The complete singlet contribution to the massless quark form factor at three loops in QCD

Marco Niggetiedt
in collaboration with Long Chen and Michał Czakon
Institute for Theoretical Particle Physics and Cosmology
RWTH Aachen University

Based on JHEP 12 (2021) 095
Institute for

Motivation

- Form factors (FFs) are important ingredients for phenomenologically interesting processes:
$>$ hadronic Higgs production/decay
> Drell-Yan
$>$ quark pair production in $e^{+} e^{-}$collisions
- FFs can be used to extract universal quantities:
- cusp anomalous dimension
- quark/gluon anomalous dimensions

Quark FFs ${ }^{(*)}$

[Henn, Smirnov et al. `16, Henn, Lee et al. `16, Lee, Smirnov et al. `17, Lee, Smirnov et al. `19, Henn, Korchemsky et al. `20, Manteuffel, Panzer et al. `20, Lee, Manteuffel et al. `21, Agarwal, Manteuffel et al. `21, Lee, Manteuffel et al. `22]

Why include top quark mass effects?

$>$ Two reasons related to the presence of axial-anomaly type diagrams

Top-loop contribution does not decouple in the low energy limit
> Leads to non-decoupling logarithms
[Collins et al. `78, Chetyrkin et al. `93/`94, Larin et al. `94/`95] \(>\) Singlet contribution to \(Z\) boson decay rate was found to be considerable in the large top mass limit [Chetyrkin et al. `94, Larin et al. `94/`95, Baikov et al. `12]

For an appropriate renormalization scale dependence

$>$ Purely massless contribution is not scale independent!
> Singlet axial current has non-vanishing anomalous dimension

Leads to non-trivial scale dependence

Outline

- Introduction ($\sqrt{ }$)
- Preliminaries
- Computation
- Renormalization
- Results

Preliminaries

- Consider 3-point vertex function with external off-shell Z boson and pair of massless quarks of flavor q with on-shell outgoing momenta p_{1} and p_{2} in QCD with $n_{f}=n_{l}+1=6$ flavors ($2 p_{1} \cdot p_{2}=s$)
- Lorentz tensor decomposition: $\left.\bar{u}\left(p_{1}\right) \Gamma^{\mu} v\left(p_{2}\right) \delta_{i j}=\bar{u}\left(p_{1}\right)\left(v_{q} F^{V} \gamma^{\mu}+a_{q} F^{A} \gamma^{\mu} \gamma_{5}\right)\right) v\left(p_{2}\right) \delta_{i j}$
- FFs can be projected out: $\begin{aligned} & F^{V}=\frac{-1}{s(4-4 \epsilon)} \operatorname{Tr}\left[\not \phi_{2} \gamma_{\mu} \not{ }_{1} \Gamma^{\mu}\right] \\ & F^{A}=\frac{-1}{s(4-4 \epsilon)} \operatorname{Tr}\left[\not p_{2} \gamma_{\mu} \gamma_{5} \not \phi_{1} \Gamma^{\mu}\right]\end{aligned}$
- γ_{5} is treated non-anticommuting (we use Larin prescription)
[Larin and Vermaseren `91, Larin `93]
- Classify corrections to F^{V} and F^{A} based on topology
 of contributing Feynman diagrams:

Preliminaries

- Non-singlet contribution starts from tree level

$$
\begin{aligned}
& F^{V}=F_{n s}^{V}+F_{s}^{V}=F_{n s}^{V}+\sum_{f} \frac{v_{f}}{v_{q}} F_{s, f}^{V} \\
& F^{A}=F_{n s}^{A}+F_{s}^{A}=F_{n s}^{A}+\sum_{f} \frac{a_{f}}{a_{q}} F_{s, f}^{A}
\end{aligned}
$$

- With q massless and anticommuting $\gamma_{5}: F_{n s}^{V}=F_{n s}^{A} \quad$ (chirality conservation)
- Singlet contribution starts from 2-loop order

