
Kira, Feynman integral reduction program – new
developments

(common work with: Fabian Lange, Philipp Maierhöfer)

Loops and Legs in Quantum Field Theory 2022

Johann Usovitsch

29. April 2022

1 / 19

Feynman integral reduction applications

Feynman integral reduction applications
Integration-by-parts (IBP)[Chetyrkin, Tkachov, 1981] and Lorentz invariance
[Gehrmann, Remiddi, 2000] identities for scalar Feynman integrals are very
important in quantum field theoretical computations
Reduce the number of Feynman integrals to compute, which
appear in scattering amplitude computations to a small basis of
master integrals
Compute these integrals analytically or numerically with the
methods of

Differential equations [Kotikov, 1991; Remiddi, 1997; Henn, 2013; Argeri et al.,

2013; Lee, 2015; Meyer, 2016; Moriello, 2019; Hidding, 2020] or difference
equations[Laporta, 2000; Lee, 2010]
Use the method of sector decomposition [Heinrich,2008]

(pySecDec/expansion by regions [Heinrich, et al., 2021] and Fiesta4 [Smirnov, 2016])
Use the linear reducibility of the integrals (HyperInt [Panzer, 2014]) to
compute the Feynman integrals analytically or numerically
Auxiliary mass flow integrals [Xin Guan, Xiao Liu, Yan-Qing Ma, 2020, arXiv:2107.01864],
AMFlow [Xiao Liu,Yan-Qing Ma, 2022]

Series expansions method [Moriello, 2019], DiffExp [Hidding, 2020] 2 / 19

Feynman integral reduction applications

Outline

1 Introduction

2 Main feature: finite field reconstruction
Run time examples
Reducing the memory footprint with iterative reduction
Runtime reduction with coefficient arrays
Runtime reduction with MPI
User defined systems

3 Construction of the block triangular form

4 Feynman integral computation

5 Summary and outlook

3 / 19

Introduction Introduction

Introduction

Kira is a linear solver for sparse linear system of equations with main
application to Feynman integral reduction
Kira automatically generates the system of equations and applies
symmetries between several integrals and topologies
We use finite field methods [von Manteuffel, Schabinger, 2015, Peraro, 2016] and the finite
field reconstruction libray FireFly [Klappert, Lange, 2019, Klappert, Klein, Lange, 2020]

The development of Kira is dedicated to extend the range of
feasible high precision calculations and help to study many
state-of-the-art problems
Kira should be used to built more advanced tools to compute
Feynman integrals (I will talk about this at the end of the talk)

4 / 19

Introduction Introduction

Integration-by-parts (IBP) identities
I(a1, . . . , a5) =

∫ dDl1dDl2
[l12−m2

1]a1 [(p1+l1)2]a2 [l22]a3 [(p1+l2)2]a4 [(l2−l1)2]a5∫
dDl1 . . . dDlL

∂

∂(li)µ

(
(qj)µ

1
[P1]a1 . . . [PN]aN

)
=0

c1({af}, ~s, D)I(a1, . . . , aN−1) + · · ·+ cm({af}, ~s, D)I(a1+1, . . . , aN) =0

qj = p1, . . . , pE , l1, . . . , lL
~s = ({si}, {m2

i })
m number of terms generated by one IBP identity

Reduction: express all integrals with the same set of propagators but with different
exponents af as a linear combination of some basis integrals (master integrals)

Gives relations between the scalar integrals with different exponents af

Number of L(E + L) IBP equations, i = 1, . . . , L and j = 1, . . . , E + L

af = symbols: Seek for recursion relations, LiteRed [Lee, 2012]

af = integers: Sample a system of equations, Laporta algorithm [Laporta, 2000]

5 / 19

Introduction Challenges

Laporta algorithm challenges
The system of equations generated the Laporta way contains many
redundant equations (∼ up to billions or more)
The coefficients are polynomials in the dimension D and many
different scales {s12, s23, m1, m2, ..}
Solving linear system of equations generated with the Laporta
algorithm are CPU, disk and memory expensive computations
Make trade offs to finish the reduction, e.g.: decrease the CPU
costs but increase memory or disk costs
Explore algorithmic improvements!

6 / 19

Main feature: finite field reconstruction

Finite field reconstruction: Kira + FireFly

Reconstruction of multivariate rational functions from samples over
finite integer fields [Schabinger, von Manteuffel, 2014][Peraro, 2016]

Public implementations available: FireFly [Klappert, Lange, 2019][Klappert, Klein, Lange,

2020], FIRE 6 [Smirnov, Chukharev, 2019] and FiniteFlow [Peraro, 2019]

FireFly has been combined with Kira’s native finite field linear
solver
Furthermore Kira supports MPI: to utilize the new parallelization
opportunities now available with finite field methods
Side note: the collaboration [Dominik Bendle, Janko Boehm, Murray Hey-

mann, Rourou Ma, Mirko Rahn, Lukas Ristau, Marcel Wittmann, Zihao Wu, Yang Zhang, 2021] implements
semi-numeric row reduced echelon form. They play with Laporta
ordering in intermediate steps to improve the reduction time for the
forward elimination!

