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Graviatiational waves at workshop about elementary particle
physics...

• GW observation largest collider in the universe (although
angular covering is somewhat poor)

• In the end of the day all we care about is high prescision
(loops & legs, Feynman diagrams)

• Aim of this talk: reformulate the relativistic two-body as a
collider problem (and solve it)

[quantamagazine.org] [physics.aps.org]

Related talk by Andreas Maier tomorrow
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Gravitational waves

• Many interesting sources (early Universe, supernovae, . . . )
• Abundant prospects:

• Strong-field tests of GR (non-perturbative effects, horizons)
• Cataloging black hole (BH) binaries (properties, abundance)
• Equation of state of neutron stars (NS)
• Multimessenger astronomy
• . . .

• O(100) mergers events: BH-BH, BH-NS, NS-NS
• This talk: binary black-hole systems without spin
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Gravitational waves

• GW astronomy is a precision game:
• Relative length changes ∆`/` ∼ 10−20

• Observations of up to O(103) cycles; errors accumulate
• Features even smaller (angular momentum, structure of

constituents, new physics,. . . )
• Next-gen. experiments: factor 10 improved S/N ratio
• High-precision theory predictions required

[Diego Fazi, PhD Thesis] 4



Gravitational waves

• Target observable
waveform/strain hµν

• To predict hµν , solve
Rµν − 1

2Rgµν = 8πG
c4 Tµν

• Non-linear system, hard
• Numerics challenging;

viable since ∼ 15 years
• Template database (250k

for first detection),
supercomputers

→ Need analytic input

GW150914 templates [Ligo]
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Two-body problem

• Inspiral accessible in perturbation theory r � rS

• Weak field two-body Hamiltonians
• Adiabatic separation. Radiation through fluxes dJij

dt ,dEdt
• Effective one-body [Damour, Buonanno (’99)]: Resumming analytic

input into geometry + NR tuning

[S. Babak] [Ligo.org]
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Two-body problem

• Perturbation theory is hard (even in classical physics!)
• Perturbation theory is harder if gravity is involved: gauge

dependence, complicated Feynman rules, power-counting,
inherently non-planar,. . .

= + · · ·+

︸ ︷︷ ︸
∼109terms

+ . . .

• Very familiar problem in collider phenomenology

Can we use tools from collider physics for the two-body
problem?
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Binary dynamics and amplitudes

• From afar, compact objects are point-like [Golberger & Rothstein]

• Analytic continuation above threshold: bound =⇒ scattering

analytic cont.←→

• S-matrix: all information about classical scattering
• Old idea [Iwasaki,’71,. . . ] recently revived [Damour ’17]

Binary problem described through 2→ 2 scattering
amplitudes of massive particles
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Binary dynamics and amplitudes

• Exchanged hard problem for an even harder one (c.f.
(µ/e)+e− → (µ/e)+e− )

• In the classical limit problem simplifies again
→ apply early and thoroughly!
• Comments:

• Amplitudes are computed from low-energy effective theory of
gravity, UV completion irrelevant

• Extensions to spin and finite-size effects (Neutron stars)
straightforward

• Methods used in this talk are also used in other classical
approaches
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PM expansion

• Natural expansion in the coupling G (post-Minkowskian, PM)
→ hyperbolic orbits, scattering
• In practice, also expand in v2 ∼ G/r (post-Newtonian, PN, [→

Talk by Andreas Maier])
→ circular orbits
• Why care about PM?

• Scattering and eccentric events in Nature (GW190521?) rapid
mergers, multi-body systems

• Cross-check and complementary PM↔PN
• Understand analytic structure (Using Ansatze to contrain

form, exclude certain structures)
• Reorganization, to be expanded later
• v ∼ c hard for NR
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0PN 1PN 2PN 3PN 4PN 5PN 6PN 7PN

1PM ( 1 + v2 + v4 + v6 + v8 + v10 + v12 + v14 + . . . ) G1

2PM ( 1 + v2 + v4 + v6 + v8 + v10 + v12 + . . . ) G2

3PM ( 1 + v2 + v4 + v6 + v8 + v10 + . . . ) G3

4PM ( 1 + v2 + v4 + v6 + v8 + . . . ) G4

5PM ( 1 + v2 + v4 + v6 + . . . ) G5

6PM ( 1 + v2 + v4 + . . . ) G6

...

