Yang–Mills All-Plus Two Loops for the Price of One

Sebastian Pögel (University of Mainz)

Based on work with David Kosower (IPhT Saclay) [2205.xxxxx; ...]

Loops & Legs 2022, Ettal April 26th 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 764850, SAGEX.

LHC: Corrections Required

Higher order corrections necessary for LHC precision measurements

- e.g. α_s : requires NNLO corrections for 2- and 3-jet QCD processes

Theory predictions:

- LO: qualitative
- **NLO**: quantitative, ~10%
- NNLO: "precision", accuracy of order ~3%

[[]Currie, Glover, Gehrmann-De Ridder, Gehrmann, Huss, Pires, 1704.00923]

Feynman diagram introduce gauge redundancies - On-Shell Methods

Build complicated on-shell amplitudes from simpler ones

$$\mathcal{A}^{(1)} = \mathcal{C}_{\text{Box}}^{(1)} I_4^D \left[\prod \right] + \mathcal{C}_{\text{Tri}}^{(1)} I_3^D \left[\bigwedge \right] \\ + \mathcal{C}_{\text{Bub}}^{(1)} I_2^D \left[\frown \right] + \mathcal{C}_{\text{Tad}}^{(1)} I_1^D \left[\bigcirc \right]$$

Loop-level: Generalized Unitarity

[BDDK, hep-ph/9403226, hep-ph/9409265; BDK, hep-ph/9708239; BCF, hep-th/0412103; ...]

Yang-Mills Amplitudes: we consider purely gluonic case

All gluons have same helicity: $\begin{cases} Most symmetric case \\ A^{(0)}(1^+ \dots n^+) = 0 \end{cases}$ In YM: only at tree-level

With SUSY: for all loop orders

Yang-Mills All-Plus: Loop-Level Features

Connected to $\mathcal{N} = 4$ sYM MHV at one-loop, two-loop (and beyond)

[BDDK, hep-th/9611127; Britto, Jehu, Orta, 2011.13821] [BDDK, hep-ph/0001001; Badger, Frellesvig, Zhang, 1310.1051; Badger, Mogull, Peraro, 1606.02244] [Chicherin, Henn, 2202.05596, 2204.00329]

Decomposition of Two-Loop Amplitudes

[Catani, hep-ph/9802439; Sterman, Tejeda-Yeomans, hep-ph/0210130]

$$\left\{ \begin{array}{l} \mathcal{I}_n^{(2)} \sim \frac{1}{\epsilon^4} \\ \mathcal{I}_n^{(1)} \sim \frac{1}{\epsilon^2} \end{array} \right.$$

Decomposition of Two-Loop All-Plus

Universal IR structures

$$\left\{ \begin{array}{l} \mathcal{I}_n^{(2)} \sim \frac{1}{\epsilon^4} \\ \mathcal{I}_n^{(1)} \sim \frac{1}{\epsilon^2} \end{array} \right.$$

Polylog part of two-loop all-plus Expressible as nested loops

 $+\mathcal{P}_n^{(2)}+\mathcal{R}_n^{(2)}$

One-loop all-plus

Full 4-, 5-, 6 gluon results known

[Bern, Dixon, Kosower, hep-ph/0001001; Bern, Freitas Dixon,hep-ph/0201161; Gehrmann, Lo Presti, 1511.05409; Dunbar, Jehu, Perkins, 1604.06631; Badger, Chicherin, Gehrmann, Heinrich, Henn, Peraro, Wasser, Zhang, Zoia, 1905.03733; Dunbar, Godwin, Perkins, Strong, 1911.06547; Dalgleish, Dunbar, Perkins, Strong, 2003.00897]

as well as partial 7- and n-gluon

[Dunbar, Jehu, Perkins, 1710.10071; Dunbar, Perkins, Strong, 2001.11347]

All-n expressions available [Dunbar, Jehu, Perkins, 1604.06631]

 $A_n^{(2)} \simeq$

Comparing coefficients $R^{(2)}$ determined by rational part of A_{6D}^{2s}

From A_{6D}^{2s} to $R_{n+1}^{(2)}(1^+ \dots n^+)$

 A_{6D}^{2s} : Loops of different scalar flavors

Feynman rules are flavour conserving

Only (one-loop)² topologies

Reformulation of leading color BMP conjecture: Two Nested One-Loop Unitarity Computations

$$\mathcal{R}^{(2)} \propto \mathcal{R}^{(1)} \left[\underbrace{\bullet} \times \mathcal{R}^{(1)} \left[\underbrace{\bullet} & \bullet \end{array} \right] + \mathcal{R}^{(1)} \left[\underbrace{\bullet} \times \mathcal{R}^{(1)} \left[\underbrace{\bullet} & \bullet \end{array} \right] \right] + \dots$$
Acts as "tree-amplitude"

Go further: Extend to full amplitude.

