From amplitudes to the dynamics of binary black holes

Michael Ruf

UCLA Mani L. Bhaumik Institute for Theoretical Physics

Loops and Legs, 27. Apr 2022

based on $\ensuremath{\left[2101.07254,2112.10750\right]}$ w/ Bern, Parra-Martinez, Roiban, Shen, Solon and Zeng

Graviatiational waves at workshop about elementary particle physics...

- GW observation largest collider in the universe (although angular covering is somewhat poor)
- In the end of the day all we care about is high prescision (loops & legs, Feynman diagrams)
- Aim of this talk: reformulate the relativistic two-body as a collider problem (and solve it)

QUANTUM PHYSICS

Massive Black Holes Shown to Act Like Quantum Particles

Physicists are using quantum math to understand what happens when black holes collide. In a surprise, they've shown that a single particle can describe a collision's entire gravitational wave.

[quantamagazine.org]

[physics.aps.org]

Related talk by Andreas Maier tomorrow

Gravitational waves

- Many interesting sources (early Universe, supernovae, ...)
- Abundant prospects:
 - Strong-field tests of GR (non-perturbative effects, horizons)
 - Cataloging black hole (BH) binaries (properties, abundance)
 - Equation of state of neutron stars (NS)
 - Multimessenger astronomy
 - • • •
- $\mathcal{O}(100)$ mergers events: BH-BH, BH-NS, NS-NS
- This talk: binary black-hole systems without spin

Gravitational waves

- GW astronomy is a precision game:
 - Relative length changes $\Delta \ell/\ell \sim 10^{-20}$
 - Observations of up to $\mathcal{O}(10^3)$ cycles; errors accumulate
 - Features even smaller (angular momentum, structure of constituents, new physics,...)
- Next-gen. experiments: factor 10 improved S/N ratio
- High-precision theory predictions required

[Diego Fazi, PhD Thesis]

Gravitational waves

- Target observable waveform/strain h_{µν}
- To predict $h_{\mu\nu}$, solve $R_{\mu\nu} \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$
- Non-linear system, hard
- Numerics challenging; viable since ~ 15 years
- Template database (250k for first detection), supercomputers
- $\rightarrow\,$ Need analytic input

Two-body problem

- Inspiral accessible in perturbation theory $r \gg r_S$
- Weak field two-body Hamiltonians
- Adiabatic separation. Radiation through fluxes $\frac{dJ_{ij}}{dt}$, $\frac{dE}{dt}$
- Effective one-body [Damour, Buonanno ('99)]: Resumming analytic input into geometry + NR tuning

Two-body problem

- Perturbation theory is hard (even in classical physics!)
- Perturbation theory is *harder* if gravity is involved: gauge dependence, complicated Feynman rules, power-counting, inherently non-planar,...

Very familiar problem in collider phenomenology

Can we use tools from collider physics for the two-body problem?

Binary dynamics and amplitudes

- From afar, compact objects are point-like [Golberger & Rothstein]
- Analytic continuation above threshold: bound \implies scattering

- S-matrix: all information about classical scattering
- Old idea [Iwasaki,'71,...] recently revived [Damour '17]

Binary problem described through $2 \to 2$ scattering amplitudes of massive particles

Binary dynamics and amplitudes

- Exchanged hard problem for an even harder one (c.f. $(\mu/e)^+e^- \to (\mu/e)^+e^- \)$
- In the classical limit problem simplifies again
- $\rightarrow\,$ apply early and thoroughly!
 - Comments:
 - Amplitudes are computed from low-energy effective theory of gravity, UV completion irrelevant
 - Extensions to spin and finite-size effects (Neutron stars) straightforward
 - Methods used in this talk are also used in other classical approaches

PM expansion

- Natural expansion in the coupling G (post-Minkowskian, PM)
- $\rightarrow\,$ hyperbolic orbits, scattering
- In practice, also expand in $v^2 \sim G/r$ (post-Newtonian, PN, [\rightarrow Talk by Andreas Maier])
- \rightarrow circular orbits
 - Why care about PM?
 - Scattering and eccentric events in Nature (GW190521?) rapid mergers, multi-body systems
 - Cross-check and complementary $\mathsf{PM}{\leftrightarrow}\mathsf{PN}$
 - Understand analytic structure (Using Ansatze to contrain form, exclude certain structures)
 - Reorganization, to be expanded later
 - $v \sim c$ hard for NR