[Damour, Bini, Geralico]
[Blumlein, Maier, Marquard, Schafer]

[Foffa, Sturani] + [Mastrolia, Sturm, Torres Bobadilla]

3PM (cons): [Bern, Cheung, Roiban, Shen, Solon, Zeng ’19]
4PM (cons): [Bern, Parra-Martinez, Roiban, MR, Shen, Solon, Zeng ’21]
Reproduced by [Dlapa, Kalin, Liu, Porto ’21]
3PM rad. energy: [Herrmann, Parra Martinez, MR, Zeng ’21]

3PM rad. angular momentum: [Manohar, Ridgway, Shen ’22]
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Classical limit

• Reinstate ~ in couplings g → g/
√
~. Loops are classical!

• Large numbers of soft exchanges (N ∼ 1/~, kµ ∼ ~)

M = · · · + . . . ML−loop ∼ 1/~L+2

• Fixed-order+resummation (e.g. EFT, eikonal,. . . )

· · · → V V V V· · ·

Need fixed order 2→ 2 amplitudes for soft graviton exchange
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Classical limit

• Hierarchy of scales (~ = 1): J2 ∼ 1080

1� J2 ∼ s

q2 ∼
m2
i

q2 → q2 � m2
i ∼ s

• Relativistic regions:
hard (h): ` ∼ m ← short range, UV
soft (s): ` ∼ q ← long range

↓ `− q` ↑

p1 p′
1

p2 p′
2

• Soft further splits v = |pCOM|/
√
s

potential (p): (ω, `) ∼ (|q|v, |q|) ← instantaneous
radiation (r): (ω, `) ∼ (|q|v, |q|v)

• Classical: soft+threshold expansion keeping (p) and (r) region
• Resummed NRQCD, without “quantum soft”

(ω, `) ∼ (|q|, |q|) (different terminology!)
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Classical limit

• Diagramatics:

(s)= 0 , (s)= 0 , (s)= 0 ,

(p)= 0 , (p)= 0 .

• Conservative dynamics: one matter line per loop
• Many topologies trivial. Important for IBP
• Only one dimensionless variable v
→ crucial for integration
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Conservative dynamics

• In principle can directly compute observables from Amplitudes
[Kosower, Maybee, O’Connell (KMOC)]

• However wave-form modeling is based on Hamiltonian (+
fluxes)

• To get Hamiltonian, have to separate dissipative/conservative
• Computing the result by pieces is also convenient due to

complexity
• Analytic continuation scattering → bound is more

complicated (if possible) for more complicated in cases when
radiation is involved
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Conservative dynamics

• Up to order G3 conservative dynamics is synonymous with the
potential region k ∼ (vq, q)

M(cons)
3 = +· · ·+ +

• This is an accident, radiation modes k ∼ (vq, vq) play an
important role in the conservative dynamics starting at O(G4)

M(cons)
4 = · · ·+

︸ ︷︷ ︸
Potential

+

︸ ︷︷ ︸
cons. radiation/ “Tail”

• Since radiation modes can (in principle) go on-shell the
boundary conditions are essential
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Conservative dynamics

• Time-symmetric propagator [Wheeler–Feynman, Damour ’21]

Gsym.(x) = δ(x2) , Gsym.(k) = P 1
k2

• This has several nice properties
• Well-defined
• Guarantees elastic unitarity
• Agrees with EFT intuition [Cheung, Rothstein, Solon] and

heuristics no cuts/no real radiation
• Widely used in the GR literature (self-force)

• Other definitions in [Blumlein et. al. ; Foffa et. al. ] based on
retarded boundary conditions

• Structure found in [Blumlein et. al. ; Foffa et. al. ] impossible to
match in amplitude-based approach

• Full result is unambiguous: best way to settle the debate is to
do an explicit computation involving dissipative effects
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Setup

Computation follows established pattern

1. Integrand construction + soft expansion
on-shell methods

2. IBP reduction
3. Evaluation of master integrals

Differential equations, boundary conditions
4. Physical observables

EFT matching, amplitude-action relation, KMOC
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Integrand construction

• Relevant cuts selected by classical physics: one matter line per
loop, no contact interaction, no graviton bubbles

