Yang-Mills All-Plus Two Loops for the Price of One

Sebastian Pögel (University of Mainz)
Based on work with David Kosower (IPhT Saclay) [2205.xxxxx; ...]
Loops \& Legs 2022, Ettal
April 26 ${ }^{\text {th }} 2022$

LHC: Corrections Required

Higher order corrections necessary for LHC precision measurements

- e.g. α_{s} : requires NNLO corrections for 2- and 3-jet QCD processes

Theory predictions:

- LO: qualitative
- NLO: quantitative, $\sim 10 \%$
- NNLO: "precision", accuracy of order ~3\%

Build complicated on-shell amplitudes from simpler ones

Loop-level:
Generalized Unitarity

$$
\begin{aligned}
\mathcal{A}^{(1)}= & \mathrm{C}_{\mathrm{Box}}^{(1)} I_{4}^{D}[\boxed{\square}]+\mathrm{C}_{\mathrm{Tri}}^{(1)} I_{3}^{D}[\boldsymbol{\Delta}] \\
& +\mathrm{C}_{\mathrm{Bub}}^{(1)} I_{2}^{D}[-\mathbf{-}]+\mathrm{C}_{\mathrm{Tad}}^{(1)} I_{1}^{D}[\mathbf{Q}]
\end{aligned}
$$

Yang-Mills All-Plus

Yang-Mills Amplitudes: we consider purely gluonic case

All gluons have same helicity: $\left\{\begin{array}{l}\text { Most symmetric case } \\ A^{(0)}\left(1^{+} \ldots n^{+}\right)=0\end{array}\right.$

In YM: only at tree-level With SUSY: for all loop orders

Yang-Mills All-Plus: Loop-Level Features

Closed all-n form known at one-loop

$$
\operatorname{tr}\left(\frac{1+\gamma_{5}}{2} \nmid j k l\right)
$$

$$
A^{(1)}\left(1^{+} \ldots n^{+}\right)=-\frac{1}{3} \frac{\left.\sum_{1 \leq i<j<k<l \leq n}\langle i| j k l \mid i\right]}{\langle 12\rangle\langle 23\rangle \ldots\langle(n-1) n\rangle\langle n 1\rangle}+\mathcal{O}(\epsilon)
$$

Conjectured [Bern, Chalmers, Dixon, Kosower, hep-ph/9312333]
Proven [Mahlon, hep-ph/9312276; BDK, hep-th/0501240]

Tree-like!

Connected to $\mathcal{N}=4$ sYM MHV at one-loop, two-loop (and beyond)
[BDDK, hep-th/9611127; Britto, Jehu, Orta, 2011.13821]
[BDDK, hep-ph/0001001; Badger, Frellesvig, Zhang, 1310.1051; Badger, Mogull, Peraro, 1606.02244]
[Chicherin, Henn, 2202.05596, 2204.00329]

Decomposition of Two-Loop Amplitudes

[Catani, hep-ph/9802439; Sterman, Tejeda-Yeomans, hep-ph/0210130]

$$
A_{n}^{(2)} \simeq \overbrace{\left(A_{n}^{(0)} \mathcal{I}_{n}^{(2)}\right)}^{\text {Tree } \times 2 \text {-Loop }}+\overbrace{\left(A_{n}^{(1)} \mathcal{I}_{n}^{(1)}\right)}^{\text {1-Loop } \times 1 \text { 1-Loop }}+\overbrace{P_{n}^{(2)}+R_{n}^{(2)}}^{\text {Finite } F_{\text {Finite Polylogs }}^{(2)}}
$$

$$
\text { Universal IR structures }\left\{\begin{array}{l}
\mathcal{I}_{n}^{(2)} \sim \frac{1}{\epsilon^{4}} \\
\mathcal{I}_{n}^{(1)} \sim \frac{1}{\epsilon^{2}}
\end{array}\right.
$$