3PM (cons): [Bern, Cheung, Roiban, Shen, Solon, Zeng '19]
4PM (cons): [Bern, Parra-Martinez, Roiban, MR, Shen, Solon, Zeng '21]
Reproduced by [Dlapa, Kalin, Liu, Porto '21]
3PM rad. energy: [Herrmann, Parra Martinez, MR, Zeng '21]
3PM rad. angular momentum: [Manohar, Ridgway, Shen '22]

Classical limit

- Reinstate \hbar in couplings $g \to g/\sqrt{\hbar}$. Loops are classical!
- Large numbers of soft exchanges ($N \sim 1/\hbar$, $k^{\mu} \sim \hbar$)

Fixed-order+resummation (e.g. EFT, eikonal,...)

Need fixed order $2 \rightarrow 2$ amplitudes for soft graviton exchange

Classical limit

• Hierarchy of scales ($\hbar = 1$): $J^2 \sim 10^{80}$

$$1 \ll J^2 \sim \frac{s}{q^2} \sim \frac{m_i^2}{q^2} \quad \rightarrow \quad q^2 \ll m_i^2 \sim s$$

 Relativistic regions: hard (h): ℓ ~ m ← short range, UV soft (s): ℓ ~ q ← long range

- Soft further splits $v = |\mathbf{p}_{\text{COM}}|/\sqrt{s}$ potential (p): $(\omega, \ell) \sim (|\mathbf{q}|v, |\mathbf{q}|) \leftarrow \text{instantaneous}$ radiation (r): $(\omega, \ell) \sim (|\mathbf{q}|v, |\mathbf{q}|v)$
- Classical: soft+threshold expansion keeping (p) and (r) region
- Resummed NRQCD, without "quantum soft" $(\omega, \ell) \sim (|q|, |q|)$ (different terminology!)

Diagramatics:

- Conservative dynamics: one matter line per loop
- Many topologies trivial. Important for IBP
- Only one dimensionless variable \boldsymbol{v}
- $\rightarrow\,$ crucial for integration

Conservative dynamics

- In principle can directly compute observables from Amplitudes [Kosower, Maybee, O'Connell (KMOC)]
- However wave-form modeling is based on Hamiltonian (+ fluxes)
- To get Hamiltonian, have to separate dissipative/conservative
- Computing the result by pieces is also convenient due to complexity
- Analytic continuation scattering → bound is more complicated (if possible) for more complicated in cases when radiation is involved

Conservative dynamics

- Up to order G^3 conservative dynamics is synonymous with the potential region $k\sim (vq,q)$

- This is an accident, radiation modes $k\sim (vq,vq)$ play an important role in the *conservative* dynamics starting at $\mathcal{O}(G^4)$

 Since radiation modes can (in principle) go on-shell the boundary conditions are essential

Conservative dynamics

• Time-symmetric propagator [Wheeler-Feynman, Damour '21]

$$G^{\text{sym.}}(x) = \delta(x^2), \quad G^{\text{sym.}}(k) = \mathcal{P}\frac{1}{k^2}$$

- This has several nice properties
 - Well-defined
 - Guarantees elastic unitarity
 - Agrees with EFT intuition [Cheung, Rothstein, Solon] and heuristics no cuts/no real radiation
 - Widely used in the GR literature (self-force)
- Other definitions in [Blumlein et. al. ; Foffa et. al.] based on retarded boundary conditions
- Structure found in [Blumlein et. al. ; Foffa et. al.] impossible to match in amplitude-based approach
- Full result is unambiguous: best way to settle the debate is to do an explicit computation involving dissipative effects

Computation follows established pattern

- Integrand construction + soft expansion on-shell methods
- 2. IBP reduction
- 3. Evaluation of master integrals

Differential equations, boundary conditions

4. Physical observables

EFT matching, amplitude-action relation, KMOC

Integrand construction

 Relevant cuts selected by classical physics: one matter line per loop, no contact interaction, no graviton bubbles

Tree-level amplitudes computed from double copy

$$\mathcal{M}(1,2,3,4) = s_{12}\mathcal{A}(1,2,3,4)^2$$

Setup well-established and scales to higher orders

Integrand construction

- Linear dependent propagators: partial fractioning
- 40 families of Feynman integrals