Color Decomposition of Two-Loop Amplitudes

[Dalgleish, Dunbar, Perkins, Strong, 2003.00897]

Separating color and kinematics

Use stringy picture as a guide to construct non-planar cuts

Again (one-loop)² topologies sufficient

Verification

Numerical agreement with all known results

[Bern, Dixon, Kosower, hep-ph/0001001; Bern, Freitas, Dixon,hep-ph/0201161; Badger, Chicherin, Gehrmann, Heinrich, Henn, Peraro, Wasser, Zhang, Zoia, 1905.03733 Dunbar, Godwin, Perkins, Strong, 1911.06547; Dalgleish, Dunbar, Perkins, Strong, 2003.00897]

optimized series expansion

Generation and evaluation of cuts automated in Mathematica

- → Rational kinematics ⇒ exact results
- Analytics (n-point momentum twistor parametrization)

Number of cuts required:

n	4	5	6	7
$R_{n:1}^{(2)}$	28	165	894	2891
$R_{n:3}^{(2)}$	108	1026	5832	22400 🔨
$R_{n:4}^{(2)}$			6615	29064 Literature results not available
$R_{n:2,2}^{(2)}$			25344	129120

Subleading single trace $R_{n:1B}^{(2)}$

n=5

1925

n = 4

168

n = 6

16068

n=7

89257

n = 8

400053

All-n conjecture for $R_{n:1B}^{(2)}$ exists: High multiplicity checks

 $R_{n:1B}^{(2)}$

[Dunbar, Perkins, Strong, 2001.11347]

One-loop squared construction numerically verified up to **9 gluons!**

Sebastian Pögel (University of Mainz), Loops & Legs 2022

only

All boxes and bubbles vanish

Reorganization of cuts leads to Explicit One-Loop Picture for Rational Part

Conjecture: One-loop construction extends to Entire Full-Colour Two-Loop All-Plus Amplitude

Summary

Cut-constructible part of two-loop all-plus amplitudes:

• Loops can be nested, to be evaluated one-by-one

Rational terms:

• Nested loop picture also applicable

Full-Colour All-Plus Amplitude

• Formulate as an effective one-loop unitarity computation

 $\mathcal{R}^{(2)} \propto \mathcal{R}^{2\mathrm{s}(2)}_{6\mathrm{D}} = \mathcal{R}^{(1)} \Big[\mathcal{R}^{(1)} \Big]$

Future Directions

- **High-Multiplicity:** As a start, prove $\mathcal{R}_{n:1B}^{(2)}$ conjecture
- **Extension to other helicities:** How much survives for single-minus?
- Extension to gravity: All-Plus graviton amplitudes
- **Conformal properties:** Explore mechanism of conformal symmetry breaking of all-plus at two-loop level

Backup

Example:

Momentum Twistor Parametrization

,

$$Z = \begin{pmatrix} 1 & 0 & y_1 & y_2 & y_3 & \dots & y_{n-3} & y_{n-2} \\ 0 & 1 & 1 & 1 & 1 & \dots & 1 & 1 \\ 0 & 0 & 0 & \frac{b_{n-4}}{a_2} & \tilde{b}_{n-5} & \dots & \tilde{b}_1 & 1 \\ 0 & 0 & 1 & 1 & \tilde{c}_{n-4} & \dots & \tilde{c}_2 & \tilde{c}_1 \end{pmatrix}$$
$$y_k = \sum_{i=1}^k \prod_{j=1}^i \frac{1}{a_j},$$
$$\tilde{b}_k = \tilde{b}_{k-1} + a_{n-k}(\tilde{b}_{k-1} - \tilde{b}_{k-2}) + b_k,$$
$$\tilde{c}_k = \tilde{c}_{k-1} + a_{n-k+1}(\tilde{c}_{k-1} - \tilde{c}_{k-2}) + \frac{b_{k-1}}{b_{n-4}}(c_k - 1)$$

$$a_{1} = s_{12}$$

$$a_{k>1} = -\frac{\langle k, k+1 \rangle \langle k+2, 1 \rangle}{\langle 1, k \rangle \langle k+1, k+2 \rangle},$$

$$b_{n-4} = \frac{s_{23}}{s_{12}},$$

$$b_{k} = \frac{\langle n-k|n-k+1|2]}{\langle n-k|1|2]},$$

$$c_{k} = -\frac{\langle 1|3|n-k+2]}{\langle 1|2|n-k+2]}$$

$$R_{4:1}^{(1)}(1^{\varphi}2^{\varphi}3^{+}4^{+}) = -\frac{1}{3}\frac{s_{13} - s_{34}}{\langle 34 \rangle^{2}},$$

