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Graviatiational waves at workshop about elementary particle

physics...

= GW observation largest collider in the universe (although
angular covering is somewhat poor)

= In the end of the day all we care about is high prescision
(loops & legs, Feynman diagrams)

= Aim of this talk: reformulate the relativistic two-body as a
collider problem (and solve it)

Massive Black Holes Shown to Act Like
Quantum Particles

[quantamagazine.org] [physics.aps.org]

Related talk by Andreas Maier tomorrow



Gravitational waves

= Many interesting sources (early Universe, supernovae, ...)
= Abundant prospects:
= Strong-field tests of GR (non-perturbative effects, horizons)
= Cataloging black hole (BH) binaries (properties, abundance)
= Equation of state of neutron stars (NS)
= Multimessenger astronomy
= (O(100) mergers events: BH-BH, BH-NS, NS-NS
= This talk: binary black-hole systems without spin
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Gravitational waves

= GW astronomy is a precision game:
= Relative length changes A¢/¢ ~ 10~20
» Observations of up to O(10?) cycles; errors accumulate

Features even smaller (angular momentum, structure of
constituents, new physics,. . .)

= Next-gen. experiments: factor 10 improved S/N ratio
= High-precision theory predictions required

Detection horizon for black-hole binaries
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[Diego Fazi, PhD Thesis]



Gravitational waves

= Target observable R
C fxa| < 09895, [xa| <005 75
DT vl < 005 - Y

s \

T2 Ixiz| < 0.0805 . 4 )

waveform/strain h,

= To predict hy,, solve
R, — 3Rg,, = %CT,
nv 2 g/u/ - A4 g

Non-linear system, hard

n
Mass 2 [M:]

Numerics challenging;

viable since ~ 15 years

» Template database (250k 1w MaSS‘T[Mn] 0%

for first detection),
supercomputers GW150914 templates [Ligo]

— Need analytic input



Two-body problem

= Inspiral accessible in perturbation theory r > rg

= Weak field two-body Hamiltonians

= Adiabatic separation. Radiation through fluxes dé];j ,%

= Effective one-body [Damour, Buonanno ('99)]: Resumming analytic
input into geometry + NR tuning

T T T T
Inspiral Merger Ring-
down

Real problem — Effective problem

e S 9é s6@
] N ,

my 3 B [ ]

M .

Heeal my | H H,

— Numerical relativity
m Reconstructed (template)

[S. Babak] [Ligo.org]




Two-body problem

= Perturbation theory is hard (even in classical physics!)

= Perturbation theory is harder if gravity is involved: gauge
dependence, complicated Feynman rules, power-counting,

inherently non-planar,. ..
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~10%erms

= Very familiar problem in collider phenomenology

Can we use tools from collider physics for the two-body
problem?




Binary dynamics and amplitudes

= From afar, compact objects are point-like [Golberger & Rothstein]

= Analytic continuation above threshold: bound = scattering
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= S-matrix: all information about classical scattering

= Old idea [Iwasaki,'71,...] recently revived [Damour '17]

Binary problem described through 2 — 2 scattering
amplitudes of massive particles




Binary dynamics and amplitudes

= Exchanged hard problem for an even harder one (c.f.
(ufe)Te” — (u/e)Te”)
= In the classical limit problem simplifies again

— apply early and thoroughly!
= Comments:
= Amplitudes are computed from low-energy effective theory of
gravity, UV completion irrelevant
= Extensions to spin and finite-size effects (Neutron stars)
straightforward
= Methods used in this talk are also used in other classical
approaches



= Natural expansion in the coupling G (post-Minkowskian, PM)
— hyperbolic orbits, scattering

= In practice, also expand in v? ~ G'/r (post-Newtonian, PN, [

Talk by Andreas Maier])

— circular orbits

= Why care about PM?

= Scattering and eccentric events in Nature (GW1905217) rapid
mergers, multi-body systems

= Cross-check and complementary PM<+PN

= Understand analytic structure (Using Ansatze to contrain
form, exclude certain structures)

= Reorganization, to be expanded later

= v ~ ¢ hard for NR
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[Damour, Bini, Geralico]
[Blumlein, Maier, Marquard, Schafer]
[Foffa, Sturani] + [Mastrolia, Sturm, Torres Bobadilla]

0PN 1PN 2PN 3PN 4PN 5PN 6PN 7PN
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3PM (cons): [Bern, Cheung, Roiban, Shen, Solon, Zeng '19]

4PM (COI’IS): [Bern, Parra-Martinez, Roiban, MR, Shen, Solon, Zeng '21]
Reproduced by [Dlapa, Kalin, Liu, Porto '21]