7 / 19

Main feature: finite field reconstruction Run time examples

Run time examples
P1 = k

2
1, P2 = k

2
2, P3 = k

2
3, P4 = (p1 − k1)2

, P5 = (p1 − k2)2
, P6 = (p1 − k3)2

, P7 = (p2 − k1)2
,

P8 = (p2 − k2)2
, P9 = (p2 − k3)2

, P10 = (k1 − k2)2
, P11 = (k1 − k3)2

, P12 = (k2 − k3)2
,

p
2
1 = zzb, p

2
2 = 1, p1p2 = (1 − z)(1 − zb)

We chose r = 17 and s = 0 for the benchmark

Mode Runtime Memory Probes CPU time
per probe

CPU time
for probes

run_initiate 5 h 20min 128GiB - - -

run_triangular +
run_back_substitution

>14 d ~ 540GB - - -

run_firefly: true 6 d 3 h 670GiB 108500 370 s 100%

run_triangular:
sectorwise

36min 4GiB - - -

run_firefly: back 4 h 54min 35GiB 108500 12.2 s 100%

8 / 19

Main feature: finite field reconstruction Reducing the memory footprint with iterative reduction

Reducing the memory footprint with iterative reduction
p2 P6

P7

P2

P1

P5 q1

p1 P4 P3
q2

r = 7 and s = 4

Mode Iterative Runtime Memory

Kira ⊕ FireFly
- 18 h 40GiB

sectorwise 33 h 15min 9GiB

iterative_reduction: sectorwise — one sector at a time
iterative_reduction: masterwise — one master integral at a
time
Works well with the options run_back_substitution and
run_firefly
Independent study confirms the efficiency of this method
[Chawdhry, Lim, Mitov, 2018]

Sacrifice the CPU time for 4 times less main memory consumption 9 / 19

Main feature: finite field reconstruction Runtime reduction with coefficient arrays

Runtime reduction with coefficient arrays

--bunch_size= Runtime Memory
CPU time
per probe

CPU time
for probes

1 18 h 40GiB 1.73 s 95%
2 14 h 41GiB 1.30 s 94%
4 11 h 46GiB 1.00 s 93%
8 10 h 15min 51GiB 0.91 s 92%
16 9 h 45min 63GiB 0.85 s 92%
32 9 h 30min 82GiB 0.84 s 92%
64 9 h 30min 116GiB 0.83 s 92%

Kira ⊕ Fermat 82 h 147GiB - -

The runtime of the probes is dominated by the forward elimination
48 cores each with hyper-threading disabled
Coefficient arrays bring sizeable effects in exchange for main memory

10 / 19

Main feature: finite field reconstruction Runtime reduction with MPI

Runtime reduction with MPI

nodes Runtime Speed-up CPU efficiency

1 18 h 1.0 95%
2 10 h 15min 1.8 87%
3 7 h 15min 2.5 82%
4 5 h 45min 3.1 76%
5 5 h 30min 3.3 65%

Kira ⊕ Fermat 82 h - -

Option run_firefly: true and Intel R© MPI is used
The first prime number suffers in the performance because FireFly
cannot process arbitrary probes
New probes are scheduled based on intermediate results
Remark: the user should use less nodes for the first prime number

11 / 19

Main feature: finite field reconstruction User defined systems

Double-pentagon topology in five-light-parton scattering I
p1 P1

P4

P5

P2 P7

P8

p3

p4

p2 P3 P6
p5

Runtime Memory Probes CPU time
per probe

CPU time
for probes

12 d 540GiB 38278000 0.37 s 25%

Including d, the reduction of the double-pentagon topology is a six
variable problem
We use a system of equations which is in block-triangular form
taken from [Xin Guan, Xiao Liu, Yan-Qing Ma, 2019], which is of the size of 72 MB,
best value I could find comparing to other methods. And no
simplifications where yet applied.
We benchmark the reduction of all integrals including five scalar
products

12 / 19

Main feature: finite field reconstruction User defined systems

Double-pentagon topology in five-light-parton scattering II

FireFly’s factor scan improves the denominators
–bunch_size = 128 option is used to improve the speed
40 cores with hyperthreading enabled
The most complicated master integral coefficient has a maximum
degree in the numerator of 87 and in the denominator of 50
The database of the reduction occupies 25GiB of disk space
The number of required probes 107 is computed fast due to the block
triangular structure of the system of equations
[Xin Guan, Xiao Liu, Yan-Qing Ma, 2020]

