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The %-level fixed-order precision frontier

 Back-of-the-envelope calculation: ag ~ 0.01, a ~ 0.01
e To match experimental precision need at least NNLO QCD & NLO EW corrections

o This requires 0 — n at 2-loop, 0 = n + 1 at 1-loop and 0 — n + 2 at tree level

e Much progress recently achieved to uncover 2-loop corrections for 2 — 3 processes

pp = Wjj  [Abreuetal. 21], pp — Wpyj  [Badgeretal '22],

pp = Hbb  [Badgeretal.21], pp — Wbb  [Badgeretal 21],

pp — YYY  [Chawdhryetal. '19, Abreuetal. 20], pp — JJ]  [Abreuetal. '19],
pp — VY]  [Agarwal et al. 21, Badger et al. 21, Chawdhry et al. '21]



Organization of loop amplitude computations

o Universal €-pole structure [Catani '98; Becher, Neubert '09; Gardi, Magnea '09]
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Ave =) 1D AT+ HO + O(e)
I'=0

e Finite remainder (/1,;1 : Weyl spinors)
HO =Y CiLD) x Fi(, D)
[
C:(A, A) :rational functions;  F;(A4, A) : special (transcendental) functions.

e For example, at five-point [;(4, /) — pentagon functions

| Gehrmann, Henn, Lo Presti '18; Chicherin, Sotnikov '20; Chicherin, Sotnikov, Zoia 22|



Problem set-up & motivation

» Standard procedure at 2-loop: analytically reconstruct C; from finite-field ([, ) samples

| von Manteuffel-Schabinger '15, Peraro '16]

 Number of required samples grows rapidly with multiplicity of external kinematics

(2) (2) (1)
Process H, 'y sl | Ay e T O(€)
Ansatz size 9(10°) 9(10°) (1 O(10%)

. Aé _),} 6, done in ~10" evaluations over C w/ constraints from singular limits [DL, Maitre '19]

Can we systematize this approach and apply it directly at 2-loop numerics?
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Complex & massless kinematics

e Let us consider scattering amplitudes 1n the analytical continutation to complex momenta

p,eCP, ieq,... n.

e The P; live in the (1/2, 1/2) representation of the Lorentz group. We have

det(Pi?ﬂO'ﬂ’a&) = ml2 .

o For massless scattering, m; = 0 = rank(P, @) = 1 (down from 2)
2 agte | nan,
P.2% = A%A% = [)[i],

P,eR*= 1% =%, P;eC*= %1% independent.



Constraints from singular limits

e Take an NMHYV tree as a ssmplified example for a C;

4O 3 N N € Me.1-100.1.00} ;
T T (12)(23) (3445156161 Is3ss © dim(M,, ;) = 143

where M ;- vector space of products of spinor brackets, 4: mass dimension, 4_5: phase weights.

e Take (12) ~ £ and (23) ~ ¢, get two cases (soft vs. collinear):

0 12) ~ ¢ — A;2g+g+q—g—g— ~e?* = N ~ £ :noconstaint
o (12) ~(23) ~(13) ~e — AE}(‘)")g"‘g"'E}‘g—g‘ ~¢e b = N ~¢el: constraint!

e This constraint drops the ansatz size from 143 to 84: fixed 59 parameters with 1 evalution!

Why is there branching and how do we control it?



Crash course in algebraic geometry

e Notation employed for polynomial rings: F[xq, .

Algebra ~ Ideals

,Xxnl,e.g.r=R[x,vy, 7]

Geometry ~ Varieties

K = <x—y—z>r ={a(x—y—2):a€r}
In general:
<Qh ---ﬂk}A = {Z?:l aiqi . d; & A}

= V(&)

J = <x3—x2y—xzz+xy2 —xz =y —}’224‘}’2"‘32),,
={((x-y-2&" +Y -2))

= ((x-y=-2),nN(& +y -2),
= KnNL

= V(J/J) = V(K)U V(L)




o

Towards the domain of the C; (/1, ﬂ)

e Let us start from the polynomial ring (the spinors are understood to be taken component-wise)

S, =F[11),[1],....|n), [nl] .

e Fmaybeanyof Q, R, C, F,, Z,, Q,, ... (see later!).

e Define the momentum-conservation i1deal as (it has 4 generators, written as a 2 X 2 tensor)

In, = < Z |i)[i|>Sﬂ -

e Two polynomials p and ¢ should be equivalent if they differ by an element of J

p—q€Jr, = p~gq.



Singular varieties

 What we need 1s not a polynomial ring but a guotient ring

R, = SplJy. .

« We dub 1deals of R,, generated by denominator factors singular ideals .
A singular variety 1s a variety associated to a singular 1deal. It 1s a sub-variety of V(J, ).

e The example we saw earlier can be mathematically described by the following decomposition:
((12), (23>>R6 = {||2) )R6 n ((12),(23), (13>)R6

e There exist algorithms to compute minimal decompositions of ideals/varieties.