• Tree-level amplitudes computed from double copy

M(1, 2, 3, 4) = s12A(1, 2, 3, 4)2

• Setup well-established and scales to higher orders
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Integrand construction

• Linear dependent propagators: partial fractioning
• 40 families of Feynman integrals

• Classical limit constrains power-counting: max rank 6
• IBP reduction using FIRE6, classical restrictions improve

performance, but not crucical (at this order)
• At O(G4) only need integrals with odd

√
−q2-parity.
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Integration

• Most challenging part of the computation
• Differential equations in pre-canonical form

d



f1
...
f9

f10
...

f129


=
(
εA1,9 +B1,9 0

C(ε) εA10,129

)


f1
...
f9

f10
...

f129


A,B,C d log-forms

• 3 elliptic integrals + permutations
• Boundary conditions fixed in static limit v → 0. DE resumms

threshold expansion
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Integration

• Individual integrals: E and K and iterated integrals
• DE linear: functions dissected by bnd conditions

f
v→0∼

∑
i

v−2niεcigi(ε) =⇒ f =
∑
i

fi , fi
v→0∼ v−2niεcigi(ε)

• Elliptic and polylogarithmic separated (more general?)
• Elliptic integrals only in potential region
• Elliptic part of the amplitude fixed by ansatz

= 1
ε2

8
σ + 1K

2
(
σ−1
σ+1

)
+O(ε−1) , σ =

√
1− v2

• Individual pieces are divergent in d = 4− 2ε

M(p) = f tail

εIR
+finite , M(cr) = −f tail

[ 1
εUV

+ 4 log(v)
]
+finite
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Amplitude

M(cons)
4 = G4M7ν2π2|q|22ε

(
q2

µ̄2

)−3ε{
fpp + ν

[
f tail log

(√
σ2 − 1

2

)
+ ffin

]}
+
∫

`

Ĩ4
r,1

Z1Z2Z3
+
∫

`

Ĩ2
r,1Ĩr,2

Z1Z2
+
∫

`

Ĩr,1Ĩr,3

Z1
+
∫

`

Ĩ2
r,2

Z1︸ ︷︷ ︸
Iterations, 1/~ and 1/ε divergent

fpp = −
35(1− 18σ2 + 33σ4)

8(σ2 − 1)
, f tail = r1 + r2 log

(
σ + 1

2

)
+ r3

arccoshσ
√
σ2 − 1

Schwarzschild

Post-Schwarzschild expansion ν = m1m2
(m1+m2)2

related to IR divergence
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Observables

• Remainder takes a compact form
ffin
4 = r4π

2 + r5 K
(
σ−1
σ+1

)
E
(
σ−1
σ+1

)
+ r6 K

2
(
σ−1
σ+1

)
+ r7 E

2
(
σ−1
σ+1

)
,

+ r8 + · · ·+
r17√
σ2 − 1

[
Li2
(
−
√

σ−1
σ+1

)
− Li2

(√
σ−1
σ+1

)]
.

r5 = −
1183 + 2929σ + 2660σ2 + 1200σ3

2(σ2 − 1)
. . .

• Elliptic functions in a classical GR result!
• Radial action: dropping/exponentiating IR divergences

Ir,4 = −G
4M7ν2πp2

8EJ3 ×
{
fp

4 + ν
[
4f tail

4 log
(√

σ2−1
2

)
+ ffin

4

]}
,

• Also computed potential
• Observables

χ = −∂Ir
∂J

, ∆t = ∂Ir
∂E
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Checks

• IR structure agree with lower-order iterations
• Integrals checked against series expansion
• 1/ε pole is proportional to O(G3) energy loss [Hermann et. al.]

• Potential part matches PN results in the overlap. In particular
[Blumlein et. al.] up to G4v6.

• Classical computation of radiation-induced piece up to G4v6

([Bini et. al.], caveat: p.v. prescription)
• Independent classical computation [Poto et. al.]