$$R_{4:2}^{(1)}(1^{\varphi}2^{\varphi}3^{+};4^{+}) = \frac{[23]}{\langle 23 \rangle}$$

$$R_{4:3}^{(1)}(1^{\varphi}2^{\varphi};3^{+}4^{+}) = -\frac{[34]}{\langle 34 \rangle}$$

$$R_{4:3}^{(1)}(1^{\varphi}2^{+};3^{\varphi}4^{+}) = -2\frac{[24]}{\langle 24 \rangle}$$

2 3	
1 5	

$R_{5:1}^{(1)}(1^{\varphi}2^{\varphi}3^{+}4^{+}5^{+})$	
$=\frac{1}{3}\Big[-\frac{m^2\langle 35\rangle [3 12 3] [35]^3}{s_{12}\langle 45\rangle [3 2(3+4) 5] (s_{12}\langle 4 2 3] - \langle 34\rangle [3 12 3])}\Big]$	
$= \frac{1}{3} \left[-\frac{1}{s_{12} \langle 45 \rangle [3 2(3+4) 5] (s_{12} \langle 4 2 3] - \langle 34 \rangle [3 12 3])} \right]$	
$m^{2}\left< 5 2 3 \right] \left[35 \right]^{3}$ $m^{2}\left< 4 1 5 \right] \left[3 2 \right]$	(3+4)[5][34]
$+ \frac{1}{\langle 45 \rangle [3 2(3+4) 5] (s_{12} \langle 4 2 3] - \langle 34 \rangle [3 12 3])} - \frac{1}{s_{15}^2 \langle 34 \rangle \langle 45 \rangle}$	[3 (1+2)1 5]
$m^{2} [3 42 3] [35]^{2} [45] \qquad 2s_{12} [34] [3 42 3]$	
$-\frac{m^{2}\left[3 42 3\right]\left[35\right]^{2}\left[45\right]}{\left\langle34\right\rangle\left\langle45\right\rangle\left[3 (1+2)1 5\right]\left[3 2(3+4) 5\right]\left[34\right]}+\frac{2s_{12}\left[34\right]\left[3 42 3\right]}{s_{23}\left\langle34\right\rangle\left\langle5 4 3\right]^{2}}$	
$[3 21 3] [3 2(3+4) 5] [34] \qquad \qquad s_{23} \langle 4 1 5 ^2 [34]$	$s_{15}[34][3 42 3]$
$-\frac{1}{s_{12}\left<5 4 3\right]\left(s_{12}\left<4 2 3\right]-\left<34\right>\left[3 12 3\right]\right)}-\frac{1}{s_{15}\left<34\right>^{2}\left<45\right>\left[3 (1+2) 3 3 3 3 3 3 3 3 3 3 3 3 3 $	$\frac{1}{2} \frac{1}{3} + \frac{s_{15} [34] [3 42 3]}{s_{23} \langle 34 \rangle \langle 5 4 3]^2}$
$+\frac{\left<4 1 5\right]^2\left<5 1(3+4)2 3\right]\left[34\right]^2}{s_{15}{}^2\left<34\right>\left<45\right>\left<5 4 3\right]\left[3 (1+2)1 5\right]}+\frac{\left<4 1 5\right]\left[3 2(3+4) 5\right]\left[34\right]}{s_{15}\left<34\right>\left<45\right>\left[3 (1+2)1 5\right]}$	$2\left[3 12 3 ight]\left[34 ight]^2$]

Two-loop Unitarity Cuts

One-Loop Generalized Cuts

No further cuts possible

Spinor-Helicity Variables

Spinor-helicity variables encode both helicity and kinematics

Kinematics:
$$\langle ij \rangle = -\sqrt{s_{ij}}e^{\phi_{ij}}$$
 $[ij] = \sqrt{s_{ij}}e^{-\phi_{ij}}$ $\langle ij \rangle [ji] = s_{ij}$
Helicity (e.g. gluons): $\varepsilon_{\mu}^{-}(p) = \frac{1}{\sqrt{2}}\frac{\langle p|\sigma_{\mu}|q]}{[pq]}$ $\varepsilon_{\mu}^{+}(p) = -\frac{1}{\sqrt{2}}\frac{[p|\sigma_{\mu}|q\rangle}{\langle pq\rangle}$

Natural variables for amplitudes, allow compact expressions

Famous Example: Parke-Taylor Amplitude $A^{(0)}(1^+ \dots i^- \dots j^- \dots n^+) = \frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle n1 \rangle} \qquad \begin{array}{ll} \text{In on-shell approach,} \\ \text{proof needs half a page} \end{array}$