3PM rad. energy: [Herrmann, Parra Martinez, MR, Zeng '21]

3PM rad. angular momentum: [Manohar, Ridgway, Shen '22]
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Classical limit

= Reinstate A in couplings g — g/\/ﬁ Loops are classical!
= Large numbers of soft exchanges (N ~ 1/h, k* ~ h)

\ /
-_—
= Fixed-order+resummation (e.g. EFT, eikonal,...)
\ /
ot Ok
-_— e

{ Need fixed order 2 — 2 amplitudes for soft graviton exchange ]
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Classical limit

Hierarchy of scales (h = 1): J? ~ 108

2

s ms
1<<JZ~—2N—2Z — @ <mi~s
q q
= Relativistic regions: P1 pg
hard (h): ¢ ~m < short range, UV 0t 1i—gq
soft (s): ¢~gq < long range P2 vl

Soft further splits v = |pcoml/V/'s
potential (p): (w,€) ~ (|g|v,|q|]) < instantaneous

radiation (r):  (w,£) ~ (|q|v, |q|v)

Classical: soft+threshold expansion keeping (p) and (r) region
Resummed NRQCD, without “quantum soft”
(w,€) ~ (|q|,|q|) (different terminology!)
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Classical limit

= Diagramatics:

= Conservative dynamics: one matter line per loop
= Many topologies trivial. Important for IBP
= Only one dimensionless variable v

— crucial for integration
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Conservative dynamics

= |n principle can directly compute observables from Amplitudes
[Kosower, Maybee, O'Connell (KMOC)]

= However wave-form modeling is based on Hamiltonian (+
fluxes)

= To get Hamiltonian, have to separate dissipative/conservative

= Computing the result by pieces is also convenient due to
complexity

= Analytic continuation scattering — bound is more
complicated (if possible) for more complicated in cases when

radiation is involved
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Conservative dynamics

= Up to order G3 conservative dynamics is synonymous with the

potential region k ~ (vq, ¢

_@®_+ ++_._

= This is an accident, radiation modes k ~ (vg,vq) play an
important role in the conservative dynamics starting at O(G*)

Potential cons. radiation/ “Tail”

= Since radiation modes can (in principle) go on-shell the

boundary conditions are essential
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Conservative dynamics

= Time-symmetric propagator [Wheeler-Feynman, Damour '21]
1
: 2 sym. _
G (@) = 8(a7), G (k) = Py
= This has several nice properties
= Well-defined
= Guarantees elastic unitarity
= Agrees with EFT intuition [Cheung, Rothstein, Solon] and
heuristics no cuts/no real radiation
= Widely used in the GR literature (self-force)

= Other definitions in [Blumlein et. al. ; Foffa et. al. ] based on
retarded boundary conditions

= Structure found in [Blumlein et. al. ; Foffa et. al. | impossible to
match in amplitude-based approach

= Full result is unambiguous: best way to settle the debate is to

do an explicit computation involving dissipative effects .
7



Computation follows established pattern

1. Integrand construction + soft expansion
on-shell methods
2. IBP reduction
3. Evaluation of master integrals
Differential equations, boundary conditions
4. Physical observables

EFT matching, amplitude-action relation, KMOC
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Integrand construction

= Relevant cuts selected by classical physics: one matter line per
loop, no contact interaction, no graviton bubbles

R
R

e
SIS

= Tree-level amplitudes computed from double copy
M(1,2,3,4) = s12.A(1,2,3,4)*
= Setup well-established and scales to higher orders
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Integrand construction

= Linear dependent propagators: partial fractioning

= 40 families of Feynman integrals

= Classical limit constrains power-counting: max rank 6

= |IBP reduction using FIREG, classical restrictions improve
performance, but not crucical (at this order)

= At O(G*) only need integrals with odd \/—g?-parity.
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Integration

= Most challenging part of the computation

= Differential equations in pre-canonical form

N

fo
f1o

J120
A, B, C dlog-forms

= 3 elliptic integrals + permutations
= Boundary conditions fixed in static limit v — 0.

threshold expansion

|

€eA19+ Big
C(e)

0
€A10,129

N

fo
f1o

fi29

DE resumms
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Integration

= Individual integrals: F and K and iterated integrals
= DE linear: functions dissected by bnd conditions
0 —on, 0
FURUY 0T gi(e) = f=)fi, [i "R v Cigi(e)
i i
= Elliptic and polylogarithmic separated (more general?)
= Elliptic integrals only in potential region
= Elliptic part of the amplitude fixed by ansatz

_ 1.8 K2 (1) +0(eh), o=Vi-?