Decomposition of Two-Loop All-Plus

Polylog part of two-loop all-plus Expressible as nested loops

Full 4-, 5-, 6 gluon results known
[Bern, Dixon, Kosower, hep-ph/0001001; Bern, Freitas Dixon,hep-ph/0201161; Gehrmann, Lo Presti, 1511.05409; Dunbar, Jehu, Perkins, 1604.06631;
as well as partial 7- and n-gluon
[Dunbar, Jehu, Perkins, 1710.10071; Dunbar, Perkins, Strong, 2001.11347]
All-n expressions available [Dunbar, Jehu, Perkins, 1604.06631]

Dimensional Reconstruction

Extract analytic dependence on D_{s} through interpolation

$$
A^{(2)}=A_{\text {Six-dimensional amplitudes }}^{2 g}+\left(D_{s}-6\right) A_{6 \mathrm{D}}^{s g}+\left(D_{s}-6\right)^{2} A_{6 \mathrm{D}}^{2 s}
$$

Conjecture (BMP) for all-plus at leading color:
[Badger, Mogull, Peraro, 1606.02244, 1607.00311]

$$
F^{(2)}=\underbrace{\left(D_{s}-2\right) P^{(2)}}_{\text {Only polylogs }}+\underbrace{\left(D_{s}-2\right)^{2} R^{(2)}}_{\text {Only rational }}+\mathcal{O}(\epsilon)
$$

$-N_{c}^{2} \operatorname{Tr}$

Comparing coefficients

 $R^{(2)}$ determined by rational part of $A_{6 \mathrm{D}}^{2 s}$From $A_{6 \mathrm{D}}^{2 s}$ to $R_{n: 1}^{(2)}\left(1^{+} \ldots n^{+}\right)$
$A_{6 \mathrm{D}}^{2 s}$: Loops of different scalar flavors

Only (one-loop) ${ }^{2}$ topologies

Feynman rules are
flavour conserving

Forbidden

Reformulation of leading color BMP conjecture: Two Nested One-Loop Unitarity Computations

Go further: Extend to full amplitude.

Color Decomposition of Two-Loop Amplitudes

[Dalgleish, Dunbar, Perkins, Strong, 2003.00897]

Separating color and kinematics

$\begin{aligned} & \ni \begin{array}{l} \\ \end{array} \begin{array}{l}N_{c}^{2} \operatorname{Tr} \\ N_{c} \operatorname{Tr} \operatorname{Tr} \\ N_{c}^{0} \operatorname{Tr} \operatorname{Tr} \operatorname{Tr}\end{array} \\ & \underbrace{}_{\operatorname{Tr}(\mathbb{1})=N_{c}}\end{aligned}$

Stringy Picture for Color Traces

Single Boundary

Use stringy picture as a guide to construct non-planar cuts

Examples

$\operatorname{Tr}(12) \operatorname{Tr}(34) \operatorname{Tr}(56)$

Again (one-loop)² topologies sufficient

Verification

Numerical agreement with all known results

[Bern, Dixon, Kosower, hep-ph/0001001; Bern, Freitas, Dixon,hep-ph/0201161;
Badger, Chicherin, Gehrmann, Heinrich, Henn, Peraro, Wasser, Zhang, Zoia, 1905.03733
Dunbar, Godwin, Perkins, Strong, 1911.06547; Dalgleish, Dunbar, Perkins, Strong, 2003.00897]
Generation and evaluation of cuts automated in Mathematica
\rightarrow Rational kinematics \Rightarrow exact results
\rightarrow Analytics (n-point momentum twistor parametrization)
Number of cuts required:

n	4	5	6	7
$R_{n: 1}^{(2)}$	28	165	894	2891
$R_{n: 3}^{(2)}$	108	1026	5832	22400
$R_{n: 4}^{(2)}$	-	-	6615	29064
$R_{n: 2,2}^{(2)}$	-	-	25344	129120

Subleading single trace $R_{n: 1 \mathrm{~B}}^{(2)}$

All-n conjecture for $R_{n: 1 \mathrm{~B}}^{(2)}$ exists: High multiplicity checks
[Dunbar, Perkins, Strong, 2001.11347]
One-loop squared construction numerically verified up to 9 gluons!