Five-point irreducible varieties

e Singular 1deals with one generator: 2 independent ones, both irreducible

((12))g. and ({112 + 3[11)g.

with permutations & 1 < A swap we get 35 in total. These are the possible poles.

» Singular 1deals with two generators: 11 reducible, 10 irreducible

((12),(23)) g, = (12))g. 0 {(12),(23), (13), [451). N (i) Vi /), »

((12), (34))p. = ((12), (34), [1 + 2|51) g. N {{ij) Vi, j ).

with symmetries: 555 reducible varieties 1n total, 317 irreducible branches.

How do we obtain the degree of divergence of the C; ?
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Why p-adic numbers?

« One way to obtain the pole order of the C; is to evaluate them near the singular varieties.

« But this require a non-trivial notion of size, which finite fields lack because:

a=0lp =0 or |a#0l =1.

e This 18 known as the mrivial absolute value.
o It means we are either exactly on a variety or away from a variety.

e We treat the p-adics just as a field, not covered: p-adic calculus/analysis.



The p-adic numbers

» We can define a p-adic number x € (), in terms of its expansion in powers of a prime p

o0
X = Z aip' = a,,p" + - +a_ip” +ag+aip +ap” +

i=u,(x)

where the @; are called p-adic digits, 0 < a; < p ., and v, (x) is called the valuation.

o The subset with 2, (x) = 0 is the p-adic integers (Z ), in which case a( behaves as if in [ .

e The p-adic absolute value 1s:

o 1|
x|, =p™Y = |p|, <I|1], <|]
Plp




P -adic phase-space points near singular varieties

o Aim: find a p-adic phase-space point near a singular variety
Step 0: Consider a singular 1deal
J={q1,....q1 %, \i)[i\>5n -
Step 1: Find a point (17, 7) € V(J) in a finite field, i.e. in [Fp4” .

Step 2: Lift the [F;'” solution to (7%, 17°) & @;4,” , such that

g, ~ - ~q ~0@p), D DM ~OP"), k>1,

where k denotes the working precision (number of p-adic digits used).

e The procedure 1s described in details 1n the paper.
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4. Ansatz construction



Zariski-Nagata theorem

| Zariski '49; Nagata '62; Eisenbud-Hochster '79 |

« The Zariski-Nagata theorem states that if a polynomial vanishes to k-th order on a variety then it
belongs to the so-called k-th symbolic power of the associated radical ideal, in our case:

N(’L z)l(ng,ﬁf) near V(J) ™ gt — N e J®

Symbolic powers

| Grifo '18, Lemma 1.18]

e Even if J is irreducible, J* may not be

k times

"em" stands for "embedded", i.e. V(J) D V(J™), while V(J¥) = V(J).



The Ansatz

e [et V(z) denote the set of codimension-2 irreducible varieties (317 at five-point)
and let k(N;, U) denote the order of vanishing of N; on U & 15

e We can constrain the common-denominator ansatz as follows

Ni€eM,ng with F= ] 1),
| Uey®
the ansatz is a basis of the vector space M 05N 3.

e This can be computed numerically or analytically by polynomial reduction,

together with standard linear algebra (null-spaces).



Proof-of-concept results: 0 — ggyyy at 2-loop

 Planar two-loop three-photon pentagon-function coefficients:

SERHECE veigtﬁ; ;;;ce dim(M*’fﬁ vég?; SEE];]CE dim(Mi(B) dim(MM} NJ) Fai
Rl Mo 41301 M35.3.06.-3.-2) 7358 566 73
R, . M, 2821 i 378 20 141
Ko M 7905 M20,(~2,-4.-2-2,-2) 1140 18 439
e M s 1045 Mes (13.1.12) 44 6 174

e Almost two orders of magnitude better than common denominator form.

e Even just allowing for non-zero Little group weights reduces the sampling requirements.
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5. Conclusions



Conclusions

e The C; are more naturally expressed 1n terms of spinors instead of mandelstams or twistors;

e Algebraic geometry provides us the language to describe singularities of scattering amplitudes;
o p-adic numbers bridge the gap between C and [, rescuing a non-trivial absolute value;

e Behaviour on singular varieties gives very constraining information about the analytics;

e The theorem by Zariski and Nagata provides us with a way to interpret the constraints.

Outlook

» Apply this technology directly to numerical evaluations from Caravel [Abreu et al. '20];

e Obtain efficient and stable analytical results for rational coefficients up to high multiplicities.
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Unfortunately much had to be left out

e The invariant subring R, C R,

e Radical vs. non-radical ideals (not really neaded with 5-point massless kinematics)

e Primary decompositions: prime vs. primary ideals

o Computation of symbolic powers

e Construction of common-denominator ansatz and intersection of vector spaces with 1deals
e Direction of approach to singular variety (ring extensions)

 Partial fractions from maximal-codimension ideal membership

e High multiplicity results: A(l) _, with g-loop m dependace [Campbell, DL, Ellis '22]

aV(=20)V' (=
qqV(=>t)V (=00 )g N
VvV



Thank you!