$\underline{\text { Vector }} F_{S}^{V}$

$>$ Vanishes at 2-loop order (Furry)
> Leading 3-loop result is UV and IR finite
massless
QCD
[Moch, Vermaseren et al. `05, Baikov, Chetyrkin et al. `09, Gehrmann, Glover et al. `10]

$$
\text { Axial } F_{S}^{A}
$$

> Contributions from weak doublets add up to zero in massless limit
> Only non-zero contribution from topbottom doublet

$$
F_{s}^{A}=\lambda_{q}\left(F_{s, b}^{A}-F_{s, t}^{A}\right)
$$

full 2-loop [Bernreuther, Bonciani et al. `05] massless QCD [Gehrmann and Primo `21]

Preliminaries

- Non-singlet contribution starts from tree level

$$
\begin{aligned}
& F^{V}=F_{n s}^{V}+F_{s}^{V}=F_{n s}^{V}+\sum_{f} \frac{v_{f}}{v_{q}} F_{s, f}^{V} \\
& F^{A}=F_{n s}^{A}+F_{s}^{A}=F_{n s}^{A}+\sum_{f} \frac{a_{f}}{a_{q}} F_{s, f}^{A}
\end{aligned}
$$

- With q massless and anticommuting $\gamma_{5}: F_{n s}^{V}=F_{n s}^{A} \quad$ (chirality conservation)
- Singlet contribution starts from 2-loop order

Vector F_{s}^{V}

$>$ Vanishes at 2-loop order (Furry)
$>$ Leading 3-loop result is UV and IR finite
massless
QCD
[Moch, Vermaseren et al. `05, Baikov, Chetyrkin et al. `09,
Gehrmann, Glover et al. `10]

$$
\underline{\text { Axial }} F_{S}^{A}
$$

> Contributions from weak doublets add up to zero in massless limit
$>$ Only non-zero contribution from topbottom doublet

$$
F_{s}^{A}=\lambda_{q}\left(F_{s, b}^{A}-F_{s, t}^{A}\right)
$$

full 2-loop [Bernreyther, Boncjani et al. `05] massless QCD /Gehrmann and Primo `21]

 Missing

Outline

- Introduction ($\sqrt{ }$)
- Preliminaries ($\sqrt{ }$)
- Computation
- Renormalization
- Results

Setup

- Expand bare FFs in $\hat{a}_{S} \equiv \frac{\widehat{\alpha}_{S}}{4 \pi}$

Setup

- Expand bare FFs in $\hat{a}_{S} \equiv \frac{\widehat{\alpha}_{S}}{4 \pi}$

$$
F_{s, b}^{A}=\sum_{n=2}^{\infty} \hat{a}_{s}^{n} F_{s, b}^{A, n} \quad F_{s, t}^{A}=\sum_{n=2}^{\infty} \hat{a}_{s}^{n} F_{s, t}^{A, n}
$$

- Note the similar structure!

map scalar integrals in $F_{s, t}^{A}$ to those in $C_{g g H}$

DiaGen

[Czakon (unpublished)]

FORM

[Vermaseren `00]

IdSolver

[Czakon (unpublished)]

Setup

- Expand bare FFs in $\hat{a}_{s} \equiv \frac{\widehat{\alpha}_{S}}{4 \pi}$

$$
F_{s, b}^{A}=\sum_{n=2}^{\infty} \hat{a}_{s}^{n} F_{s, b}^{A, n} \quad F_{s, t}^{A}=\sum_{n=2}^{\infty} \hat{a}_{s}^{n} F_{s, t}^{A, n}
$$

- Note the similar structure!

[Czakon, MN `20]
map scalar integrals
in $F_{S, t}^{A, 3}$ to those in $C_{g g H}$

Setup

- Expand bare FFs in $\hat{a}_{s} \equiv \frac{\widehat{\alpha}_{S}}{4 \pi}$

$$
F_{s, b}^{A}=\sum_{n=2}^{\infty} \hat{a}_{s}^{n} F_{s, b}^{A, n} \quad F_{s, t}^{A}=\sum_{n=2}^{\infty} \hat{a}_{s}^{n} F_{s, t}^{A, n}
$$

- Note the similar structure!

map scalar integrals

in $F_{S, t}^{A, 3}$ to those in $C_{g g H}$
> Reduction already done!

