Kira, Feynman integral reduction program – new developments

(common work with: Fabian Lange, Philipp Maierhöfer) Loops and Legs in Quantum Field Theory 2022

Johann Usovitsch

29. April 2022

Feynman integral reduction applications

- Integration-by-parts (IBP)[Chetyrkin, Tkachov, 1981] and Lorentz invariance [Gehrmann, Remiddi, 2000] identities for scalar Feynman integrals are very important in quantum field theoretical computations
- Reduce the number of Feynman integrals to compute, which appear in scattering amplitude computations to a small basis of master integrals
- Compute these integrals analytically or numerically with the methods of
 - Differential equations [Kotikov, 1991; Remiddi, 1997; Henn, 2013; Argeri et al., 2013; Lee, 2015; Meyer, 2016; Moriello, 2019; Hidding, 2020] Or difference equations[Laporta, 2000; Lee, 2010]
 - Use the method of sector decomposition [Heinrich, 2008] (pySecDec/expansion by regions [Heinrich, et al., 2021] and Fiesta4 [Smirnov, 2016])
 - Use the **linear reducibility** of the integrals (HyperInt [Panzer, 2014]) to compute the Feynman integrals analytically or numerically
 - Auxiliary mass flow integrals [Xin Guan, Xiao Liu, Yan-Qing Ma, 2020, arXiv:2107.01864], AMFlow [Xiao Liu, Yan-Qing Ma, 2022]
 - Series expansions method [Moriello, 2019], DiffExp [Hidding, 2020]

Outline

Introduction

2 Main feature: finite field reconstruction

- Run time examples
- Reducing the memory footprint with iterative reduction
- Runtime reduction with coefficient arrays
- Runtime reduction with MPI
- User defined systems
- 3 Construction of the block triangular form
- 4 Feynman integral computation
- 5 Summary and outlook

Introduction

- Kira is a linear solver for sparse linear system of equations with main application to **Feynman integral reduction**
- Kira automatically generates the system of equations and applies symmetries between several integrals and topologies
- We use finite field methods [von Manteuffel, Schabinger, 2015, Peraro, 2016] and the finite field reconstruction libray FireFly [Klappert, Lange, 2019, Klappert, Klein, Lange, 2020]
- The development of Kira is dedicated to extend the range of feasible high precision calculations and help to study many state-of-the-art problems
- Kira should be used to built more advanced tools to compute Feynman integrals (I will talk about this at the end of the talk)

Integration-by-parts (IBP) identities

$$I(a_1,\ldots,a_5) = \int \frac{d^D l_1 d^D l_2}{[l_1^2 - m_1^2]^{a_1} [(p_1 + l_1)^2]^{a_2} [l_2^2]^{a_3} [(p_1 + l_2)^2]^{a_4} [(l_2 - l_1)^2]^{a_5}}$$

$$\int d^{D} \boldsymbol{l}_{1} \dots d^{D} \boldsymbol{l}_{L} \frac{\partial}{\partial(\boldsymbol{l}_{i})_{\mu}} \left((q_{j})_{\mu} \frac{1}{[P_{1}]^{\boldsymbol{a}_{1}} \dots [P_{N}]^{\boldsymbol{a}_{N}}} \right) = 0$$

$$c_{1}(\{\boldsymbol{a}_{f}\}, \vec{s}, D) I(\boldsymbol{a}_{1}, \dots, \boldsymbol{a}_{N} - 1) + \dots + c_{m}(\{\boldsymbol{a}_{f}\}, \vec{s}, D) I(\boldsymbol{a}_{1} + 1, \dots, \boldsymbol{a}_{N}) = 0$$

$$q_j = p_1, \dots, p_E, l_1, \dots, l_L$$

 $\vec{s} = (\{s_i\}, \{m_i^2\})$

 \boldsymbol{m} number of terms generated by one IBP identity

Reduction: express all integrals with the same set of propagators but with different exponents a_f as a linear combination of some basis integrals (master integrals)

- Gives relations between the scalar integrals with different exponents a_f
- Number of L(E+L) IBP equations, $i = 1, \ldots, L$ and $j = 1, \ldots, E+L$
- a_f = symbols: Seek for recursion relations, LiteRed [Lee, 2012]
- a_f = integers: Sample a system of equations, Laporta algorithm [Laporta, 2000]

Laporta algorithm challenges

- The system of equations generated the Laporta way contains many redundant equations (\sim up to billions or more)
- The coefficients are polynomials in the dimension D and many different scales $\{s_{12}, s_{23}, m_1, m_2, ..\}$
- Solving linear system of equations generated with the Laporta algorithm are CPU, disk and memory expensive computations
- Make trade offs to finish the reduction, e.g.: decrease the CPU costs but increase memory or disk costs
- Explore algorithmic improvements!

