{(0)}(0) = \mathcal{I}^{(d_0)}(\nu)$?
- Yes, due to isomorphism: GKZ

 twisted cohomology [See talk by Seva Chestnov]
 [Cho. Matsumoto '95]
- $r = \#\{\text{solutions to GKZ system}\} = \dim(\text{cohomology}) = \#\{\text{master integrals}\}$
- $\mathcal{I}=\mathsf{pairing}$ between n-form and contour \mathcal{C} [Mastrolia, Mizera '18] [Frellesvig et al. '19 & '20]

$$\mathcal{I}^{(d_0)}(\nu) = \langle \varphi^{(d_0)}(\nu) \, | \, \textcolor{red}{\mathcal{C}} \rceil$$

• For this talk: $\mathcal{I}^{(d_0)}(\nu)$ represented as

$$\mathcal{I}^{(d_0)}(\nu) \longleftrightarrow \varphi^{(d_0)}(\nu) := \mathcal{G}(z,x)^{-d_0/2} x^{\nu} \frac{\mathrm{d}x}{x}$$

In particular,

$$\mathcal{I}^{(0)}(0) \longleftrightarrow \varphi^{(0)}(0) = \frac{\mathrm{d}x}{x}$$

GFIs as operators

D constructed such that [Matsubara-Heo, Takayama '20]

$$D \bullet \frac{\mathsf{d} x}{x} = \varphi^{(d_0)}(\nu)$$

Given (d_0, ν) , find $R = (r_1, \dots, r_N)^T \in \mathbb{Z}^N$ s.t $A \cdot R = (d_0/2, \nu)^T$

$$D^{(d_0)}(\nu) = \prod_{r_i < 0} U_i^{-r_i} \prod_{r_i > 0} \# \partial_i^{r_i} \quad , \quad U_i , \ \partial_i \sim \text{ shift } \beta \text{ by } \pm a_i$$

Change of perspective: Let $D^{(d_0)}(\nu)$ represent $\mathcal{I}^{(d_0)}(\nu)$

- $\bullet \ \ \text{Master integrals: } e = \left(\textit{D}_1 \bullet \mathcal{I}^{(0)}(0), \ldots, \textit{D}_r \bullet \mathcal{I}^{(0)}(0) \right) \quad \rightarrow \quad e = \left(\textit{D}_1, \ldots, \textit{D}_r \right)$
- The Pfaffian system $\partial_i e = P_i \cdot e$ now lives in a

Weyl algebra:
$$[\partial_i, z_j] = \delta_{ij}$$

Building Pfaffian systems

- Systems of DEQs for conventional Feynman integrals: Built via IBPs
 [Barucchi, Ponzano '72] [Chetyrkin, Tkachov '81] [Kotikov '90] [Remiddi '97] [Laporta '00] [Gehrmann, Remiddi '00]
 [Henn '13] [Papadopoulos '14]
- Pfaffian systems in algebraic geometry: Built via **Gröbner bases**[Saito, Sturmfels, Takayama '00] [Takayama '13, ch. 6]
- Pfaffians in this work: Built via Macaulay matrices:
 - Linear system whose solution expresses higher-order derivatives in terms of lower-order ones
- Example. Basis $e = (\partial_1, \, \partial_2, \, 1)^T$
- Pfaffian $P_1 \in \mathbb{Q}^{3 \times 3}(z)$ in direction z_1

$$\partial_1 \mathbf{e} = (\partial_1^2, \, \partial_1 \partial_2, \, \partial_1)^\mathsf{T} = \mathbf{P}_1 \cdot (\partial_1, \, \partial_2, \, 1)^\mathsf{T}$$

- First row: $\partial_1^2 = a\partial_1 + b\partial_2 + c1$
- Coefficients a, b, c from a linear system: The Macaulay matrix

Macaulay matrix

Building the Macaulay matrix

Recall GKZ PDEs: $\mathit{E_{j}} \bullet \mathit{F_{\beta}}(\mathit{z}) = \Box_{\mathit{u}} \bullet \mathit{F_{\beta}}(\mathit{z}) = 0$,

$$E_j = \sum_{i=1}^{N} (a_j)_i z_i \partial_i - \beta_j \quad , \quad \Box_u = \prod_{u_i > 0} \partial^{u_i} - \prod_{u_i < 0} \partial^{-u_i}$$