	IXI	XII	ХХ	XK	XX	XI	$\overline{\mathbf{N}}$	X	<u>A</u>	ΗH	XH		\square
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(22)	(23)	(24)	(25)	(26)	(27)	(28)
KI	KII	X	XI	XI		M	M	M	М	X	X		LA
(8)	(9)	(10)	(11)	(12)	(13)	(14)	(29)	(30)	(31)	(32)	(33)	(34)	(35)
K	W	X	X	X	$\Box X$	X			R	H	H	H	
(15)	(16)	(17)	(18)	(19)	(20)	(21)		(36)	(37)	(38)	(39)	(40)	

- Classical limit constrains power-counting: max rank 6
- IBP reduction using FIRE6, classical restrictions improve performance, but not crucical (at this order)
- At $\mathcal{O}(G^4)$ only need integrals with odd $\sqrt{-q^2}\text{-parity}.$

Integration

- Most challenging part of the computation
- Differential equations in pre-canonical form

$$d\begin{pmatrix} f_{1} \\ \vdots \\ f_{9} \\ f_{10} \\ \vdots \\ f_{129} \end{pmatrix} = \begin{pmatrix} \epsilon A_{1,9} + B_{1,9} & 0 \\ C(\epsilon) & \epsilon A_{10,129} \end{pmatrix} \begin{pmatrix} f_{1} \\ \vdots \\ f_{9} \\ f_{10} \\ \vdots \\ f_{129} \end{pmatrix}$$

 $A,B,C \ \mathrm{d} \log\text{-forms}$

- 3 elliptic integrals + permutations
- Boundary conditions fixed in static limit $v \rightarrow 0$. DE resumms threshold expansion

Integration

- Individual integrals: \boldsymbol{E} and \boldsymbol{K} and iterated integrals
- DE linear: functions dissected by bnd conditions

$$f \overset{v \to 0}{\sim} \sum_{i} v^{-2n_i \epsilon} c_i g_i(\epsilon) \implies f = \sum_{i} f_i, \quad f_i \overset{v \to 0}{\sim} v^{-2n_i \epsilon} c_i g_i(\epsilon)$$

- Elliptic and polylogarithmic separated (more general?)
- Elliptic integrals only in potential region
- Elliptic part of the amplitude fixed by ansatz

$$= \frac{1}{\epsilon^2} \frac{8}{\sigma+1} K^2 \left(\frac{\sigma-1}{\sigma+1}\right) + \mathcal{O}(\epsilon^{-1}), \quad \sigma = \sqrt{1-v^2}$$

- Individual pieces are divergent in $d=4-2\epsilon$

$$\mathcal{M}^{(\mathrm{p})} = \frac{f^{\mathrm{tail}}}{\epsilon_{\mathrm{IR}}} + \mathrm{finite} \,, \quad \mathcal{M}^{(\mathrm{cr})} = -f^{\mathrm{tail}} \left[\frac{1}{\epsilon_{\mathrm{UV}}} + 4\log(v) \right] + \mathrm{finite}$$

Post-Schwarzschild expansion
$$\nu = \frac{m_1 m_2}{(m_1 + m_2)^2}$$

$$\mathcal{M}_4^{(\text{cons})} = G^4 M^7 \nu^2 \pi^2 |q| 2^{2\epsilon} \left(\frac{q^2}{\bar{\mu}^2}\right)^{-3\epsilon} \left\{ f^{\text{pp}} + \nu \left[f^{\text{tail}} \log\left(\frac{\sqrt{\sigma^2 - 1}}{2}\right) + f^{\text{fin}} \right] \right\}$$

$$+ \underbrace{\int_{\ell} \frac{\tilde{I}_{r,1}^4}{2_1 Z_2 Z_3} + \int_{\ell} \frac{\tilde{I}_{r,1}^2 \tilde{I}_{r,2}}{Z_1 Z_2} + \int_{\ell} \frac{\tilde{I}_{r,1} \tilde{I}_{r,3}}{Z_1} + \int_{\ell} \frac{\tilde{I}_{r,2}^2}{Z_1}}{\frac{1}{2}}$$

$$\frac{f^{\text{pp}}}{1 + 12} = -\frac{35(1 - 18\sigma^2 + 33\sigma^4)}{8(\sigma^2 - 1)}, \quad f^{\text{tail}} = r_1 + r_2 \log\left(\frac{\sigma + 1}{2}\right) + r_3 \frac{\operatorname{arccosh} \sigma}{\sqrt{\sigma^2 - 1}}$$
Schwarzschild related to IR divergence