Setup

[Heinrich, Huber et al. `09, Gehrmann, Glover et al. `10]

- Expand bare FFs in $\hat{a}_{s} \equiv \frac{\widehat{\alpha}_{S}}{4 \pi}$

$$
F_{s, b}^{A}=\sum_{n=2}^{\infty} \hat{a}_{s}^{n} F_{s, b}^{A, n} \quad F_{s, t}^{A}=\sum_{n=2}^{\infty} \hat{a}_{s}^{n} F_{s, t}^{A, n}
$$

- Purely massless contribution to $F_{s, b}^{A, 3} \quad(\sqrt{ })$ [Gehrmann and Primo `21]
- Also include 4 diagrams with top-quark loops

1 new master integral (not present in $C_{g g H}$)

Master Integrals

- MIs with massive internal lines were computed by solving the differential equations numerically (\checkmark)
- Massless MIs are known ($\sqrt{ }$)

[Heinrich, Huber et al. `09, Gehrmann, Glover et al. `10]

Solving DEs Numerically

- Construct a system of first-order linear differential equations

$$
\frac{\mathrm{d} M_{i}(z, \epsilon)}{\mathrm{d} z} \equiv \sum_{j} A_{i j}(z, \epsilon) M_{j}(z, \epsilon)
$$ with rational function coefficients $A_{i j}$

Solving DEs Numerically

- Construct a system of first-order linear differential equations with rational function coefficients $A_{i j}$
- Insert truncated ε-expansions for the MIs

$$
\frac{\mathrm{d} M_{i}(z, \epsilon)}{\mathrm{d} z} \equiv \sum_{j} A_{i j}(z, \epsilon) M_{j}(z, \epsilon)
$$

$$
M_{i}(z, \epsilon) \equiv \sum_{l=0}^{\bar{n}_{i}-\underline{n}_{i}} \epsilon^{\underline{n}_{i}+l} I_{\underline{k}_{i}+l}(z)
$$

$$
\frac{\mathrm{d} I_{k}(z)}{\mathrm{d} z} \equiv \sum_{l} B_{k l}(z) I_{l}(z)
$$

Solving DEs Numerically

$$
\frac{\mathrm{d} M_{i}(z, \epsilon)}{\mathrm{d} z} \equiv \sum_{j} A_{i j}(z, \epsilon) M_{j}(z, \epsilon)
$$

$$
M_{i}(z, \epsilon) \equiv \sum_{l=0}^{\bar{n}_{i}-\underline{n}_{i}} \epsilon^{\underline{n}_{i}+l} I_{\underline{k}_{i}+l}(z)
$$

$$
\frac{\mathrm{d} I_{k}(z)}{\mathrm{d} z} \equiv \sum_{l} B_{k l}(z) I_{l}(z)
$$

Solving DEs Numerically

- Provide initial conditions for I_{k} to start numerical evolution

$$
\frac{\mathrm{d} M_{i}(z, \epsilon)}{\mathrm{d} z} \equiv \sum_{j} A_{i j}(z, \epsilon) M_{j}(z, \epsilon)
$$

$>$ Via deep expansion around $z=0$
$>$ Large mass expansion fixes unknown coefficients

$$
\begin{gathered}
M_{i}(z, \epsilon) \equiv \sum_{l=0}^{\bar{n}_{i}-\underline{n}_{i}} \epsilon^{\underline{n}_{i}+l} I_{\underline{k}_{i}+l}(z) \\
\frac{\mathrm{d} I_{k}(z)}{\mathrm{d} z} \equiv \sum_{l} B_{k l}(z) I_{l}(z) \\
I_{k}(z) \equiv \sum_{l=\underline{l}_{k}}^{\infty} \sum_{m=\underline{\underline{m}}_{k}}^{\bar{m}_{k}} c_{k l m} z^{l} \ln ^{m} z
\end{gathered}
$$