e2o+1

= Individual pieces are divergent in d =4 — 2¢

ftail

€IR

MP) —

+finite, M) = _ ptail

— +4log(v )} +inite
€uv
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Amplitude

Post-Schwarzschild expansion v = —1M2
(m1+ms2)

2\ 3¢ ) 21 .
Micons) _ G4M7V2ﬂ_2|q|225 (ZQ) {fPP + v ftall log (\/T> + fhn }

i j:},l n fE,llT,Q + j’r',lf'r,3 + 1272
o Z142723 o 2122 . 4 ¢ 41

Iterations, 1/h and 1 /€ divergent

35(1 — 1802 + 330%) ) o+1 arccosh o
PP — _ tail — 1 .
fT Sor-1) fT ik ratog (552 ) 4 U
Schwarzschild related to IR divergence
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Observables

= Remainder takes a compact form

= ran? s K(57) B(757) +re K2 (557) +r7 22 (553)

e o (5 e (2]

1183 4 29290 + 266002 + 120003
2(02 — 1)
= Elliptic functions in a classical GR result!

ry = —

= Radial action: dropping/exponentiating IR divergences
G*MTv2rp?
Lin=———F773"—
’ 8E.J3
= Also computed potential

x {17 +v [af Mg (Y1) + £m]}

= Observables
_ _% At = oL,
X0 ~ 9E
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= |R structure agree with lower-order iterations
= Integrals checked against series expansion
= 1/e pole is proportional to O(G?) energy loss [Hermann et. al]

= Potential part matches PN results in the overlap. In particular
[Blumlein et. al.] up to G2,

» Classical computation of radiation-induced piece up to G*v°

([Bini et. al], caveat: p.v. prescription)
= Independent classical computation [Poto et. al]

= Tension with PN literature related to different boundary
conditions

25



Study by AEI group

= Approximation su rprising|y GW cyeles before merger
40 20 10 5 4 3 2
good [Antonelli et. al. '19, Khalil o comserative dymamics, 11
et. al., '22] -t
. . =0.06] .
= Clear improvements to Yl —
= Hapu
|OW€I’ Orders ~0.10 HiE
_____ e
------ NR
. - —0.12
= Tail part is suppressed :
H -0.1 s X
(power-counting) . )
F -0s Y+ Al
T Higt+ Ao, \Y
- HIES + iy,
—0.5)

001 002 003 004 005 006 007
GMSQ

Binding energy £, = H — M vs. orbital
frequency Q [Khalil et. al., 2204.05047]
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Collider physics tools have proven immensely for analytic
approaches to GR

= Many new results: wave-forms, potentials, radiative losses, ...

= Understanding considerably sharpened in the past ~ 5 years

= Have entered a new phase where main focus is precision (also
spin spin)

= Fruitful exchange between communities

= In the future input from collider physics will be even more
important
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= order G® and beyond

= Book-keeping (~ 400 families of integrals/ many thousands of
master integrals)

= Integrand construction

= IBP-reduction (master topologies with 13 prop/9 ISP, rank 8)

= Radiation at order G*
= Differential observable dE/dt,dE/dS2,. .., hy,

= Main challange: integration
= Multivariable elliptic integrals, other functions Bessel-type etc.

= Beyond Schwarzschild-BH: spin, finite size/tidal

= Analytic continuation

29
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Integration

Mayor simplifications w.r.t e.g. Bhabha scattering

Only need soft expansion ¢ expansion = one dimensionless

variable

Two indipendent DE-systems for even and odd parity in /—t
Three-loop potential is = ~ /=t

Only sub-regions in momentum space discard ¢ ~ (q,q) =
simpler bnd conditions

Solve DE independent for contributions of remaining regions
f(v) = FPPP)(v) 4 072 f P (v) (1)

split is defined through boundary conditions

Classical physics imposes cuts, i.e trivial sectors
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Integration

Boundary conditions at threshold v = 0

= Method of regions in momentum space

» Scaling/regularity fixes most BND conditions

= Resulting integrals are single-scale/numbers

= Individual integrals not regulated in dim-reg: Other regulators

d A g
Ii:/ Y lim Yo ir (2)
wtie A—-ocoJ_pAwLie

= More convenient: keep abstracts, finite combinations in
amplitude
I+ -1 = —2im (3)
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Integration

Boundary conditions at threshold v — 0

= Potential: p.v. prescription implicit

1 &R
Rt RZ|R
= Radiation: unexpanded propagators, ic matters

= IBP+DE: only depend on i through BND condition

= For (ppr) one boundary integral to be computed

P P
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= Poincare-Bertrand

1

r—a-+icx—b+ie

-G

Re<

Re

) ~ind(a — a)} {P (x !