- Choose seeds $\operatorname{Der}_d = \{ \partial^k | k_1 + \ldots + k_N \leq d \}$ (typically d = 1, 2)
- Macaulay matrix of degree d: Act with $\partial^k \in \mathsf{Der}_d$ on GKZ operators

$$\{\partial^k E_j, \partial^k \square_u\}_{\partial^k \in \mathsf{Der}_d} = \mathbf{M} \cdot \mathsf{Mons}_d$$

- \mathtt{Mons}_d : All monomials (in ∂_i) appearing on the LHS
- Used $[\partial_i, z_j] = \delta_{ij}$ to commute ∂_i 's to the right. E.g.

$$\partial_1 z_1 \partial_2 = (1 + z_1 \partial_1) \partial_2 = \partial_2 + z_1 \partial_1 \partial_2$$

Pfaffian from Macaulay

• 'Standard' monomial basis: $e = Std = \{\partial^m\}$. Split

$$\partial_i \operatorname{Std} = C_{\operatorname{Ext}} \cdot \operatorname{Ext} + C_{\operatorname{Std}} \cdot \operatorname{Std}$$

- Ext (exterior): Monomials from ∂_i Std *not* belonging to Std
- Macaulay matrix blocks: $M = (M_{Ext} \mid M_{Std})$
- Can show that $\partial_i \operatorname{Std} = P_i \cdot \operatorname{Std}$ is equivalent to

$$C_{\text{Ext}} - C \cdot M_{\text{Ext}} = 0$$

$$C_{\text{Std}} - C \cdot M_{\text{Std}} = P_i$$
(1)
(2)

$$C_{\text{Std}} - C \cdot M_{\text{Std}} = P_i$$
 (2)

for unknown matrix C

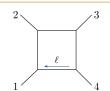
Pfaffian from Macaulay:

Solve (1) for $C \rightarrow$ insert C into (2) to get P_i

 Solving (1): fast with rational reconstruction over finite fields [FiniteFlow: Peraro '19] [Firefly: Klappert, Lange '19] [Kira: Klappert, Lange, Maierhöfer, Usovitsch '20]

Simple example

Box: Setup



- Kinematics: $p_1^2 = \cdots = p_4^2 = 0$, $s = 2p_1 \cdot p_2$, $t = 2p_2 \cdot p_3$
- **GFI**: n=4 integration variables, N=6 monomials

$$\begin{split} \mathcal{I}^{(d_0)}(\nu) &= c^{(d_0)}(\nu) \int_{\mathcal{C}} \mathcal{G}(z,x)^{\epsilon - d_0/2} \, x_1^{\nu_1 + \epsilon \delta} \cdots x_4^{\nu_4 + \epsilon \delta} \, \frac{\text{d}x}{x} \\ \mathcal{G}(z,x) &= z_1 x_1 + z_2 x_2 + z_3 x_3 + z_4 x_4 + z_5 x_1 x_3 + z_6 x_2 x_4 \ , \ A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix} \end{split}$$

- GKZ homogeneity: Rescale (n+1) variables $z_i=1 \ o \ \mathit{N}-(n+1)$ left
- Rescale $z_1=\cdots z_5=1$. Interpret $z_6=t/s=:z$. $\partial:=\frac{\partial}{\partial z}$

Box: Bases

Integral basis: canonical [Henn '13]

$$\begin{split} \mathbf{e}_1 &= (-\mathbf{s})^{\epsilon+1} \, \mathbf{z} \, \mathcal{I}^{(4)}(0,1,0,2) \\ \mathbf{e}_2 &= (-\mathbf{s})^{\epsilon+1} \, \mathcal{I}^{(4)}(1,0,2,0) \\ \\ \mathbf{e}_3 &= \epsilon \, (-\mathbf{s})^{\epsilon+2} \, \mathbf{z} \, \mathcal{I}^{(4)}(1,1,1,1) \end{split}$$