Solving DEs Numerically

- Transport initial I_{k} in the parameter space
$>$ Circumvent singular points of DEs with numerical evolution in the complex plane

$$
M_{i}(z, \epsilon) \equiv \sum_{l=0}^{\bar{n}_{i}-\underline{n}_{i}} \epsilon^{\underline{n}_{i}+l} I_{\underline{k}_{i}+l}(z)
$$

$$
\frac{\mathrm{d} M_{i}(z, \epsilon)}{\mathrm{d} z} \equiv \sum_{j} A_{i j}(z, \epsilon) M_{j}(z, \epsilon)
$$

$$
\frac{\mathrm{d} I_{k}(z)}{\mathrm{d} z} \equiv \sum_{l} B_{k l}(z) I_{l}(z)
$$

$$
I_{k}(z) \equiv \sum_{l=\underline{l}_{k}}^{\infty} \sum_{m=\underline{m}_{k}}^{\bar{m}_{k}} c_{k l m} z^{l} \ln ^{m} z
$$

Solving DEs Numerically

- Expand DEs around $y=0$ and match the expansion with previously obtained high-precision values to access special limits

$$
I_{k}(z(y)) \equiv \sum_{l} F_{k l}(y) c_{l} \Longrightarrow c_{k}=\sum_{l}\left(F^{-1}\right)_{k l}(y) I_{l}(z(y))
$$

$$
\frac{\mathrm{d} M_{i}(z, \epsilon)}{\mathrm{d} z} \equiv \sum_{j} A_{i j}(z, \epsilon) M_{j}(z, \epsilon)
$$

$$
M_{i}(z, \epsilon) \equiv \sum_{l=0}^{\bar{n}_{i}-\underline{n}_{i}} \epsilon^{\underline{n}_{i}+l} I_{\underline{k}_{i}+l}(z)
$$

$$
\frac{\mathrm{d} I_{k}(z)}{\mathrm{d} z} \equiv \sum_{l} B_{k l}(z) I_{l}(z)
$$

$$
I_{k}(z) \equiv \sum_{l=\underline{l}_{k}}^{\infty} \sum_{m=\underline{m}_{k}}^{\bar{m}_{k}} c_{k l m} z^{l} \ln ^{m} z
$$

$$
I_{k}(z(y)) \equiv \sum_{l=\underline{l}_{k}}^{\infty} \sum_{m=\underline{m}_{k}}^{\bar{m}_{k}} c_{k l m} y^{l} \ln ^{m} y
$$

Solving DEs Numerically

- Repeat until desired domains are covered

$$
\frac{\mathrm{d} M_{i}(z, \epsilon)}{\mathrm{d} z} \equiv \sum_{j} A_{i j}(z, \epsilon) M_{j}(z, \epsilon)
$$

$I_{k}(z(y)) \equiv \sum_{l} F_{k l}(y) c_{l} \Longrightarrow c_{k}=\sum_{l}\left(F^{-1}\right)_{k l}(y) I_{l}(z(y))$

$$
M_{i}(z, \epsilon) \equiv \sum_{l=0}^{\bar{n}_{i}-\underline{n}_{i}} \epsilon \underline{n}_{i}+l I_{\underline{k}_{i}+l}(z)
$$

$$
\frac{\mathrm{d} I_{k}(z)}{\mathrm{d} z} \equiv \sum_{l} B_{k l}(z) I_{l}(z)
$$

$$
I_{k}(z) \equiv \sum_{l=\underline{l}_{k}}^{\infty} \sum_{m=\underline{m}_{k}}^{\bar{m}_{k}} c_{k l m} z^{l} \ln ^{m} z
$$

$$
I_{k}(z(y)) \equiv \sum_{l=\underline{l}_{k}}^{\infty} \sum_{m=\underline{m}_{k}}^{\bar{m}_{k}} c_{k l m} y^{l} \ln ^{m} y
$$

- In practice, the following integration contour was used for the computation of the MIs:

- Require a local error of $\boldsymbol{O}\left(10^{-40}\right)$
- Collect $2 \cdot 10^{5}$ numerical samples with at least 20 correct digits
- Allows expansions in kinematic limits to high orders in small parameter
- Note: This method was originally developed for [Czakon, Fiedler et al. `15]

Outline

- Introduction ($\sqrt{ }$)
- Preliminaries ($\sqrt{ }$)
- Computation ($\sqrt{ }$)
- Renormalization
- Results