Observables

Remainder takes a compact form

$$f_4^{\text{fin}} = r_4 \pi^2 + r_5 K\left(\frac{\sigma - 1}{\sigma + 1}\right) E\left(\frac{\sigma - 1}{\sigma + 1}\right) + r_6 K^2\left(\frac{\sigma - 1}{\sigma + 1}\right) + r_7 E^2\left(\frac{\sigma - 1}{\sigma + 1}\right),$$

+ $r_8 + \dots + \frac{r_{17}}{\sqrt{\sigma^2 - 1}} \left[\text{Li}_2\left(-\sqrt{\frac{\sigma - 1}{\sigma + 1}}\right) - \text{Li}_2\left(\sqrt{\frac{\sigma - 1}{\sigma + 1}}\right) \right].$
 $r_5 = -\frac{1183 + 2929\sigma + 2660\sigma^2 + 1200\sigma^3}{2(\sigma^2 - 1)} \dots$

- Elliptic functions in a classical GR result!
- Radial action: dropping/exponentiating IR divergences

$$I_{r,4} = -\frac{G^4 M^7 \nu^2 \pi \mathbf{p}^2}{8EJ^3} \times \left\{ f_4^{\rm p} + \nu \left[4f_4^{\rm tail} \log \left(\frac{\sqrt{\sigma^2 - 1}}{2} \right) + f_4^{\rm fin} \right] \right\} \,,$$

- Also computed potential
- Observables

$$\chi = -\frac{\partial I_r}{\partial J}, \quad \Delta t = \frac{\partial I_r}{\partial E}$$

Checks

- IR structure agree with lower-order iterations
- Integrals checked against series expansion
- $1/\epsilon$ pole is proportional to $\mathcal{O}(G^3)$ energy loss [Hermann et. al.]
- Potential part matches PN results in the overlap. In particular [Blumlein et. al.] up to $G^4 v^6.$
- Classical computation of radiation-induced piece up to $G^4 v^6$ ([Bini et. al.], caveat: p.v. prescription)
- Independent classical computation [Poto et. al.]
- Tension with PN literature related to different boundary conditions

Study by AEI group

- Approximation surprisingly good [Antonelli et. al. '19, Khalil et. al., '22]
- Clear improvements to lower orders
- Tail part is suppressed (power-counting)

Binding energy $E_b = H - M$ vs. orbital frequency Ω [Khalil et. al., 2204.05047]

[Khalil et. al., 2204.05047]

Collider physics tools have proven immensely for analytic approaches to GR

- Many new results: wave-forms, potentials, radiative losses, ...
- Understanding considerably sharpened in the past \sim 5 years
- Have entered a new phase where main focus is precision (also spin spin)
- Fruitful exchange between communities
- In the future input from collider physics will be even more important

Outlook

- order G⁵ and beyond
 - Book-keeping (~ 400 families of integrals/ many thousands of master integrals)
 - Integrand construction
 - IBP-reduction (master topologies with 13 prop/9 ISP, rank 8)
- Radiation at order G⁴
- Differential observable $dE/dt, dE/d\Omega, \ldots, h_{\mu\nu}$
 - Main challange: integration
 - Multivariable elliptic integrals, other functions Bessel-type etc.
- Beyond Schwarzschild-BH: spin, finite size/tidal
- Analytic continuation

Backup

Integration

Mayor simplifications w.r.t e.g. Bhabha scattering

- Only need soft expansion t expansion \implies one dimensionless variable
- Two indipendent DE-systems for even and odd parity in $\sqrt{-t}$
- Three-loop potential is $\frac{1}{r^4} \sim \sqrt{-t}$
- Only sub-regions in momentum space discard $\ell \sim (q,q) \implies$ simpler bnd conditions
- Solve DE independent for contributions of remaining regions

$$f(v) = f^{(\text{ppp})}(v) + v^{-2\epsilon} f^{(\text{ppr})}(v)$$
 (1)

- split is defined through boundary conditions
- Classical physics imposes cuts, i.e trivial sectors

Boundary conditions at threshold v = 0

- Method of regions in momentum space
- Scaling/regularity fixes most BND conditions
- Resulting integrals are single-scale/numbers
- Individual integrals not regulated in dim-reg: Other regulators

$$I_{\pm} = \int \frac{\mathrm{d}\omega}{\omega \pm \mathrm{i}\varepsilon} = \lim_{\Lambda \to \infty} \int_{-\Lambda}^{\Lambda} \frac{\mathrm{d}\omega}{\omega \pm \mathrm{i}\varepsilon} = -\mathrm{i}\pi \qquad (2)$$