• Operator basis: $e_i = \Lambda_i D_i \bullet \mathcal{I}^{(0)}(0)$ with prefactors Λ_i and

$$D_{1} = \frac{\epsilon \delta - 1}{(\epsilon - 1)\epsilon} \frac{\partial}{\partial} - \frac{z}{(\epsilon - 1)\epsilon} \frac{\partial^{2}}{\partial^{2}}$$

$$D_{2} = \frac{(1 - 3\delta)(4\delta - 1)\epsilon}{\epsilon - 1} \frac{1}{1} + \frac{z(7\epsilon\delta - 2\epsilon - 1)}{(\epsilon - 1)\epsilon} \frac{\partial}{\partial} + \frac{z^{2}}{(\epsilon - 1)\epsilon} \frac{\partial^{2}}{\partial^{2}}$$

$$D_{3} = \frac{4\epsilon\delta - \epsilon - 1}{(\epsilon - 1)\epsilon} \frac{\partial}{\partial} - \frac{z}{(\epsilon - 1)\epsilon} \frac{\partial^{2}}{\partial^{2}}$$

Strategy for Pfaffian: Use Macaulay matrix method in the basis

$$Std = (\partial^2 \partial 1)^T$$

Box: Pfaffian system

• Pfaffian in Std = $(\partial^2 \ \partial \ 1)^T$ basis:

$$\partial \operatorname{Std} = (\partial^3 \ \partial^2 \ \partial)^{\mathrm{T}} = \operatorname{P}^{(\operatorname{Std})} \cdot \operatorname{Std}$$

• Macaulay matrix method : Solve for $C = (c_{11} \ c_{12} \ c_{13})$ in

$$C_{\text{Ext}} - C \cdot M_{\text{Ext}} = 0$$
 , $M_{\text{Ext}} = (z^2(z+1))$

Matrix C_{Ext} from:

$$\begin{split} \partial \, \mathtt{Std} &= \mathit{C}_{\mathtt{Ext}} \cdot \mathtt{Ext} &+ \mathit{C}_{\mathtt{Std}} \cdot \mathtt{Std} \\ &= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \cdot \left(\partial^3 \right) + \begin{pmatrix} 0 \, 0 \, 0 \\ 1 \, 0 \, 0 \\ 0 \, 1 \, 0 \end{pmatrix} \cdot \begin{pmatrix} \partial^2 \\ \partial \\ 1 \end{pmatrix} \end{split}$$

- **Solution**: $C = \begin{pmatrix} \frac{1}{z^2(z+1)} & 0 & 0 \end{pmatrix} \rightarrow \text{plug into } C_{\text{Std}} C \cdot M_{\text{Std}} = P^{(\text{Std})}$
- Gauge transform $\partial \operatorname{Std} = P^{(\operatorname{Std})} \cdot \operatorname{Std}$ to $\partial e = P \cdot e$:

$$P = \epsilon \begin{pmatrix} -\frac{1}{z} & 0 & 0\\ 0 & 0 & 0\\ -\frac{2}{z(z+1)} & \frac{2}{z+1} - \frac{1}{z(z+1)} \end{pmatrix}$$

Linear relations

Pfaffian system induces linear relations

• A-hypergeometric function

$$f(\beta) = \frac{1}{\Gamma(\beta_0 + 1)} \int_{\mathcal{C}} g(z, x)^{\beta_0} x_1^{-\beta_1} \cdots x_n^{-\beta_n} \frac{dx}{x}$$

- Can show $\partial_i f(\beta) = f(\beta a_i)$
- Pick monomial basis $D_i = \partial^{k_i}$. We have $\partial_i D_i = D_i \partial_i$.
- Then $e(\beta) = (D_1 \bullet f(\beta), \dots, D_r \bullet f(\beta))$ satisfies

$$\partial_i e(\beta) = P_i(\beta) \cdot e(\beta) = e(\beta - a_i)$$

• Opposite shift by $Q_i(\beta) := P_i(\beta + a_i)^{-1}$

$$\partial_i^{-1} e(\beta) = Q_i(\beta) \cdot e(\beta) = e(\beta + a_i)$$

- Recurrence relations from matrix multiplication (fast with rational reconstruction)
- For GFIs: IBP-like relations from DEQs. Ordinarily: DEQs from IBPs.