Renormalization Formulae

- Individual contributions to F_{S}^{A} can be renormalized independently [Chetyrkin and Kühn `93]

$$
\begin{aligned}
& \mathbf{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)=Z_{n s} Z_{2} F_{s, b}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)+Z_{s} Z_{2}\left(F_{n s}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)+\sum_{i=1}^{n_{f}} F_{s, i}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)\right) \\
& \mathbf{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right)=Z_{n s} Z_{2} F_{s, t}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)+Z_{s} Z_{2}\left(F_{n s}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)+\sum_{i=1}^{n_{f}} F_{s, i}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)\right)
\end{aligned}
$$

$>\hat{a}_{s} S_{\epsilon}=Z_{a_{s}}\left(\mu^{2}\right) a_{s}\left(\mu^{2}\right) \mu^{2 \epsilon}$
$>\widehat{m}_{t}=Z_{m} m_{t}$ (on-shell)
$>$ On-shell wavefunction renormalization $Z_{2} \neq 1$

$$
\begin{aligned}
Z_{s} & =a_{s}^{2} C_{F}\left(\frac{3}{\epsilon}+\frac{3}{2}\right) \\
& +a_{s}^{3}\left(C_{A} C_{F}\left(-\frac{22}{3} \frac{1}{\epsilon^{2}}+\frac{109}{9} \frac{1}{\epsilon}-\frac{163}{27}+26 \zeta_{3}\right)\right. \\
& \left.+C_{F}^{2}\left(-\frac{18}{\epsilon}+\frac{23}{2}-24 \zeta_{3}\right)+C_{F} n_{f}\left(\frac{4}{3} \frac{1}{\epsilon^{2}}+\frac{2}{9} \frac{1}{\epsilon}+\frac{88}{27}\right)\right)+\mathcal{O}\left(a_{s}^{4}\right)
\end{aligned}
$$

$Z_{n s}$ can be found in

 [Larin and Vermaseren `91]
Renormalization Formulae

- Individual contributions to F_{S}^{A} can be renormalized independently [Chetyrkin and Kühn `93]

$$
\begin{aligned}
& \mathbf{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)=Z_{n s} Z_{2} F_{s, b}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)+Z_{s} Z_{2}\left(F_{n s}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)+\sum_{i=1}^{n_{f}} F_{s, i}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)\right) \\
& \mathbf{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right)=Z_{n s} Z_{2} F_{s, t}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)+Z_{s} Z_{2}\left(F_{n s}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)+\sum_{i=1}^{n_{f}} F_{s, i}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)\right) \\
& \boldsymbol{O}\left(a_{s}^{2}\right) \boldsymbol{\mathcal { O }}\left(a_{s}^{2}\right) \quad 1+\boldsymbol{\mathcal { O }}\left(a_{s}\right) \quad \boldsymbol{O}\left(a_{s}^{2}\right) \\
& 1+\boldsymbol{\mathcal { O }}\left(a_{s}^{2}\right) \quad 1+\boldsymbol{\theta}\left(a_{s}^{2}\right) \\
& 1+\boldsymbol{\mathcal { O }}\left(a_{s}\right) \quad \boldsymbol{\mathcal { O }}\left(a_{s}^{2}\right)
\end{aligned}
$$

- Expanded to $\boldsymbol{\mathcal { O }}\left(a_{s}^{3}\right)$ last term can be dropped: $Z_{n s} Z_{2} F_{s, b}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)+Z_{s} Z_{2} F_{n s}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)$
\rightarrow Note: Z_{2} does not contribute at 3-loop order
- Note: "Physical" combination requires only non-singlet axial current renormalization

$$
\mathbf{F}_{s, b}^{A}\left(a_{s}, m_{t}\right)-\mathbf{F}_{s, t}^{A}\left(a_{s}, m_{t}\right)=Z_{n s} Z_{2}\left(F_{s, b}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)-F_{s, t}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)\right)
$$

