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Motivation
• Form factors (FFs) are important ingredients for phenomenologically 

interesting processes:
➢ hadronic Higgs production/decay

➢ Drell-Yan

➢ quark pair production in 𝑒+𝑒− collisions

• FFs can be used to extract universal quantities:
• cusp anomalous dimension

• quark/gluon anomalous dimensions
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Quark FFs (*)
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Axial Pseudoscalar

Scalar Vector

(*)  limited to massless QCD

[Moch, Vermaseren et al. `05,
Baikov, Chetyrkin et al. `09,
Lee, Smirnov et al. `10,
Gehrmann, Glover et al. `10]

[Ahmed, Gehrmann et al. `15]

[Gehrmann and Kara `14]

[Gehrmann and Primo `21]

[Henn, Smirnov et al. `16, Henn, Lee et al. `16,
Lee, Smirnov et al. `17, Lee, Smirnov et al. `19,
Henn, Korchemsky et al. `20, Manteuffel, Panzer et al. `20,
Lee, Manteuffel et al. `21, Agarwal, Manteuffel et al. `21,
Lee, Manteuffel et al. `22]
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Axial

Vector

[Gehrmann and Primo `21]

Three-loop pure singlet
contribution in massless QCD
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Axial

Vector

[Gehrmann and Primo `21]

Three-loop pure singlet
contribution in massless QCD

We include effects of a massive top quark



Why include top quark mass effects?

➢ Two reasons related to the presence of axial-anomaly type diagrams
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Top-loop contribution does not decouple
in the low energy limit

➢ Leads to non-decoupling logarithms

➢ Singlet contribution to Z boson decay 
rate was found to be considerable in 
the large top mass limit

[Collins et al. `78, Chetyrkin et al. `93/`94, 
Larin et al. `94/`95]

[Chetyrkin et al. `94, Larin et al. `94/`95, 
Baikov et al. `12]

For an appropriate renormalization 
scale dependence

➢ Purely massless contribution is not scale independent!

➢ Singlet axial current has non-vanishing anomalous 
dimension

Leads to non-trivial scale dependence 



Outline

• Introduction (✓)

• Preliminaries

• Computation

• Renormalization

• Results
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Preliminaries
• Consider 3-point vertex function with external off-shell Z boson and pair of massless quarks of flavor q

with on-shell outgoing momenta 𝑝1 and 𝑝2 in QCD with 𝑛𝑓 = 𝑛𝑙 + 1 = 6 flavors (2𝑝1 ∙ 𝑝2 = 𝑠)

• Lorentz tensor decomposition:

• FFs can be projected out:

• 𝛾5 is treated non-anticommuting (we use Larin prescription)

• Classify corrections to 𝐹𝑉 and 𝐹𝐴 based on topology 
of contributing Feynman diagrams:
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[Larin and Vermaseren `91, Larin `93]

flavor of quark coupling to Z boson



Preliminaries
• Non-singlet contribution starts from tree level

• With q massless and anticommuting 𝛾5:   𝐹𝑛𝑠
𝑉 = 𝐹𝑛𝑠

𝐴 (chirality conservation)

• Singlet contribution starts from 2-loop order
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Vector 𝐹𝑠
𝑉

➢ Vanishes at 2-loop order (Furry)
➢ Leading 3-loop result is UV and IR finite

Axial 𝐹𝑠
𝐴

➢ Contributions from weak doublets add 
up to zero in massless limit

➢ Only non-zero contribution from top-
bottom doublet

[Moch, Vermaseren et al. `05,
Baikov, Chetyrkin et al. `09,
Gehrmann, Glover et al. `10]

massless
QCD

[Bernreuther, Bonciani et al. `05]
[Gehrmann and Primo `21]massless QCD

full 2-loop
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➢ Only non-zero contribution from top-
bottom doublet