Conclusions

Conclusions

GKZ:

- Feynman integrals are special cases of A-hypergeometric functions
- Can represent GFIs as differential operators

Macaulay matrix:

- Can derive Pfaffian systems (DEQs for MIs) without IBPs
- External variables
- Alternative to Gröbner bases (usually adopted by mathematicians)

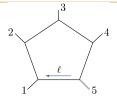
Pfaffian systems for GFIs:

- Linear relations
- Evaluation of intersection numbers [See talk by Seva Chestnov on Friday]

Thank you for listening

Extra slides

Pentagon: Setup



- Kinematics: One off-shell leg. $p_{1,2,3,4}^2=0$, $p_5^2:=p^2$, $s_{ij}:=2p_i\cdot p_j$
- **Integrand**: n = 5 integration variables, N = 11 monomials

$$G(z,x) = \sum_{i=1}^{5} z_i x_i + z_6 x_1 x_3 + z_7 x_1 x_4 + z_8 x_1 x_5 + z_9 x_2 x_4 + z_{10} x_2 x_5 + z_{11} x_3 x_5$$

• **Homogeneity**: Rescale $z_1 = \ldots = z_6 = 1$. Remaining 5 GKZ variables

$$z_{7,8,9,10,11} = \sum_{i} \pm y_i$$

in terms of 5 kinematic variables

$$y_1 = \frac{p^2}{s_{12}}$$
, $y_2 = \frac{s_{13}}{s_{12}}$, $y_3 = \frac{s_{14}}{s_{12}}$, $y_4 = \frac{s_{23}}{s_{12}}$, $y_5 = \frac{s_{24}}{s_{12}}$

Pentagon: Bases

Integral basis:

$$e_{1} = (-s_{12})^{\epsilon}I(2,0,0,1,0,1) \qquad e_{2} = (-s_{12})^{\epsilon}I(2,0,1,0,0,1)$$

$$e_{3} = (-s_{12})^{\epsilon}I(2,0,1,0,1,0) \qquad e_{4} = (-s_{12})^{\epsilon}I(2,1,0,0,0,1)$$

$$e_{5} = (-s_{12})^{\epsilon}I(2,1,0,0,1,0) \qquad e_{6} = (-s_{12})^{\epsilon}I(2,1,0,1,0,0)$$

$$e_{7} = \epsilon(-s_{12})^{\epsilon}I(4,1,0,1,0,1) \qquad e_{8} = \epsilon(-s_{12})^{\epsilon+1}I(4,0,1,1,1,1) \qquad e_{10} = \epsilon(-s_{12})^{\epsilon+1}I(4,1,1,0,1,1)$$

$$e_{11} = \epsilon(-s_{12})^{\epsilon+1}I(4,1,1,1,0,1) \qquad e_{12} = \epsilon(-s_{12})^{\epsilon+1}I(4,1,1,1,1,0)$$

$$e_{13} = \epsilon^{2}(-s_{12})^{\epsilon+1}I(6,1,1,1,1,1).$$

$$(5.35)$$

$$\begin{split} e_1^{(D)} &= \partial_{11} \; , \; e_2^{\prime(D)} = \partial_{10} \; , \; e_3^{\prime(D)} = \partial_0 \; , \; e_4^{\prime(D)} = \partial_8 \; , \; e_5^{\prime(D)} = \partial_7 \\ e_6^{\prime(D)} &= \epsilon (5\delta + 1) + z_7 \partial_7 + z_8 \partial_8 + z_9 \partial_9 + z_{10} \partial_{10} + z_{11} \partial_{11} \\ e_7^{\prime(D)} &= (4\delta \epsilon + \epsilon + 1) \partial_{11} + z_{11} \partial_{11}^2 + z_9 \partial_9 \partial_{11} + z_{10} \partial_{10} \partial_{11} \end{split}$$