$$
\left.\begin{array}{l|c|c|c|c|c|c|}
& n=4 & n=5 & n=6 & n=7 & n=8 & n=9 \\
\hline R_{n: 1 \mathrm{~B}}^{(2)} & 168 & 1925 & 16068 & 89257 & 400053 & (77247)
\end{array}\right)
$$

Reorganization of cuts leads to

Explicit One-Loop Picture for Rational Part

Multiple routes to obtain

Conjecture: One-loop construction extends to

 Entire Full-Colour Two-Loop All-Plus Amplitude

Summary

Cut-constructible part of two-loop all-plus amplitudes:

- Loops can be nested, to be evaluated one-by-one

Rational terms:

- Nested loop picture also applicable $\quad \mathcal{R}^{(2)} \propto \mathcal{R}_{6 \mathrm{D}}^{2 \mathrm{~s}(2)}=\mathcal{R}^{(1)}\left[\mathcal{R}^{(1)}\right]$

Full-Colour All-Plus Amplitude

- Formulate as an effective one-loop unitarity computation

Future Directions

- High-Multiplicity: As a start, prove $\mathcal{R}_{n: 1 \mathrm{~B}}^{(2)}$ conjecture
- Extension to other helicities: How much survives for single-minus?
- Extension to gravity: All-Plus graviton amplitudes
- Conformal properties: Explore mechanism of conformal symmetry breaking of all-plus at two-loop level

Backup

Example:

Momentum Twistor Parametrization

$$
\begin{aligned}
& Z=\left(\begin{array}{cccccccc}
1 & 0 & y_{1} & y_{2} & y_{3} & \ldots & y_{n-3} & y_{n-2} \\
0 & 1 & 1 & 1 & 1 & \ldots & 1 & 1 \\
0 & 0 & 0 & \frac{b_{n-4}}{a_{2}} & \tilde{b}_{n-5} & \ldots & \tilde{b}_{1} & 1 \\
0 & 0 & 1 & 1 & \tilde{c}_{n-4} & \ldots & \tilde{c}_{2} & \tilde{c}_{1}
\end{array}\right) \\
& y_{k}=\sum_{i=1}^{k} \prod_{j=1}^{i} \frac{1}{a_{j}}, \\
& \tilde{b}_{k}=\tilde{b}_{k-1}+a_{n-k}\left(\tilde{b}_{k-1}-\tilde{b}_{k-2}\right)+b_{k}, \\
& a_{1}=s_{12} \\
& a_{k>1}=-\frac{\langle k, k+1\rangle\langle k+2,1\rangle}{\langle 1, k\rangle\langle k+1, k+2\rangle}, \\
& b_{n-4}=\frac{s_{23}}{s_{12}} \text {, } \\
& b_{k}=\frac{\langle n-k| n-k+1 \mid 2]}{\langle n-k| 1 \mid 2]}, \\
& c_{k}=-\frac{\langle 1| 3 \mid n-k+2]}{\langle 1| 2 \mid n-k+2]}
\end{aligned}
$$

$$
R_{4: 1}^{(1)}\left(1^{\varphi} 2^{\varphi} 3^{+} 4^{+}\right)=-\frac{1}{3} \frac{s_{13}-s_{34}}{\langle 34\rangle^{2}}
$$

$$
R_{4: 2}^{(1)}\left(1^{\varphi} 2^{\varphi} 3^{+} ; 4^{+}\right)=\frac{[23]}{\langle 23\rangle}
$$

$$
R_{4: 3}^{(1)}\left(1^{\varphi} 2^{\varphi} ; 3^{+} 4^{+}\right)=-\frac{[34]}{\langle 34\rangle}
$$

$$
R_{4: 3}^{(1)}\left(1^{\varphi} 2^{+} ; 3^{\varphi} 4^{+}\right)=-2 \frac{[24]}{\langle 24\rangle}
$$