More convenient: keep abstracts, finite combinations in amplitude

$$I_{+} - I_{-} = -2i\pi$$
 (3)

Integration

Boundary conditions at threshold $v \rightarrow 0$

• Potential: p.v. prescription implicit

$$\frac{1}{k_0^2 - \vec{k}^2 + i\varepsilon} = -\frac{1}{\vec{k}^2} \sum_{i=0}^{\infty} \left[\frac{k_0^2}{\vec{k}^2}\right]^i$$

- Radiation: unexpanded propagators, $\mathrm{i}\varepsilon$ matters
- IBP+DE: only depend on $i \ensuremath{\varepsilon}$ through BND condition
- For (ppr) one boundary integral to be computed

Poincare-Bertrand

$$\frac{1}{x-a+i\varepsilon} \frac{1}{x-b+i\varepsilon}$$
$$= \left[\mathcal{P}\left(\frac{1}{x-a}\right) - i\pi\delta(x-a) \right] \left[\mathcal{P}\left(\frac{1}{x-b}\right) - i\pi\delta(x-b) \right] + \pi^2 \delta(x-a)\delta(x-b)$$

Applied to the two propagators

At this order we get away with taking matter cuts+real part

Non-relativistic EFT

- Classical (non-relativistic) EFT [Neill, Rothstein; Cheung, Rothstein, Solon]
- Integrate out (potential) off-shell graviton d.o.f.; keep on-shell modes (radiation)
- Integrate out antiparticles

$$\begin{aligned} \mathcal{L}[\phi, h_{\mu\nu}^{(\mathbf{r})}] &= \sum_{i=1}^{2} \int_{k} \phi_{i}^{\dagger}(-k) \left(\mathrm{i}\partial_{t} - \sqrt{k^{2} + m_{1}^{2}} \right) \phi_{i}(k) \\ &- \int_{k,k'} \phi_{1}^{\dagger}(k') \phi_{1}(k) V(k, k') \phi_{2}^{\dagger}(-k') \phi_{2}(-k) + T^{\mu\nu} h_{\mu\nu}^{(\mathbf{r})} + \dots \end{aligned}$$

Classical limit

• Formally $v \ll 1$, resumation to $v \sim 1$.

$$v + \frac{v^3}{3} + \frac{v^5}{5} + \dots = \operatorname{arctanh}(v)$$
 (5)

Systematic through relativistic differential equations

$$\frac{\partial}{\partial \gamma} \vec{f}(\gamma) = A(\epsilon, \gamma) \vec{f}(\gamma) \tag{6}$$

- in $d\log$ basis BND condition

$$\vec{f}(\gamma) \sim (a_0 + a_1 v + \dots) + v^{-2\epsilon} (a_0 + a_1 v + \dots) + \dots$$
 (7)

- Only need leading piece from series expansion
- Important simplification: single-variable problem $\gamma = \frac{p_1 \cdot p_2}{m_1 m_2}$

Classical limit (continued)

Graviton propagators are homogenous in soft, expanded in potential

$$\frac{1}{\ell^2} = \frac{1}{-\ell^2} + \dots \sim \delta(t) + \dots$$

Simpler integrals, matter propagators linearize

$$(\ell - p_1)^2 - m_1^2 = 2m_1u_1 \cdot \ell + \mathcal{O}(q^2/m_1^2), \quad u_i \sim p_i/m_i$$

- Mass scale factors, two variables, q^2 , $y = u_1 \cdot u_2$
- Dependence on q^2 fixed by dimensional analysis

Single variable (y) to all orders in the PM expansion!

Classical limit (continued)

Box integral after expansion:

$$\blacksquare \stackrel{\text{(s)}}{=} \frac{(-q^2)^{D/2-3}}{4m_1m_2} \underbrace{\int \frac{(-q^2)^{3-D/2} \mathrm{d}^D \ell}{\ell^2 (\ell-q)^2 (u_1 \cdot \ell) (-u_2 \cdot \ell)}}_{\mathcal{I}(y)} + \dots$$

- Integrals in the expansions are reduced to a finite set of master integrals
- Evaluate masters *I*(*y*) by differential equations (DE)
- Significant improvements:
 - Reduced number of scales $(3 \rightarrow 1 \text{ ratios})$
 - Speed-up of integral reduction (days \rightarrow minutes)
 - Fewer master integrals ($8 \rightarrow 3$ families at 2-loop)
 - Simpler functions (elliptic \rightarrow polylogs at 2-loop, ? \rightarrow elliptic at 3-loop)