= Applied to the two propagators

b) _ imd(z — b):| +726(z — a)d(z — b)

w? — 02 +icw? — 0% +ie

(4)

= At this order we get away with taking matter cuts+real part
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Non-relativistic EFT

= Classical (non-relativistic) EFT [Neill, Rothstein; Cheung, Rothstein,
Solon]

= Integrate out (potential) off-shell graviton d.o.f.; keep on-shell
modes (radiation)

= Integrate out antiparticles

6, h2] Z/dﬁ 1at 1/k2+wﬁ>(;si(k)

- / &1 (K )1 (k) V (e, K )b (—K Vb2 (=) + TH hE) +
k,k’

T ->380x
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Classical limit

= Formally v < 1, resumation to v ~ 1.

v P

v+ 5 + 5 + -+ = arctanh(v) (5)

= Systematic through relativistic differential equations

— —

gfm — Al f) (6)

= in dlog basis BND condition

—

f) ~(a+av+...)+v > (a+av+...)+... (7)

= Only need leading piece from series expansion

= Important simplification: single-variable problem v = %
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Classical limit (continued)

= Graviton propagators are homogenous in soft, expanded in

potential
1 1

= Simpler integrals, matter propagators linearize

(¢ — p1)2 — m% =2myuy - £+ O(q2/m%) o Uui~pi/my

= Mass scale factors, two variables, q2, Y =uj - U

= Dependence on ¢ fixed by dimensional analysis

[ Single variable (y) to all orders in the PM expansion! ]
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Classical limit (continued)

= Box integral after expansion:
R i S
4m1m2 22( E q)%(uy - £)(—ugz - )
Z(y)

= Integrals in the expansions are reduced to a finite set of

master integrals

» Evaluate masters Z(y) by differential equations (DE)
= Significant improvements:
= Reduced number of scales (3 — 1 ratios)
= Speed-up of integral reduction (days — minutes)
= Fewer master integrals (8 — 3 families at 2-loop)
= Simpler functions (elliptic — polylogs at 2-loop, ? — elliptic
at 3-loop)
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Post-Minkowskian Expansion

= Perturbation theory in G' (post-Minkowskian (PM) expansion)
= |terative solution of Einstein's Eq.

2
© W (z — z4(0y)) dat dav
THY — Z/da_Z 1\Y1
= v—g do; do;

Juv =M + -+ xf:xZOJrvaJr....

= Organized in terms of Feynman-type diagrams

R R 3: .

= For circular systems, double expansion in v%, G
(post-Newtonian expansion)

M
02~G7<<1 — v = 0(G)
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Classical limit (continued)

= Structure of soft-expanded amplitudes:

CL
Mtree _ (1()72 + ...
q
MITEP = 2 \/724”‘1 log(~¢") +
—-q
SSCL SCL
M2—loop _ 2q2 + \/2_7q2 —+ (‘gL log(*qz) +

» Classical pieces at any loop order (loops do not count #!)

= “Super-classical” pieces have to be subtracted/canceled

= Quantum pieces can be neglected

= Fourier transform maps non-analytic part to long-range effects

ch FT COCL B _Gm1m2
q? r r
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Classical limit (continued)

= Graviton propagators are homogenous in soft, expanded in

potential
1 1

= Simpler integrals, matter propagators linearize

(¢ — p1)2 — m% =2myuy - £+ O(q2/m%) o Uui~pi/my

= Mass scale factors, two variables, q2, Y =uj - U

= Dependence on ¢ fixed by dimensional analysis

[ Single variable (y) to all orders in the PM expansion! ]
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Result 3: Four-Graviton Amplitudes [PRL 124, 211601 + PRL 125, 031601

+ CPC 267 108069 |

= Implemented in Caravel: Berends-Giele (BG) recursion,
on-shell states, power-counting, graph library

s EFT computation including counter terms

M(O)NM+..., M(l)wgiéiJr...,
M<2>Nm+%+w++....

= Challenging computation (linear systems ~ 30k x 30k, BG)
= Computation on NEMO (~ 10h/40 cores/ps-point)

= Reconstruct from ~ 100 (finite field) numerical ps-points.
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Special variables

= “soft” variables manifest g-scaling [Sudakov]

wi =p;/Ipsl, wuz=y, ui-q=0, ui=1,
b1 -p1
y=——+0() =0+0()

mims

p1—q/2 p1+q/2
Tq

P2+ q/2 P2 —q/2
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Analytic continuation

o dr

+7m=2b 8
X i Tmin TW ( )
AD 427 = 2] /r+ dr 9)
— I
r— rrip? —J
J = Poob T4 — min zeroes of p? =p? — J?/r?
AD 21 = x(J) + x(—J) (10)
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