Only One-Loop Ingredients Needed

Known for arbitrary number of gluons [Ferrario, Rodrigo, Talavera, hep-th/0602043]

Computable via recursion

 $\ell_{\Box}, \ell_{\triangle}, \ell_{\circ}$

 $\begin{array}{c} \mathbf{C}_{\Box}[\mu^4], C_{\bigtriangleup}[\mu^2],\\ \mathbf{C}_{\circ}[\mu^2] \end{array}$

Parametrization following [Badger, 0806.4600]

Residues via series expansion in Mathematica. Parameter integrals known [Forde, 0704.1835, Kilgore, 0711.5015]

$$\begin{split} \mathbf{I}_{\Box}[\mu^4], I_{\bigtriangleup}[\mu^2], \\ \mathbf{I}_{\circ}[\mu^2] \end{split}$$

Integrals are well known, e.g. [Badger, 0806.4600]

Loop-Level BCFW On-Shell Recursion

Tree-level BCFW: Only factorizable single poles

$$A^{(0)}(z) = \frac{g^{(0)}(z)}{(z - z_i)} + \mathcal{O}\left((z - z_i)^0\right)$$

Factorizing,
i.e. originate from on-shell propagator

Loop-level BCFW: Pole structure more complicated

$$A^{(1)}(z) = \frac{f^{(1)}(z)}{(z-z_i)^2} + \frac{g^{(1)}(z)}{(z-z_i)} + \mathcal{O}\left((z-z_i)^0\right)$$
Factorizing and non-factorizing
$$\frac{f^{(1)}(z_i)}{(z-z_i)^2} + \frac{f^{(1)'}(z_i)}{(z-z_i)} + \mathcal{O}((z-z_i)^0)$$
Split⁽¹⁾₊(1⁺2⁺) ~ $\frac{[12]}{\langle 12 \rangle^2}$
Pole-under-pole" term
[Dunbar, Ettel, Perkins, 1003.3398]
Not obtainable
from factorization

Computing Missing-Pole Pieces

Origin of double poles: [Bern, Chalmers, hep-ph/9503236] Extra poles from triangle integral and propagator

 $\text{Split}^{(1)}_{+}(i^{+}j^{+}) \sim$

Existing approach: Augmented Recursion (off-shell)

[Dunbar, Ettle, Perkins, 1003.3398; Alston, Dunbar, Perkins, 1208.0190, 1507.08882]

Sebastian Pögel (University of Mainz), Loops & Legs 2022

Our approach: Unitarity (on-shell)

Only two cuts needed:

Double and single poles are exactly missing part (*i.e.* "pole-under-pole" and non-factorizable poles)

From unitarity: Obtained analytic expressions for "missing" pole terms, verified numerically

Used to verify two-loop All-Plus results for

$$R_{4:1}^{(2)} \ R_{4:1B}^{(2)} \ R_{4:3}^{(2)} \ R_{5:1}^{(2)}$$

Sidenote: Why Are Rational Terms "Hard"?

Generalized unitarity cuts probe branch cuts

$$A_{n}^{(2)} \simeq \left(A_{n}^{(0)}\mathcal{I}_{n}^{(2)}\right) + \left(A_{n}^{(1)}\mathcal{I}_{n}^{(1)}\right) + P_{n}^{(2)} + R_{n}^{(2)}$$
No branch cuts
Polylogs, etc. \rightarrow
Branch cuts in 4D kinematics
"Cut-constructible"
Product of four-dimensional
amplitudes
Internal and external
states and momenta
four-dimensional

However, rational part $R_n^{(2)}$ is constructible from D-dimensional branch cuts

D-dimensional Generalized Unitarity

Connection of all-plus with $\mathcal{N} = 4$ sYM MHV Amplitude

At amplitude level:

$$A^{(1)}(1^+ \dots n^+) = -2\epsilon(1-\epsilon)(4\pi)^2$$

First conjectured in [hep-th/9611127] Now proven to all orders in ϵ [2011.13821]

At integrand level: simple replacement

At one-loop: $\delta^{(8)}(Q) \longrightarrow (D_s - 2)\mu^4$

At two-loop: Partial δ⁽⁸⁾(Q) → F₁ = (D_s − 2) (μ₁²μ₂² + (μ₁² + μ₂²)² + 2μ₁₂(μ₁² + μ₂²)) + 16(μ₁₂² - μ₁²μ₂²) Conjectured in [Badger, Frellesvig, Zhang, 1310.1051; Badger, Mogull, Peraro, 1606.02244]