Finite field reconstruction: Kira + FireFly

- Reconstruction of multivariate rational functions from samples over finite integer fields [Schabinger, von Manteuffel, 2014][Peraro, 2016]
- Public implementations available: FireFly [Klappert, Lange, 2019][Klappert, Klein, Lange, 2020], FIRE 6 [Smirnov, Chukharev, 2019] and FiniteFlow [Peraro, 2019]
- FireFly has been combined with Kira's native finite field linear solver
- Furthermore Kira supports MPI: to utilize the new parallelization opportunities now available with finite field methods
- Side note: the collaboration [Dominik Bendle, Janko Boehm, Murray Heymann, Rourou Ma, Mirko Rahn, Lukas Ristau, Marcel Wittmann, Zihao Wu, Yang Zhang, 2021] implements semi-numeric row reduced echelon form. They play with Laporta

ordering in intermediate steps to improve the reduction time for the forward elimination!

Run time examples

$$P_{1} = k_{1}^{2}, \quad P_{2} = k_{2}^{2}, \quad P_{3} = k_{3}^{2}, \quad P_{4} = (p_{1} - k_{1})^{2}, \quad P_{5} = (p_{1} - k_{2})^{2}, \quad P_{6} = (p_{1} - k_{3})^{2}, \quad P_{7} = (p_{2} - k_{1})^{2}, \\ P_{8} = (p_{2} - k_{2})^{2}, \quad P_{9} = (p_{2} - k_{3})^{2}, \quad P_{10} = (k_{1} - k_{2})^{2}, \quad P_{11} = (k_{1} - k_{3})^{2}, \quad P_{12} = (k_{2} - k_{3})^{2},$$

$$p_1^2 = zz_b, \quad p_2^2 = 1, \quad p_1p_2 = (1-z)(1-z_b)$$

We chose r = 17 and s = 0 for the benchmark

Mode	Runtime	Memory	Probes	CPU time per probe	CPU time for probes
run_initiate	5 h 20 min	128 GiB	-	-	-
<pre>run_triangular + run_back_substitution</pre>	> 14 d	~540 GB	-	-	-
<pre>run_firefly: true</pre>	6d 3h	670 GiB	108500	370 s	100 %
run_triangular: sectorwise	36 min	4 GiB	-	_	-
<pre>run_firefly: back</pre>	4 h 54 min	35 GiB	108500	12.2 s	100 %

Reducing the memory footprint with iterative reduction

r = 7 and s = 4

Mode	Iterative	Runtime	Memory
Kira \oplus FireFly	-	18 h	40 GiB
	sectorwise	33 h 15 min	9 GiB

- iterative_reduction: sectorwise one sector at a time
- iterative_reduction: masterwise one master integral at a time
- Works well with the options run_back_substitution and run_firefly
- Independent study confirms the efficiency of this method

[Chawdhry, Lim, Mitov, 2018]

• Sacrifice the CPU time for 4 times less main memory consumption

Runtime reduction with coefficient arrays

bunch_size=	Runtime	Memory	CPU time per probe	CPU time for probes
1	18 h	40 GiB	1.73 s	95 %
2	14 h	41 GiB	1.30 s	94 %
4	11 h	46 GiB	1.00 s	93 %
8	10 h 15 min	51 GiB	0.91 s	92 %
16	9 h 45 min	63 GiB	0.85 s	92 %
32	9 h 30 min	82 GiB	0.84 s	92 %
64	9 h 30 min	116 GiB	0.83 s	92 %
$\texttt{Kira} \oplus \texttt{Fermat}$	82 h	147 GiB	-	-

- The runtime of the probes is dominated by the forward elimination
- 48 cores each with hyper-threading disabled
- Coefficient arrays bring sizeable effects in exchange for main memory

Runtime reduction with MPI

# nodes	Runtime	Speed-up	CPU efficiency
1	18 h	1.0	95 %
2	10 h 15 min	1.8	87 %
3	7 h 15 min	2.5	82 %
4	5 h 45 min	3.1	76 %
5	5 h 30 min	3.3	65 %
$\texttt{Kira} \oplus \texttt{Fermat}$	82 h	-	-

- Option run_firefly: true and Intel[®] MPI is used
- The first prime number suffers in the performance because FireFly cannot process arbitrary probes
- New probes are scheduled based on intermediate results
- **Remark:** the user should use less nodes for the first prime number

Double-pentagon topology in five-light-parton scattering I

- Including d, the reduction of the double-pentagon topology is a six variable problem
- We use a system of equations which is in block-triangular form taken from [Xin Guan, Xiao Liu, Yan-Qing Ma, 2019], which is of the size of 72 MB, best value I could find comparing to other methods. And no simplifications where yet applied.
- We benchmark the reduction of all integrals including five scalar products

Double-pentagon topology in five-light-parton scattering II

- FireFly's factor scan improves the denominators
- -bunch_size = 128 option is used to improve the speed
- 40 cores with hyperthreading enabled
- The most complicated master integral coefficient has a maximum degree in the numerator of 87 and in the denominator of 50
- The database of the reduction occupies $25\,{\rm GiB}$ of disk space
- The number of required probes 10⁷ is computed fast due to the block triangular structure of the system of equations