Operator basis:

$$e_{8}^{\prime(D)} = \partial_{9}\partial_{11}$$

$$e_{9}^{\prime(D)} = \delta_{\epsilon} (4\delta\epsilon + 1) \partial_{11} + \delta z_{11}\epsilon \partial_{11}^{2} + z_{7} (4\delta\epsilon + \epsilon + 1) \partial_{7}\partial_{11} + z_{9} (5\delta\epsilon + \epsilon + 2) \partial_{9}\partial_{11} + \delta z_{10}\epsilon \partial_{10}\partial_{11}$$

$$+ z_{7}z_{11}\partial_{7}\partial_{11}^{2} + z_{9}z_{11}\partial_{9}\partial_{11}^{2} + z_{9}^{2}\partial_{9}^{2}\partial_{11} + z_{7}z_{9}\partial_{7}\partial_{9}\partial_{11} + z_{7}z_{10}\partial_{7}\partial_{10}\partial_{11} + z_{9}z_{10}\partial_{9}\partial_{10}\partial_{11}$$

$$e_{10}^{\prime(D)} = \partial_{7}\partial_{10}$$

$$e_{11}^{\prime(D)} = (5\delta\epsilon + \epsilon + 1)\partial_{10} + z_{10}\partial_{10}^{2} + z_{7}\partial_{7}\partial_{10} + z_{8}\partial_{8}\partial_{10} + z_{9}\partial_{9}\partial_{10} + z_{11}\partial_{11}\partial_{10}$$

$$e_{12}^{\prime(D)} = (5\delta\epsilon + \epsilon + 1)\partial_{9} + z_{9}\partial_{9}^{2} + z_{7}\partial_{7}\partial_{9} + z_{8}\partial_{8}\partial_{9} + z_{10}\partial_{10}\partial_{9} + z_{11}\partial_{11}\partial_{9}$$

$$e_{12}^{\prime(D)} = (4\delta\epsilon + \epsilon + 2)\partial_{11}\partial_{9} + z_{9}\partial_{11}\partial_{9}^{2} + z_{10}\partial_{10}\partial_{11}\partial_{9} + z_{11}\partial_{7}^{2}, \partial_{9} .$$

Pentagon: Pfaffian system

• **Strategy**: Obtain $\partial_i \operatorname{Std} = P_i^{(\operatorname{Std})} \cdot \operatorname{Std} \to \operatorname{gauge}$ to basis e. Here,

$$\mathtt{Std} = \left(\partial_9 \partial_{11}^2, \partial_9^2, \partial_{10}^2, \partial_8 \partial_{11}, \partial_9 \partial_{11}, \partial_{10} \partial_{11}, \partial_{11}^2, \partial_7, \partial_8, \partial_9, \partial_{10}, \partial_{11}\right)^\mathsf{T}$$

• Macaulay matrix : Solve for $C \in \mathbb{Q}^{13 \times 133}(z, \epsilon, \delta)$ in

$$C_{\text{Ext}} - C \cdot M_{\text{Ext}} = 0$$
 , $M_{\text{Ext}} \in \mathbb{Q}^{133 \times 133}(z, \epsilon, \delta)$ is sparse

- Solution: Few minutes on a laptop with FiniteFlow [Peraro '19]
- Pfaffian for Std: $P_i^{\text{(Std)}} = C_{\text{Std}} \frac{C}{C} \cdot M_{\text{Std}}$
- **Gauge to** $\partial_i e = P_i \cdot e$: Can expand e as

$$e = \sum_{\mathbf{k} \in \mathbf{K}} \mathbf{G}_{\mathbf{k}}^{(1)} \left(\partial^{\mathbf{k}} \operatorname{Std} \right) = \sum_{\mathbf{k} \in \mathbf{K}} \mathbf{G}_{\mathbf{k}}^{(1)} \cdot \mathbf{G}_{\mathbf{k}}^{(2)} \cdot \operatorname{Std} \ , \quad \mathbf{K} \subset \mathbb{N}_0^5$$

because $\partial^k \operatorname{Std} = G_k^{(2)} \cdot \operatorname{Std}$ known from $\partial_i \operatorname{Std} = P_i^{(\operatorname{Std})} \cdot \operatorname{Std}$