Main memory reduction can be achieved with the options
iterative_reduction or by reducing the –bunch_size option
We use Horner form to accelerate the parsing for the coefficients

13 / 19

Main feature: finite field reconstruction User defined systems

Double-pentagon topology in five-light-parton scattering III

The new option insert_prefactors would give a factor of 2
improvement in an overall performance if we use the denominators
from [J.U, arXiv:2002.08173]. The method to compute these denominators is
explained shortly in the summary of [J.U, arXiv:2002.08173], which relies on
algebraic reconstruction methods pioneered in
[arXiv:1805.01873, arXiv:1712.09737, arXiv:1511.01071]. A second approach to compute the
denominator functions should be possible with finite field methods
[Heller, von Manteuffel, arXiv:2101.0828].
The block triangular form is much better suited for the reduction
than a naïv IBP system of equations as generated by Kira
Reduction tables are available upon request

14 / 19

Construction of the block triangular form

Guan, Liu, Ma algorithm – construction of the block
triangular form, see arXiv:1912.09294v3

First step is the Ansatz: I1c1 + · · ·+ IN cN = 0, where Ii are the
Feynman integrals and the ci are polynomials.
Second step is the Ansatz for the coefficients

cj(d,~s) =
dmax∑
i=0

di
kmax∑

~l∈Ωkj

ĉi,l1,...,lM
j sl1

1 · · · s
lM
M

Ωkj
= {~l ∈ NM |

M∑
j=0

lj = kj}

We have a linear relation between integrals of different
massdimension, thus ki differ with respect to the integrals of our
choice
The ĉi,l1,...,lM

j are unknown rational numbers and are fixed by
adjusting the kmax and dmax

15 / 19

Construction of the block triangular form

Guan, Liu, Ma algorithm

To determine the unknowns ĉi,l1,...,lM
j we have to reduce the

IBP-system to N master integrals generated the Laporta way as many
times as the number of the unknowns ĉi,l1,...,lM

j are in the Ansatz.
Each new sample generates N new non trivial equations.
Some unknowns turn out to be ĉi,l1,...,lM

j undetermined and we can
choose them arbitrary.
The result is a system of equations in block triangular form
containing as many equations as integrals, which we would like to
reduce.
The coefficients are polynomials of very low degree
The rational numbers ĉi,l1,...,lM

j will be huge
This system of equations is ideal for the finite field methods applied in
Kira
To implement this algorithm, we estimate roughly 1 week full time
work
We have all tools available 16 / 19

Feynman integral computation

Feynman integral computation with DiffExp

The naïv usage of DiffExp with arbitrary Feynman integrals is
guaranteed to fail:

either because we do not know the boundary terms
or because, if one works with a basis chosen with a Laporta algorithm
one will encounter singular matrices in the dimensional regularization
parameter in the system differential equations

Solution [Ievgen Dubovyk, Ayres Freitas, Janusz Gluza, Krzysztof Grzanka, Martijn Hidding, arXiv:2201.02576]:
we work with quasi finite basis of master integrals [Panzer, 2015, von Manteuffel,

Panzer, Schabinger, 2015], which fixes the matrices to be finite
and we run DiffExp with boundary terms fixed numerically
This makes the computation of Feynman integrals with DiffExp
automatic if we know the boundary terms numerically and we have
the IBP reductions

Numerical boundary terms:
Get them from pySecDec in Euclidean regions
Get them from AMFlow

17 / 19

Feynman integral computation

Upcoming Features in next Kira Version

Kira’s, development release
Get Kira on gitlab: https://gitlab.com/kira-pyred/kira.git

On https://hepforge.kira.org we provide a static linked Kira
executable
We have a Wiki and a best practice summary on gitlab
We plan to go for the block triangular form: run_triangular:
block, which finds a small and fast to evaluate system of equations
for general topologies [Xin Guan, Xiao Liu, Yan-Qing Ma, 2020]!
We have automated the permutation of propagators to accelerate the
reduction time permutation_option: 1
We improved the speed for the export of the results into the FORM
output

18 / 19

https://gitlab.com/kira-pyred/kira.git
https://hepforge.kira.org

Summary and outlook

Summary and Outlook

New version of Kira have always new parallelization improvements
Kira is an all-rounder for multi-scale as well as for multi-loop
computations
Kira utilize the finite field methods and helps to tailor it to your needs
Computing the block triangular form will allow us to tackle new
interesting state of the art problems!
Explained the automatic usage of DiffExp

19 / 19

	Feynman integral reduction applications
	Introduction
	Introduction
	Challenges

	Main feature: finite field reconstruction
	Run time examples
	Reducing the memory footprint with iterative reduction
	Runtime reduction with coefficient arrays
	Runtime reduction with MPI
	User defined systems

	Construction of the block triangular form
	Feynman integral computation
	Summary and outlook

