Massive Scattering Amplitudes

Ekta Chaubey

University of Turin

29 April 2022

Loops & Legs 2022
Ettal, Germany

UNIVERSITA I N F N
o ¥y B DEGLI STUDI :

<{=5247 DI TORINO

XLSADD Istituto Nazionale di Fisica Nucleare

Simon Badger, Matteo Becchetti, Bayu Hartanto, Robin Marzucca, Francesco Sarandrea



Simon Badger

Matteo Becchetti

Francesco Sarandrea

Bayu Hartanto



Era of precision physics

High-multiplicity

scattering amplitude
contributions

Corrections due to
massive particles

Impressive results for
massless

Complicated analytic
structure

Requires more mathematical
understanding
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Top-antitop pr distribution in LO, NLO and NNLO
4 QCD. Error bands from scale variation only [Czakon, Heymes, Mitov ; 2015]



Precision Wish-list

[Les Houches; 2019]

Available Required
9
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_ NLO cp (w/ decays) e
pp — tt + 7 NLO NNLOqgcp|+ NLOgw (W/ decays)
EW
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Anomalous EW couplings
NLO
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Questions

Many invariants; internal masses

Are the Feynman integrals well-known/ easily obtainable?

Analytics

Kind of analytic structure?
Do they help our mathematical understanding of Feynman integrals?

Do they improve the computations for physical observables?

Practical challenges

* Tools to set-up the computation/ automation?
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Outline

* General methodology

* NNLO scattering amplitudes in QCD

2 =2 scattering Functional relations

Analytic form of the 2-loop amplitude

Extension to higher-

2 — 3 scattering mlilicity

1-loop amplitude; ingredient for NNLO corrections




Workftlow

Amplitude reduction

After colour ordering and helicity amplitude processing:
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Suitable for IBP:
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In terms of Master Integrals (MIs):
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In terms of specml functions:
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4-point massive 2-loop
tt amplitudes

* Numerical solutions successful even if computationally intensive [Baernreuther,
Czakon, Chen, Fiedler, Poncelet; 2008-2018]

* Analytic solutions for gqqg—- tt and all non-elliptic sectors for gg —tt known

[Bonciani, Ferroglia, Gehrmann, Studerus, von Manteuffel, Di Vita, Laporta, Mastrolia,
Primo, Schubert, Becchetti, Casconi, Lavacca; 2009-2019]

[Mandal, Mastrolia, Ronca, J. Torres Bobadilla ;2022]



Helicity amplitudes

[Badger, Hartanto, Marzucca; 2020}
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Include full top-quarks efficiently; set of analytic LC helicity amplitudes for corrections to top-
quark pair production via gluon fusion at 2 loops in QCD

Obtain rational parametrisation in terms of only 2 variables, using momentum twistors;
algebra performed with FF
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Master integrals

» Top-box integral computed analytically in terms of iterated integrals over 3 elliptic

CUurves
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[Adams,
Weinzierl; 2018]

One previously
unknown integral
in the amplitude
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Analytic finite remainders

Additional function relations necessary to cancel IR poles - beyond shuffle relations
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Direct reconstruction of finite remainders

: Monomials . . .
Monomials | ...~ 1 4 o Test evaluations match with previous
numerical results [Baernreuther, Czakon, Fiedler; 13]
Amplitude 12025 1791 Analytic continuation of iterated integrals in
.. physical region needs further investigation
Finite
: 3586 3158
remainder 12




J-pt scattering

Best approach?

Inclusion of masses ===p step-up in analytic complexity compared to previously
considered 2-loop §-point amplitudes

Non-elliptic “simple” using standard methods.

Complicated alphabet, many square

roots, branch cuts

Expressible in terms of polylogarithms? EECEIRIERRD

How difficult to analytically continue?




The semi-numerical approach

Obtain results quickly and with high precision along with

learning about nature of the problem

Analytic property .

Using a canonical form for the Mls and using DiffExp

to compute them numerically still provides opportunity
to extract poles analytically
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I-loop amplitude for tt+jet

[Badger, Becchetti, Marzucca, Sarandrea; 2021]
* Analytic helicity amplitudes for this process not present. O(c) known
numerically.

* Gauge the sense of complexity arising in an analytic two-loop computation of
pp — 117

* Analytic helicity amplitudes for 1-loop QCD corrections =====pp Previously

missing ingredient for NNLO, expansion of the 1-loop helicity amplitudes up to
O(¢?)

* Includes decay information for top-quark pair in narrow-width approximation

See also [N. Syrrakos 202
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Helicity amplitudes

AP, 2f
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» Rational phase-space parametrisation using momentum twistors

* Modular arithmetic in FF reconstruction for coefficients of the partial colour
amplitudes written in terms of Mls
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Amplitude reconstruction

s34 = (ps3 +p4)2,

t12 = S12/834,

Fast reconstruction with FF. Application of

. . tog = (823 — m?)/s34,
linear relations and

tas = Sa5/S34,

o o o o o — —_ 2
univariate partial fractioning bis (31<55 ‘ mt)‘é;%
P1P45
<53>812 .

I'5123 =

to MI coefficients before reconstruction for further improvement

[Badger et al. '2021]

Simone Zoia’s missing talk
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Master integrals

4 pentagon topologies

Canonical form DE for all 130 Mls

Numerical solution using generalised
power series [Moriello; 2019] expansion in

DiffExp

Analytic result of (all but 1) boundary

constants
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Summary & Outlook

First analytic results of 2-loop amplitude with top quark loops.
For higher multiplicities, semi-numerical approach efficient.

One-loop helicity amplitudes for 5 up to O(e.

Elliptic functions require more thought in terms of a minimal basis; nevertheless

already exposes simplifications.

Optimistic prospects for higher-loops!

Thank you JI&



Back-upslide

* Performances for § pt:

Timings of all Mls for all topologies & permutations within a range of 3omin- 1 hr for phase-space
spoint, on a laptop for 16 digits; can be improved by building a precomputed grid of points as BC.

* Effect of relations for 4 pt:

Mapping the Ml in A*(2,N_h) to a basis of special functions, 12025 monomials; applying relations
reduce to 11791 monomials.

Much fewer monomials appearing in 2-loop finite remainder. In one of the sub amplitudes with
helicity +++-, 3586 monomials appear; applying relations bring them to 3158.

1-2 days (~30 cores). Not completely trivial but not worth serious optimisation either.



Helicity amplitudes

» Rational phase-space parametrisation using momentum twistors & sampling of
Feynman diagrams using modular arithmetic

* Parametrisation applied to each projected amplitudes —s= reduced to Mls and
reconstructed using FF

» Sub-amplitudes constructed from the projected amplitudes, again with the help of
reconstruction over finite fields, linear relations and univariate partial fractioning