$$
\begin{aligned}
& R_{5: 1}^{(1)}\left(1^{\varphi} 2^{\varphi} 3^{+} 4^{+} 5^{+}\right) \\
&=\frac{1}{3}[-\frac{m^{2}\langle 35\rangle[3|12| 3][35]^{3}}{\left.s_{12}\langle 45\rangle[3|2(3+4)| 5]\left(s_{12}\langle 4| 2 \mid 3\right]-\langle 34\rangle[3|12| 3]\right)} \\
&+\frac{\left.m^{2}\langle 5| 2 \mid 3\right][35]^{3}}{\left.\langle 45\rangle[3|2(3+4)| 5]\left(s_{12}\langle 4| 2 \mid 3\right]-\langle 34\rangle[3|12| 3]\right)}-\frac{\left.m^{2}\langle 4| 1 \mid 5\right][3|2(3+4)| 5][34]}{s_{15}^{2}\langle 34\rangle\langle 45\rangle[3|(1+2) 1| 5]} \\
&-\frac{m^{2}[3|42| 3][35]^{2}[45]}{\langle 34\rangle\langle 45\rangle[3|(1+2) 1| 5][3|2(3+4)| 5][34]}+\frac{2 s_{12}[34][3|42| 3]}{\left.s_{23}\langle 34\rangle\langle 5| 4 \mid 3\right]^{2}} \\
&-\frac{[3|21| 3][3|2(3+4)| 5][34]}{\left.\left.s_{12}\langle 5| 4 \mid 3\right]\left(s_{12}\langle 4| 2 \mid 3\right]-\langle 34\rangle[3|12| 3]\right)}-\frac{\left.s_{23}\langle 4| 1 \mid 5\right]^{2}[34]}{s_{15}\langle 34\rangle^{2}\langle 45\rangle[3|(1+2) 1| 5]}+\frac{s_{15}[34][3|42| 3]}{\left.s_{23}\langle 34\rangle\langle 5| 4 \mid 3\right]^{2}} \\
&\left.+\frac{\left.\langle 4| 1 \mid 5]^{2}\langle 5| 1(3+4) 2 \mid 3\right][34]^{2}}{\left.s_{15}{ }^{2}\langle 34\rangle\langle 45\rangle\langle 5| 4 \mid 3\right][3|(1+2) 1| 5]}+\frac{\langle 4| 1 \mid 5][3|2(3+4)| 5][34]}{s_{15}\langle 34\rangle\langle 45\rangle[3|(1+2) 1| 5]}-\frac{2[3|12| 3][34]^{2}}{\left.s_{23}\langle 5| 4 \mid 3\right]^{2}}\right] .
\end{aligned}
$$

$$
0 \text { or }
$$

Two-loop Unitarity Cuts

One-Loop Generalized Cuts

No further cuts possible

Spinor-Helicity Variables

Spinor-helicity variables encode both helicity and kinematics

Kinematics:

$$
\langle i j\rangle=-\sqrt{s_{i j}} e^{\phi_{i j}}
$$

$$
[i j]=\sqrt{s_{i j}} e^{-\phi_{i j}}
$$

$\langle i j\rangle[j i]=s_{i j}$

Helicity (e.g. gluons): $\quad \varepsilon_{\mu}^{-}(p)=\frac{1}{\sqrt{2}} \frac{\left.\langle p| \sigma_{\mu} \mid q\right]}{[p q]} \quad \varepsilon_{\mu}^{+}(p)=-\frac{1}{\sqrt{2}} \frac{\left[p\left|\sigma_{\mu}\right| q\right\rangle}{\langle p q\rangle}$

Natural variables for amplitudes, allow compact expressions
Famous Example: Parke-Taylor Amplitude

$$
A^{(0)}\left(1^{+} \ldots i^{-} \ldots j^{-} \ldots n^{+}\right)=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle}
$$

In on-shell approach,
proof needs half a page

Only One-Loop Ingredients Needed

$\ell_{\square}, \ell_{\Delta}, \ell_{\circ}$
$\mathrm{C}_{\square}\left[\mu^{4}\right], C_{\Delta}\left[\mu^{2}\right]$, $\mathrm{C}_{0}\left[\mu^{2}\right]$
$\mathrm{I}_{\square}\left[\mu^{4}\right], I_{\triangle}\left[\mu^{2}\right]$, $\mathrm{I}_{\circ}\left[\mu^{2}\right]$