Finite Remainder

- The UV-renormalized FFs still contain IR divergences, starting from 3-loop order, regularized as poles in ε
$>$ Factorize IR singularities and define the finite remainder

$$
\begin{align*}
& \mathcal{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)=I_{q \bar{q}} \mathbf{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right) \\
&=a_{s}^{2} \mathcal{F}_{s, b}^{A, 2}(\mu)+a_{s}^{3} \mathcal{F}_{s, b}^{A, 3}\left(m_{t}, \mu\right)+\mathcal{O}\left(a_{s}^{4}\right) \\
& \mathcal{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right)=I_{q \bar{q}} \mathbf{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right) \\
&=a_{s}^{2} \mathcal{F}_{s, t}^{A, 2}\left(m_{t}, \mu\right)+a_{s}^{3} \mathcal{F}_{s, t}^{A, 3}\left(m_{t}, \mu\right)+\mathcal{O}\left(a_{s}^{4}\right) \\
& I_{q \bar{q}}=1-2 a_{s}\left(\frac{\mu^{2}}{-s-i 0^{+}}\right)^{\epsilon} \frac{e^{\epsilon \gamma_{E}}}{\Gamma(1-\epsilon)} C_{F}\left(\frac{1}{\epsilon^{2}}+\frac{3}{2 \epsilon}\right)+\mathcal{O}\left(a_{s}^{2}\right) \tag{Catani`98}
\end{align*}
$$

$>$ Alternatively, define finite remainder in $\overline{M S}$ scheme [Becher and Neubert `09]

$$
\mathcal{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)=I_{q \bar{q}} \mathbf{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)=I_{q \bar{q}} Z_{q \bar{q}} \mathcal{F}_{s, b}^{\prime A}\left(a_{s}, m_{t}, \mu\right)
$$

$$
I_{q \bar{q}} Z_{q \bar{q}}=1+a_{s} C_{F}\left(-\ln ^{2} \frac{\mu^{2}}{-s-i 0^{+}}-3 \ln \frac{\mu^{2}}{-s-i 0^{+}}+\frac{\pi^{2}}{6}\right)+\mathcal{O}\left(a_{s}^{2}\right)
$$

RG Equations

$$
\begin{aligned}
& \mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \mathbf{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)=\gamma_{s}\left(\mathbf{F}_{n s}^{A}\left(a_{s}, m_{t}, \mu\right)+\sum_{i=1}^{n_{f}} \mathbf{F}_{s, i}^{A}\left(a_{s}, m_{t}, \mu\right)\right) \\
& \mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \mathbf{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right)=\gamma_{s}\left(\mathbf{F}_{n s}^{A}\left(a_{s}, m_{t}, \mu\right)+\sum_{i=1}^{n_{f}} \mathbf{F}_{s, i}^{A}\left(a_{s}, m_{t}, \mu\right)\right)
\end{aligned}
$$

$$
\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}}\left(\mathbf{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)-\mathbf{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right)\right)=0
$$

$$
\begin{aligned}
& \mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \mathcal{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)=\gamma_{s}\left(\mathcal{F}_{n s}^{A}\left(a_{s}, m_{t}, \mu\right)+\sum_{i=1}^{n_{f}} \mathcal{F}_{s, i}^{A}\left(a_{s}, m_{t}, \mu\right)\right) \\
& \mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \mathcal{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right)=\gamma_{s}\left(\mathcal{F}_{n s}^{A}\left(a_{s}, m_{t}, \mu\right)+\sum_{i=1}^{n_{f}} \mathcal{F}_{s, i}^{A}\left(a_{s}, m_{t}, \mu\right)\right)
\end{aligned}
$$

RG Equations

$$
\begin{aligned}
& \mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \mathbf{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)=\gamma_{s}\left(\mathbf{F}_{n s}^{A}\left(a_{s}, m_{t}, \mu\right)+\sum_{i=1}^{n_{f}} \mathbf{F}_{s, i}^{A}\left(a_{s}, m_{t}, \mu\right)\right) \\
& \mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \mathbf{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right)=\gamma_{s}\left(\mathbf{F}_{n s}^{A}\left(a_{s}, m_{t}, \mu\right)+\sum_{i=1}^{n_{f}} \mathbf{F}_{s, i}^{A}\left(a_{s}, m_{t}, \mu\right)\right)
\end{aligned}
$$