Post-Minkowskian Expansion

- Perturbation theory in G (post-Minkowskian (PM) expansion)
- Iterative solution of Einstein's Eq.

$$T^{\mu\nu} = \sum_{i=1}^{2} \int \mathrm{d}\sigma_{i} \frac{\delta^{(4)}(x - x_{i}(\sigma_{i}))}{\sqrt{-g}} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\sigma_{i}} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\sigma_{i}}$$
$$g_{\mu\nu} = \eta_{\mu\nu} + \dots, \quad x_{i}^{\mu} = x_{i,0}^{\mu} + v_{i}^{\mu}\sigma + \dots$$

Organized in terms of Feynman-type diagrams

 For circular systems, double expansion in v², G (post-Newtonian expansion)

$$v^2 \sim \frac{GM}{r} \ll 1 \implies v^2 = \mathcal{O}(G)$$

Classical limit (continued)

Structure of soft-expanded amplitudes:

$$\mathcal{M}^{\text{tree}} = \frac{c_0^{\text{CL}}}{q^2} + \dots$$
$$\mathcal{M}^{1-\text{loop}} = \frac{c_1^{\text{SCL}}}{q^2} + \frac{c_1^{\text{CL}}}{\sqrt{-q^2}} + c_1^{\text{Q}}\log(-q^2) + \dots$$
$$\mathcal{M}^{2-\text{loop}} = \frac{c_2^{\text{SSCL}}}{q^2} + \frac{c_2^{\text{SCL}}}{\sqrt{-q^2}} + c_2^{\text{CL}}\log(-q^2) + \dots$$

- Classical pieces at any loop order (loops do not count ħ!)
- "Super-classical" pieces have to be subtracted/canceled
- Quantum pieces can be neglected
- Fourier transform maps non-analytic part to long-range effects

$$\frac{c_0^{\rm CL}}{q^2} \xrightarrow{\rm FT} \frac{c_0^{\rm CL}}{r} = -\frac{Gm_1m_2}{r} + \dots$$

Classical limit (continued)

Graviton propagators are homogenous in soft, expanded in potential

$$\frac{1}{\ell^2} = \frac{1}{-\ell^2} + \dots \sim \delta(t) + \dots$$

Simpler integrals, matter propagators linearize

$$(\ell - p_1)^2 - m_1^2 = 2m_1u_1 \cdot \ell + \mathcal{O}(q^2/m_1^2), \quad u_i \sim p_i/m_i$$

- Mass scale factors, two variables, q^2 , $y = u_1 \cdot u_2$
- Dependence on q^2 fixed by dimensional analysis

Single variable (y) to all orders in the PM expansion!

Result 3: Four-Graviton Amplitudes [PRL 124, 211601 + PRL 125, 031601 + CPC 267 108069]

- Implemented in Caravel: Berends-Giele (BG) recursion, on-shell states, power-counting, graph library
- EFT computation including counter terms

- Challenging computation (linear systems $\sim 30k \times 30k$, BG)
- Computation on NEMO ($\sim 10h/40$ cores/ps-point)
- Reconstruct from ~ 100 (finite field) numerical ps-points.

"soft" variables manifest q-scaling [Sudakov]

$$u_i = \overline{p}_i / |\overline{p}_i|, \quad u_1 \cdot u_2 = y, \quad u_i \cdot q = 0, \quad u_i^2 = 1.$$
$$y = \frac{p_1 \cdot p_1}{m_1 m_2} + \mathcal{O}(q^2) \equiv \sigma + \mathcal{O}(q^2)$$

Analytic continuation

$$\chi + \pi = 2b \int_{r_{\min}}^{\infty} \frac{\mathrm{d}r}{r\sqrt{r^2 p^2 / p_{\infty}^2 - b^2}}$$
(8)
$$\Delta \Phi + 2\pi = 2J \int_{r_{-}}^{r_{+}} \frac{\mathrm{d}r}{r\sqrt{r^2 p^2 - J}}$$
(9)

 $J=p_\infty b~r_{+,-,{\rm min}}$ zeroes of $p_r^2=p^2-J^2/r^2$

$$\Delta \Phi + 2\pi = \chi(J) + \chi(-J) \tag{10}$$