[Moch, Vermaseren et al. `05,
Baikov, Chetyrkin et al. `09,
Gehrmann, Glover et al. `10]
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[Bernreuther, Bonciani et al. `05]
[Gehrmann and Primo `21]massless QCD

full 2-loop
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Setup
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• Expand bare FFs in ො𝑎𝑠 ≡
ෝ𝛼𝑠

4𝜋

• 2-loop order: 2 × 2 diagrams
3-loop order: 2 × 57 diagrams

• Matching to scalar integrals

DiaGen

Czakon (unpublished)

FORM

Vermaseren `00

IdSolver

Czakon (unpublished)

5596 scalar integrals



Setup
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• Expand bare FFs in ො𝑎𝑠 ≡
ෝ𝛼𝑠

4𝜋

• Note the similar structure!

DiaGen

[Czakon (unpublished)]

FORM

[Vermaseren `00]

IdSolver

[Czakon (unpublished)]

[Czakon, MN `20]

map scalar integrals 
in 𝐹𝑠,𝑡

𝐴 to those in 𝐶𝑔𝑔𝐻



Setup
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• Expand bare FFs in ො𝑎𝑠 ≡
ෝ𝛼𝑠

4𝜋

• Note the similar structure!

[Czakon, MN `20]

map scalar integrals 

in 𝐹𝑠,𝑡
𝐴,3 to those in 𝐶𝑔𝑔𝐻



Setup
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• Expand bare FFs in ො𝑎𝑠 ≡
ෝ𝛼𝑠

4𝜋

• Note the similar structure!

map scalar integrals 

in 𝐹𝑠,𝑡
𝐴,3 to those in 𝐶𝑔𝑔𝐻

➢ Reduction already 
done!

[Czakon, MN `20]



Setup
• Expand bare FFs in ො𝑎𝑠 ≡

ෝ𝛼𝑠

4𝜋

• Purely massless contribution to 𝐹𝑠,𝑏
𝐴,3 (✓)

• Also include 4 diagrams with top-quark loops

[Gehrmann and Primo `21]

1 new master integral (not present in 𝐶𝑔𝑔𝐻)

[Heinrich, Huber et al. `09,
Gehrmann, Glover et al. `10]



Master Integrals
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[Heinrich, Huber et al. `09,
Gehrmann, Glover et al. `10]

[Czakon, MN `20]

• MIs with massive internal lines 
were computed by solving the 
differential equations 
numerically (✓)

• Massless MIs are known (✓)

• Compute the only unknown MI analytically via differential equations

➢Variable transformation 
𝑠

𝑚2 = −
(1−𝑥)2

𝑥

➢Letters: 𝑥, 𝑥 ± 1

➢Use CANONICA to find ε-form

➢Fix boundary condition in the large mass limit

[Meyer `17/`18]



Solving DEs Numerically
• Construct a system of first-order linear differential equations 

with rational function coefficients 𝐴𝑖𝑗
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Solving DEs Numerically
• Construct a system of first-order linear differential equations 

with rational function coefficients 𝐴𝑖𝑗

• Insert truncated ε-expansions for the MIs
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Solving DEs Numerically

20𝑧



Solving DEs Numerically
• Provide initial conditions for 𝐼𝑘 to start numerical evolution

➢Via deep expansion around 𝑧 = 0

➢Large mass expansion fixes unknown coefficients

21𝑧



Solving DEs Numerically
• Transport initial 𝐼𝑘 in the parameter space

➢Circumvent singular points of DEs with numerical evolution 
in the complex plane

22𝑧



Solving DEs Numerically
• Expand DEs around 𝑦 = 0 and match the expansion with 

previously obtained high-precision values to access special limits

23𝑧



Solving DEs Numerically
• Repeat until desired domains are covered

24𝑧
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• In practice, the following integration contour was used for the 
computation of the MIs:

• Require a local error of 𝓞 10−40

• Collect 2 ∙ 105 numerical samples with at least 20 correct digits

• Allows expansions in kinematic limits to high orders in small parameter

• Note: This method was originally developed for [Czakon, Fiedler et al. `15]
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Renormalization Formulae
• Individual contributions to 𝐹𝑠