$$
\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}}\left(\mathbf{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)-\mathbf{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right)\right)=0
$$

$$
\begin{aligned}
\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \mathcal{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right) & =\gamma_{s}\left(\mathcal{F}_{n s}^{A}\left(a_{s}, m_{t}, \mu\right)+\sum_{i=1}^{n_{f}} \mathcal{F}_{s, i}^{A}\left(a_{s}, m_{t}, \mu\right)\right) \\
\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \mathcal{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right) & =\gamma_{s}\left(\mathcal{F}_{n s}^{A}\left(a_{s}, m_{t}, \mu\right)+\sum_{i=1}^{n_{f}} \mathcal{F}_{s, i}^{A}\left(a_{s}, m_{t}, \mu\right)\right)
\end{aligned}
$$

RG Equations

$$
\begin{aligned}
& \mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \mathbf{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)=\gamma_{s}\left(\mathbf{F}_{n s}^{A}\left(a_{s}, m_{t}, \mu\right)+\sum_{i=1}^{n_{f}} \mathbf{F}_{s, i}^{A}\left(a_{s}, m_{t}, \mu\right)\right) \\
& \mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \mathbf{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right)=\gamma_{s}\left(\mathbf{F}_{n s}^{A}\left(a_{s}, m_{t}, \mu\right)+\sum_{i=1}^{n_{f}} \mathbf{F}_{s, i}^{A}\left(a_{s}, m_{t}, \mu\right)\right)
\end{aligned}
$$

$$
\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}}\left(\mathbf{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)-\mathbf{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right)\right)=0
$$

Again, the "physical" combination has vanishing anomalous dimension

$$
\begin{aligned}
& \mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \mathcal{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)=\gamma_{s}\left(\mathcal{F}_{n s}^{A}\left(a_{s}, m_{t}, \mu\right)+\sum_{i=1}^{n_{f}} \mathcal{F}_{s, i}^{A}\left(a_{s}, m_{t}, \mu\right)\right) \\
& \mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \mathcal{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right)=\gamma_{s}\left(\mathcal{F}_{n s}^{A}\left(a_{s}, m_{t}, \mu\right)+\sum_{i=1}^{n_{f}} \mathcal{F}_{s, i}^{A}\left(a_{s}, m_{t}, \mu\right)\right)
\end{aligned}
$$

RG Equations

$$
\begin{aligned}
& \mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \mathbf{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)=\gamma_{s}\left(\mathbf{F}_{n s}^{A}\left(a_{s}, m_{t}, \mu\right)+\sum_{i=1}^{n_{f}} \mathbf{F}_{s, i}^{A}\left(a_{s}, m_{t}, \mu\right)\right) \\
& \mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \mathbf{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right)=\gamma_{s}\left(\mathbf{F}_{n s}^{A}\left(a_{s}, m_{t}, \mu\right)+\sum_{i=1}^{n_{f}} \mathbf{F}_{s, i}^{A}\left(a_{s}, m_{t}, \mu\right)\right)
\end{aligned}
$$

$$
\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}}\left(\mathbf{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)-\mathbf{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right)\right)=0
$$

Same structure since $I_{q \bar{q}}$ is scale independent

$$
\begin{aligned}
\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \mathcal{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right) & =\gamma_{s}\left(\mathcal{F}_{n s}^{A}\left(a_{s}, m_{t}, \mu\right)+\sum_{i=1}^{n_{f}} \mathcal{F}_{s, i}^{A}\left(a_{s}, m_{t}, \mu\right)\right) \\
\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \mathcal{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right) & =\gamma_{s}\left(\mathcal{F}_{n s}^{A}\left(a_{s}, m_{t}, \mu\right)+\sum_{i=1}^{n_{f}} \mathcal{F}_{s, i}^{A}\left(a_{s}, m_{t}, \mu\right)\right)
\end{aligned}
$$

Outline

- Introduction ($\sqrt{ }$)
- Preliminaries ($\sqrt{ }$)
- Computation ($\sqrt{ }$)
- Renormalization ($\sqrt{ }$)
- Results