• Tension with PN literature related to different boundary
conditions
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Study by AEI group

• Approximation surprisingly
good [Antonelli et. al. ’19, Khalil

et. al., ’22]

• Clear improvements to
lower orders

• Tail part is suppressed
(power-counting)

Binding energy Eb = H −M vs. orbital

frequency Ω [Khalil et. al., 2204.05047]
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[Khalil et. al., 2204.05047] 27



Summary

Collider physics tools have proven immensely for analytic
approaches to GR

• Many new results: wave-forms, potentials, radiative losses, ...
• Understanding considerably sharpened in the past ∼ 5 years
• Have entered a new phase where main focus is precision (also

spin spin)
• Fruitful exchange between communities
• In the future input from collider physics will be even more

important
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Outlook

• order G5 and beyond
• Book-keeping (∼ 400 families of integrals/ many thousands of

master integrals)
• Integrand construction
• IBP-reduction (master topologies with 13 prop/9 ISP, rank 8)

• Radiation at order G4

• Differential observable dE/dt,dE/dΩ, . . . , hµν
• Main challange: integration
• Multivariable elliptic integrals, other functions Bessel-type etc.

• Beyond Schwarzschild-BH: spin, finite size/tidal
• Analytic continuation
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Integration

Mayor simplifications w.r.t e.g. Bhabha scattering

• Only need soft expansion t expansion =⇒ one dimensionless
variable

• Two indipendent DE-systems for even and odd parity in
√
−t

• Three-loop potential is 1
r4 ∼

√
−t

• Only sub-regions in momentum space discard ` ∼ (q, q) =⇒
simpler bnd conditions

• Solve DE independent for contributions of remaining regions

f(v) = f (ppp)(v) + v−2εf (ppr)(v) (1)

• split is defined through boundary conditions
• Classical physics imposes cuts, i.e trivial sectors
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Integration

Boundary conditions at threshold v = 0

• Method of regions in momentum space
• Scaling/regularity fixes most BND conditions
• Resulting integrals are single-scale/numbers
• Individual integrals not regulated in dim-reg: Other regulators

I± =
∫ dω
ω ± iε = lim

Λ→∞

∫ Λ

−Λ

dω
ω ± iε = −iπ (2)

• More convenient: keep abstracts, finite combinations in
amplitude

I+ − I− = −2iπ (3)
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Integration

Boundary conditions at threshold v → 0

• Potential: p.v. prescription implicit

1
k2

0 − ~k2 + iε
= − 1

~k2

∞∑
i=0

[
k2

0
~k2

]i
• Radiation: unexpanded propagators, iε matters
• IBP+DE: only depend on iε through BND condition
• For (ppr) one boundary integral to be computed

P P
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• Poincare-Bertrand
1

x− a+ iε
1

x− b+ iε

=
[
P
( 1
x− a

)
− iπδ(x− a)

] [
P
( 1
x− b

)
− iπδ(x− b)

]
+ π2δ(x− a)δ(x− b)

• Applied to the two propagators

Re
(

1
ω2

1 − `2
1 + iε

1
ω2

2 − `2
2 + iε

)
= P

(
1

ω2
1 − `2

1

)
P
(

1
ω2

2 − `2
2

)

Re


 =

P P

(4)

• At this order we get away with taking matter cuts+real part
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Non-relativistic EFT

• Classical (non-relativistic) EFT [Neill, Rothstein; Cheung, Rothstein,

Solon]

• Integrate out (potential) off-shell graviton d.o.f.; keep on-shell
modes (radiation)

• Integrate out antiparticles

L[φ, h(r)
µν ] =

2∑
i=1

∫
k

φ†i (−k)
(

i∂t −
√

k2 +m2
1

)
φi(k)

−
∫

k,k′
φ†1(k′)φ1(k)V (k,k′)φ†2(−k′)φ2(−k) + Tµνh

(r)
µν + . . .

· · · → V V V V· · ·
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Classical limit

• Formally v � 1, resumation to v ∼ 1.

v + v3

3 + v5

5 + · · · = arctanh(v) (5)

• Systematic through relativistic differential equations

∂

∂γ
~f(γ) = A(ε, γ)~f(γ) (6)

• in d log basis BND condition

~f(γ) ∼ (a0 + a1v + . . . ) + v−2ε(a0 + a1v + . . . ) + . . . (7)

• Only need leading piece from series expansion
• Important simplification: single-variable problem γ = p1·p2

m1m2
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Classical limit (continued)

• Graviton propagators are homogenous in soft, expanded in
potential

1
`2

= 1
−`2 + · · · ∼ δ(t) + . . .