This presentation was powered by:
jupyter, RISE, Reveal, Mathjax, Singular
syngular, lips, numpy, matplotlib, sympy
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Backup Slides



The QCD NMHY tree from the example

o The tree used as an example, written in 3 different ways (1% is BCFW)

4© (6]1 +2|3) (412 + 3|17

T T T (12)[451(2|1 + 6[5]s3as  [16](23)(34)[56](2|1 + 6|5]

- [12]45)¢6]1 + 2[3] (412 + 3|1]s123
(12)[16]1(34)[45]s34s  (12)[16](23)(34)[45][56]

(12)(23)[45][56]s345  [16](23)(34)[56]s345




Varieties of ideals, ideals of varieties

o A variety U associated to an ideal J of a ring R and denoted as U = V/(J) is the set of points

at which the generators p, ..., p; of J evaluate to zero

VUp1, .., pi)R) = {(xl, X)) E |

= : pi(xl,...,xn) = {) fOI' 1 S l ﬁk}

e Anideal J of a ring R associated to a variety U and denoted as J = [(U) is the subset of

polynomials {p. } € R which evaluate to zero on U

I(U) = {pi(xl,...,xn) ER : pixy..... %) =0 for (xq,....%,) € [F”}.



The field of fractions

e The coefficients C;(A4, ;1) belong to the field of fractions of R,

Ci(A,4) € FF(R))

e This 1s non-trivial and there are subtleties at low multiplicities [Campbell, DL, Ellis '22]
1. FFFF(R3) is actually not a field, because R3 is not an Integral Domain

2. FF(Ry) is a field, but it is not a Unique Factorization Domain



Minimal decompositions of varieties

e A variety 1s irreducible 1f
vg=U,vlU, = U =U or U, =U.

o All varieties admit a minimal decomposition
U= | U st U ¢UVi#jandngUy) =1k,

where we call U} branches, and ng(U) denotes the number of branches.



Radical, primary and prime ideals

Jisradicalifa* e J = ae J;
Qisprimaryifabe Q = a€Qorb € Q, k€ Zsy;
P 1s prime 1f P 1s radical and primary.

Primary decompositions

no(J)

J = ﬂ Q;, with Q; primary, /Q; distinct,
i=1
and Qm ?7—) ﬂl;ém Ql -

P; = 4/Q; are prime ideals. In general one has: np(J) = ny(V(J)).



Examples of fully fledged primary decompositions

In 6-point kinematics (Rg):
((12), Apaapse ) = ((12), (556 — 534)° )

\/<<12>= A12\34\56> — <<12)-.= (556 — 534)> :

In 7-point kinematics (R7):
((TIT12171, (TIT3415617) ) = ((12),(17),(27)) n ([12.T1217)) n ((7IT12|71, 17)(7])
N (71734171, (7Ts6171, (71T 3415617, [ 7134156171 )

\/'<(7\r12|7], 7)71) = {I7)) -




Absolute values on the rationals

 An absolute value is a map: I — [R>(), satisfying:

1. non-negativity; 2. positive-definiteness; 3. multiplicativity; 4. the triangle inequality.

o Ostrowski's theorem: there exist only 3 possible absolute values on (:
0. The trivial absolute value x|, = {O1f x1s O else 1},

1. The usual absolute value \xlm = {x1ftx > 0else —x},

2. The p-adic absolute value | x|, = p~r0)



The least common denominator form

e A single p-adic evaluation near each codimension-one variety yields the pole orders

qii = V,(Ci(n°, 7)), where (n,7) € V((Dj))

starting from Rs.

e This gives us the common-denominator form (N; unknown)

N,
o q;; °
1, D

where ¢g;; may be negative (common numerator factors). I am assuming pure F;.

Ci



The least common denominator ansatz

 We have already encountered the vector space
Myj = {<lj>a‘5"[l:f]ﬁ” L] >, Zaij +pij=d,
]
2. Aij(Gir + 6j) — Pij(Gu + Ojx) = ¢5k}

e Let [x] denote the mass-dimension of x and {x} 1ts Little-group weights

e The least-common-denominator ansatz 1s (assuming pure F;)

C, = Ni = MEM

dii
1I; D

[A]+[Hj ngl,{A}+{Hj Df‘j}

/.10



Hilbert’s Nullstellensatz

e A perhaps better-known version of the Zariski-Nagata theorem 1s Hilbert’s Nullstellensatz:

N (4, ;1)|gawayfmm Vi ™ &’ = Ne \/j

this 1s, however, less powerful as 1t does not use information about the degree of vanishing.
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