Known for arbitrary number of gluons
[Ferrario, Rodrigo, Talavera, hep-th/0602043]

Computable via recursion

Parametrization following [Badger, 0806.4600]
Residues via series expansion in Mathematica.
Parameter integrals known
[Forde, 0704.1835, Kilgore, 0711.5015]

Integrals are well known, e.g. [Badger, 0806.4600]

Loop-Level BCFW On-Shell Recursion

Tree-level BCFW: Only factorizable single poles

$$
A^{(0)}(z)=\frac{g^{(0)}(z)}{\left(z-z_{i}\right)}+\mathcal{O}\left(\left(z-z_{i}\right)^{0}\right)
$$

Factorizing,
i.e. originate from on-shell propagator

Loop-level BCFW: Pole structure more complicated

$$
A^{(1)}(z)=\frac{f^{(1)}(z)}{\left(z-z_{i}\right)^{2}}+\frac{g^{(1)}(z)}{\left(z-z_{i}\right)}+\mathcal{O}\left(\left(z-z_{i}\right)^{0}\right)
$$

Computing Missing-Pole Pieces

Extra poles from triangle integral

Origin of double poles:
[Bern, Chalmers, hep-ph/9503236]

Existing approach:

Augmented Recursion (off-shell)
[Dunbar, Ettle, Perkins, 1003.3398;
Alston, Dunbar, Perkins, 1208.0190, 1507.08882]

Sebastian Pögel (University of Mainz), Loops \& Legs 2022

Our approach:

Unitarity (on-shell)
Only two cuts needed:

Double and single poles are
exactly missing part
(i.e. "pole-under-pole" and non-factorizable poles)

From unitarity:
Obtained analytic expressions for "missing" pole terms, verified numerically

Used to verify two-loop All-Plus results for

$$
R_{4: 1}^{(2)} R_{4: 1 \mathrm{~B}}^{(2)} \quad R_{4: 3}^{(2)} \quad R_{5: 1}^{(2)}
$$

Example:

Sidenote: Why Are Rational Terms "Hard"?

Generalized unitarity cuts probe branch cuts

$$
A_{n}^{(2)} \simeq \underbrace{\left(A_{n}^{(0)} \mathcal{I}_{n}^{(2)}\right)+\left(A_{n}^{(1)} \mathcal{I}_{n}^{(1)}\right)+P_{n}^{(2)}}+\underbrace{(2)}_{n}
$$

$$
\text { Polylogs, etc. } \rightarrow \begin{aligned}
& \text { Branch cuts in 4D kinematics } \\
& \text { "Cut-constructible" }
\end{aligned}
$$

Product of four-dimensional amplitudes

However, rational part $R_{n}^{(2)}$ is constructible from D-dimensional branch cuts

D-dimensional Generalized Unitarity

Connection of all-plus with $\mathcal{N}=4 \mathrm{sYM}$ MHV Amplitude

At amplitude level:
$\quad A^{(1)}\left(1^{+} \ldots n^{+}\right)=-2 \epsilon(1-\epsilon)(4 \pi)^{2}\left[\frac{A_{\mathcal{N}=4}^{(1)}\left(1^{+} \ldots i^{-} \ldots j^{-} \ldots n^{+}\right)}{\langle i j\rangle^{4}}\right]$
Now proven to all orders in ϵ [2011.13821]

At integrand level: simple replacement

At one-loop:

$$
\delta^{(8)}(Q) \longrightarrow\left(D_{s}-2\right) \mu^{4}
$$

At two-loop: Partial $\quad \delta^{(8)}(Q) \rightarrow F_{1}=\left(D_{s}-2\right)\left(\mu_{1}^{2} \mu_{2}^{2}+\left(\mu_{1}^{2}+\mu_{2}^{2}\right)^{2}+2 \mu_{12}\left(\mu_{1}^{2}+\mu_{2}^{2}\right)\right)+16\left(\mu_{12}^{2}-\mu_{1}^{2} \mu_{2}^{2}\right)$
Conjectured in [Badger, Frellesvig, Zhang, 1310.1051; Badger, Mogull, Peraro, 1606.02244]