[Xin Guan, Xiao Liu, Yan-Qing Ma, 2020]

- Main memory reduction can be achieved with the options iterative_reduction or by reducing the -bunch_size option
- We use Horner form to accelerate the parsing for the coefficients

Double-pentagon topology in five-light-parton scattering III

• The new option insert_prefactors would give a factor of 2 improvement in an overall performance if we use the denominators from [J.U, arXiv:2002.08173]. The method to compute these denominators is explained shortly in the summary of [J.U, arXiv:2002.08173], which relies on algebraic reconstruction methods pioneered in

[arXiv:1805.01873, arXiv:1712.09737, arXiv:1511.01071]. A second approach to compute the denominator functions should be possible with finite field methods

[Heller, von Manteuffel, arXiv:2101.0828].

- The **block triangular form** is much better suited for the reduction than a naïv IBP system of equations as generated by Kira
- Reduction tables are available upon request

Guan, Liu, Ma algorithm – construction of the block triangular form, see arXiv:1912.09294v3

- First step is the Ansatz: $I_1c_1 + \cdots + I_Nc_N = 0$, where I_i are the Feynman integrals and the c_i are polynomials.
- Second step is the Ansatz for the coefficients

$$c_{j}(d, \vec{s}) = \sum_{i=0}^{d_{\max}} d^{i} \sum_{\vec{l} \in \Omega_{k_{j}}}^{k_{\max}} \hat{c}_{j}^{i, l_{1}, \dots, l_{M}} s_{1}^{l_{1}} \cdots s_{M}^{l_{M}}$$

•
$$\Omega_{k_j} = \{ \vec{l} \in \mathbb{N}^M | \sum_{j=0}^M l_j = k_j \}$$

- We have a linear relation between integrals of different massdimension, thus k_i differ with respect to the integrals of our choice
- The $\hat{c}_j^{i,l_1,...,l_M}$ are unknown rational numbers and are fixed by adjusting the k_{\max} and d_{\max}

Guan, Liu, Ma algorithm

- To determine the unknowns $\hat{c}_{j}^{i,l_{1},...,l_{M}}$ we have to reduce the IBP-system to N master integrals generated the Laporta way as many times as the number of the unknowns $\hat{c}_{j}^{i,l_{1},...,l_{M}}$ are in the Ansatz.
- Each new sample generates N new non trivial equations.
- Some unknowns turn out to be $\hat{c}_{j}^{i,l_{1},...,l_{M}}$ undetermined and we can choose them arbitrary.
- **The result** is a system of equations in block triangular form containing as many equations as integrals, which we would like to reduce.
- The coefficients are polynomials of very low degree
- The rational numbers $\hat{c}_{i}^{i,l_{1},...,l_{M}}$ will be huge
- This system of equations is ideal for the finite field methods applied in Kira
- To implement this algorithm, we estimate roughly 1 week full time work
- We have all tools available

Feynman integral computation with DiffExp

- The naïv usage of DiffExp with arbitrary Feynman integrals is guaranteed to fail:
 - either because we do not know the boundary terms
 - or because, if one works with a basis chosen with a Laporta algorithm one will encounter singular matrices in the dimensional regularization parameter in the system differential equations
- Solution [levgen Dubovyk, Ayres Freitas, Janusz Gluza, Krzysztof Grzanka, Martijn Hidding, arXiv:2201.02576]
 - we work with quasi finite basis of master integrals [Panzer, 2015, von Manteuffel, Panzer, Schabinger, 2015], which fixes the matrices to be finite
 - and we run DiffExp with boundary terms fixed numerically
 - This makes the computation of Feynman integrals with DiffExp automatic if we know the boundary terms numerically and we have the IBP reductions
- Numerical boundary terms:
 - Get them from pySecDec in Euclidean regions
 - Get them from AMFlow

Upcoming Features in next Kira Version

Kira's, development release

Get Kira on gitlab: https://gitlab.com/kira-pyred/kira.git

- On https://hepforge.kira.org we provide a static linked Kira executable
- We have a Wiki and a best practice summary on gitlab
- We plan to go for the block triangular form: run_triangular: block, which finds a small and fast to evaluate system of equations for general topologies [Xin Guan, Xiao Liu, Yan-Qing Ma, 2020]!
- We have automated the permutation of propagators to accelerate the reduction time permutation_option: 1
- We improved the speed for the export of the results into the FORM output

Summary and Outlook

- New version of Kira have always new parallelization improvements
- Kira is an all-rounder for multi-scale as well as for multi-loop computations
- Kira utilize the finite field methods and helps to tailor it to your needs
- Computing the block triangular form will allow us to tackle new interesting state of the art problems!
- Explained the automatic usage of DiffExp