Results

- $C_{a}=\operatorname{Re}\{[$ Gehrmann and Primo `21]\}
- $\mu^{2}=s$

- Strong check: $\mathcal{F}_{s, t}^{A}\left(a_{s}, x\right) \rightarrow \mathcal{F}_{s, b}^{A}\left(a_{s}, x\right)$ in high energy limit $\Leftrightarrow F_{s}^{A}$ vanishes with 6 massless quarks
- Green dashed does not overlap with dotted gray, because of 6 massless quarks in gluon self-energy insertion while the reference has 5 (same reason for the red curve not approaching exactly -1)

- Typical behaviour due to Coulomb effect at threshold
$>$ Real part varies smoothly
> Imaginary part experiences a sharp turn

- Non-decoupling mass logarithms become visible in low energy limit

- Vector part only features a power-suppressed logarithmic behavior

Result at Low Energies

- In this region it is more sensible to renormalize the perturbative coupling constant such that the heavy quark is decoupled:

$$
a_{s}=\zeta_{\alpha} \bar{a}_{s} \quad \zeta_{\alpha}=1+\bar{a}_{s} \frac{2}{3} \ln \frac{\mu^{2}}{m_{t}^{2}}+\mathcal{O}\left(\bar{a}_{s}^{2}\right)
$$

- Re-expand:

$$
\begin{aligned}
\overline{\mathcal{F}}_{s, b}^{A}\left(\bar{a}_{s}, m_{t}, \mu\right) & =\mathcal{F}_{s, b}^{A}\left(a_{s}=\zeta_{\alpha} \bar{a}_{s}, m_{t}, \mu\right) \\
& =\bar{a}_{s}^{2} \overline{\mathcal{F}}_{s, b}^{A, 2}(\mu)+\bar{a}_{s}^{3} \overline{\mathcal{F}}_{s, b}^{A, 3}\left(m_{t}, \mu\right)+\mathcal{O}\left(\bar{a}_{s}^{4}\right) \\
\overline{\mathcal{F}}_{s, t}^{A}\left(\bar{a}_{s}, m_{t}, \mu\right) & =\mathcal{F}_{s, t}^{A}\left(a_{s}=\zeta_{\alpha} \bar{a}_{s}, m_{t}, \mu\right) \\
& =\bar{a}_{s}^{2} \overline{\mathcal{F}}_{s, t}^{A, 2}\left(m_{t}, \mu\right)+\bar{a}_{s}^{3} \overline{\mathcal{F}}_{s, t}^{A, 3}\left(m_{t}, \mu\right)+\mathcal{O}\left(\bar{a}_{s}^{4}\right)
\end{aligned}
$$

$\cdot \Rightarrow \quad \overline{\mathcal{F}}_{s}^{A, 3}(x) \equiv \overline{\mathcal{F}}_{s, b}^{A, 3}(x)-\overline{\mathcal{F}}_{s, t}^{A, 3}(x)=\sum_{n=0}^{\infty} \sum_{m=\underline{m}_{n}}^{\bar{m}_{n}} c_{n, m} x^{n} \ln ^{m} x$

- Compare leading and sub-leading large mass approximation with exact result in range ($0,1.33$), corresponding to $\sqrt{s} \in(0,200) \mathrm{GeV}$ at $m_{t}=173 \mathrm{GeV}$

- Accuracy for leading approximation deviating at most 3%
- Including the sub-leading term, the deviation is at most 1%

- Note: The logarithmic enhancement in the imaginary part is removed by decoupling
$>$ In leading power approximation: $\operatorname{Im}\left[\overline{\mathcal{F}}_{s}^{A, 3}(x)\right]$ is just a constant (given by the purely massless result)

Conclusions

- We determined numerically the finite remainder of the singlet contribution to the massless quark FF with exact top quark mass dependence for the axial and vector part
- This ingredient should be included for an appropriate renormalization scale dependence and for the non-decoupling mass logarithms
- The result provides one of the missing ingredients needed to push the theoretical predictions of Z-mediated Drell-Yan processes to the third order in QCD coupling $>$ See for example [Duhr and Mistlberger '21]