𝐴 can be renormalized independently

➢

➢ ෝ𝑚𝑡 = 𝑍𝑚𝑚𝑡 (on-shell)

➢On-shell wavefunction renormalization 𝑍2 ≠ 1

➢
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[Chetyrkin and Kühn `93]

[Ahmed, Chen at al. `21]

𝑍𝑛𝑠 can be found in
[Larin and Vermaseren `91]



Renormalization Formulae
• Individual contributions to 𝐹𝑠

𝐴 can be renormalized independently

• Expanded to 𝓞 𝑎𝑠
3 last term can be dropped:

➢Note: 𝑍2 does not contribute at 3-loop order

➢Note: “Physical” combination requires only non-singlet axial current renormalization
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[Chetyrkin and Kühn `93]

𝓞 𝑎𝑠
21+𝓞 𝑎𝑠

1+𝓞 𝑎𝑠
21+𝓞 𝑎𝑠

2

𝓞 𝑎𝑠
21+𝓞 𝑎𝑠

𝓞 𝑎𝑠
2𝓞 𝑎𝑠
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Finite Remainder
• The UV-renormalized FFs still contain IR divergences, starting from 3-loop order, regularized as 

poles in ε

➢Factorize IR singularities and define the finite remainder

➢Alternatively, define finite remainder in 𝑀𝑆 scheme
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[Catani `98]

[Becher and Neubert `09]



RG Equations
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RG Equations
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• Note that
➢ 𝑍𝑛𝑠 is scale independent
➢ 𝑍𝑠 has non-zero anomalous 

dimension:

➢ Expanded to 𝓞 𝑎𝑠
3 , the sum 

can be neglected



RG Equations
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Again, the “physical” combination has 
vanishing anomalous dimension



RG Equations
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Same structure since 𝐼𝑞 ത𝑞
is scale independent
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Results
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𝑧 =
𝑠

𝑚2

• 𝐶𝑎 = Re{ }
• µ2 = 𝑠

[Gehrmann and Primo `21]
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𝑧 =
𝑠

𝑚2

• Strong check:                                                 in high energy limit  ⟺ 𝐹𝑠
𝐴 vanishes with 6 massless quarks

• Green dashed does not overlap with dotted gray, because of 6 massless quarks in gluon self-energy 
insertion while the reference has 5 (same reason for the red curve not approaching exactly -1)
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𝑧 =
𝑠

𝑚2

• Typical behaviour due to Coulomb effect at threshold
➢ Real part varies smoothly
➢ Imaginary part experiences a sharp turn
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𝑧 =
𝑠

𝑚2

• Non-decoupling mass logarithms become visible in low energy limit
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𝑧 =
𝑠

𝑚2

• Vector part only features a power-suppressed logarithmic behavior 



Result at Low Energies
• In this region it is more sensible to renormalize the perturbative coupling constant such 

that the heavy quark is decoupled:

• Re-expand: 

• ⇒
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• Compare leading and sub-leading large mass approximation with exact result in range (0, 1.33), corresponding to 
𝑠 ∈ 0, 200 𝐺𝑒𝑉 at 𝑚𝑡 = 173𝐺𝑒𝑉



• Accuracy for leading approximation deviating at most 3%
• Including the sub-leading term, the deviation is at most 1%



• Note: The logarithmic enhancement in the imaginary part is removed by decoupling
➢ In leading power approximation: is just a constant (given by the purely massless result)



Conclusions

• We determined numerically the finite remainder of the singlet contribution to the 
massless quark FF with exact top quark mass dependence for the axial and vector 
part

• This ingredient should be included for an appropriate renormalization scale 
dependence and for the non-decoupling mass logarithms

• The result provides one of the missing ingredients needed to push the theoretical 
predictions of Z-mediated Drell-Yan processes to the third order in QCD coupling
➢See for example 
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[Duhr and Mistlberger `21]