• Simpler integrals, matter propagators linearize

(`− p1)2 −m2
1 = 2m1u1 · `+O(q2/m2

1) , ui∼pi/mi

• Mass scale factors, two variables, q2, y = u1 · u2

• Dependence on q2 fixed by dimensional analysis

Single variable (y) to all orders in the PM expansion!
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Classical limit (continued)

• Box integral after expansion:

(s)= (−q2)D/2−3

4m1m2

∫ (−q2)3−D/2dD`
`2(`−q)2(u1 · `)(−u2 · `)︸ ︷︷ ︸

I(y)

+ . . .

• Integrals in the expansions are reduced to a finite set of
master integrals

• Evaluate masters I(y) by differential equations (DE)
• Significant improvements:

• Reduced number of scales (3→ 1 ratios)
• Speed-up of integral reduction (days → minutes)
• Fewer master integrals (8→ 3 families at 2-loop)
• Simpler functions (elliptic → polylogs at 2-loop, ? → elliptic

at 3-loop)
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Post-Minkowskian Expansion

• Perturbation theory in G (post-Minkowskian (PM) expansion)
• Iterative solution of Einstein’s Eq.

Tµν =
2∑
i=1

∫
dσi

δ(4)(x− xi(σi))√
−g

dxµ

dσi
dxν

dσi

gµν = ηµν + . . . , xµi = xµi,0 + vµi σ + . . . .

• Organized in terms of Feynman-type diagrams

+ + + . . .

• For circular systems, double expansion in v2, G

(post-Newtonian expansion)

v2 ∼ GM

r
� 1 =⇒ v2 = O(G)
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Classical limit (continued)

• Structure of soft-expanded amplitudes:

Mtree = cCL
0
q2 + . . .

M1−loop = cSCL
1
q2 + cCL

1√
−q2 + cQ

1 log(−q2) + . . .

M2−loop = cSSCL
2
q2 + cSCL

2√
−q2 + cCL

2 log(−q2) + . . .

• Classical pieces at any loop order (loops do not count ~!)
• “Super-classical” pieces have to be subtracted/canceled
• Quantum pieces can be neglected
• Fourier transform maps non-analytic part to long-range effects

cCL
0
q2

FT−→ cCL
0
r

= −Gm1m2
r

+ . . .
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Classical limit (continued)

• Graviton propagators are homogenous in soft, expanded in
potential

1
`2

= 1
−`2 + · · · ∼ δ(t) + . . .

• Simpler integrals, matter propagators linearize

(`− p1)2 −m2
1 = 2m1u1 · `+O(q2/m2

1) , ui∼pi/mi

• Mass scale factors, two variables, q2, y = u1 · u2

• Dependence on q2 fixed by dimensional analysis

Single variable (y) to all orders in the PM expansion!
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Result 3: Four-Graviton Amplitudes [PRL 124, 211601 + PRL 125, 031601

+ CPC 267 108069 ]

• Implemented in Caravel: Berends-Giele (BG) recursion,
on-shell states, power-counting, graph library

• EFT computation including counter terms

M(0) ∼ + . . . , M(1) ∼ + . . . ,

M(2) ∼ +
GB

+ GB GB + R3 + . . . .

• Challenging computation (linear systems ∼ 30k× 30k, BG)
• Computation on NEMO (∼ 10h/40 cores/ps-point)
• Reconstruct from ∼ 100 (finite field) numerical ps-points.
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Special variables

• “soft” variables manifest q-scaling [Sudakov]

ui = pi/|pi| , u1 · u2 = y , ui · q = 0 , u2
i = 1 .

y = p1 · p1
m1m2

+O(q2) ≡ σ +O(q2)

↑ q

p̄1 − q/2 p̄1 + q/2

p̄2 + q/2 p̄2 − q/2
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Analytic continuation

χ+ π = 2b
∫ ∞
rmin

dr
r
√
r2p2/p2

∞ − b2
(8)

∆Φ + 2π = 2J
∫ r+

r−

dr
r
√
r2p2 − J

(9)

J = p∞b r+,−,min zeroes of p2
r = p2 − J2/r2

∆Φ + 2π = χ(J) + χ(−J) (10)

43


	Backup

