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  jets are collimated bunches of hadrons that represent the fingerprints of the high-energy partons produced in the hard- 
scattering interaction  

  jets are ubiquitous at the LHC 

  experimental analyses categorise events into jet bins 

  according to jet multiplicity  

  (BSM searches, precision SM studies)  

  description of jet processes requires an understanding of QCD across  

  a wide range of energy scales 

  (fixed-order calculations, all-order structure and resummation, NP effects) 

 

Introduction
Jet physics @ LHC :
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jet resolution variables:  
observables capable to capture the deviation from the LO 

energy flow, which characterises the bulk of the events



  N-jet resolution variables should smoothly capture the transition from  to  jet configuration 
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  0-jet resolution variables should smoothly capture the transition from  to  jet configuration 
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Jet resolution variables (0-jet case) :
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a prominent example is the transverse momentum of 
the tagged colourless system (  )qT



   is a good resolution variable for processes that do not involve jets at Born level [Catani, Grazzini (2007)] 

  it is the transverse momentum of the born-like system  

  it captures the  jet transition (  if no hard jets are found,  if at least one hard jet is tagged ) 

  it can be used as a slicing variable, to regularise IR-singularities, for colour-singlet and heavy-quark production 

  ( for , only -type singularities can appear @  ) 

  [in MATRIX, fixed-order computations publicly available up to NNLO for   ]  [Grazzini, Kallweit, Wiesemann (2017)] [Catani, 
Devoto, Grazzini, Kallweit, Mazzitelli (2019,2020)] 

  it has been used @  for DY  
  [Chen, Gehrmann, Glover, Huss, Yang and Zhu (2021)] [Chen, Gehrmann, Glover, Huss, Monni, Rottoli, Re, Torrielli (2022)] [Camarda, Cieri, Ferrera (2022)] 

   and Higgs production [Billis, Dehnadi, Ebert, Michel, Tackmann (2021)] 
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pp → V, H, VV, HH, γγ, γγγ, Vγ, tt̄

N3LO

Introduction
 -subtraction  (0-jet case) :qT
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   is a good resolution variable for processes that do not involve jets at Born level [Catani, Grazzini (2007)] 

  it is the transverse momentum of the born-like system  

  it captures the  jet transition (  if no hard jets are found,  if at least one hard jet is tagged ) 

  it can be used as a slicing variable, to regularise IR-singularities, for colour-singlet and heavy-quark production 

  ( for , only -type singularities can appear @  ) 

  [in MATRIX, fixed-order computations publicly available up to NNLO for  ]  [Grazzini, Kallweit, Wiesemann (2017)] [Catani, 
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   and Higgs production [Billis, Dehnadi, Ebert, Michel, Tackmann (2021)] 

   

  it cannot regularise final-state collinear singularities (FSR)
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 -subtraction  (0-jet case) :qT
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⃗p V

⃗p j

qT = | ( ⃗p V + ⃗p j)T | ≠ 0
drawback:



  N-jet resolution variables should smoothly capture the transition from  to  jet configuration 
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Jet resolution variables (beyond 0-jet case) :
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  -jettiness ( ) [Stewart, Tackmann, Waalewijn (2010)] is so far the only player in the game! 

  it has proved a successful resolution variable for processes with  up to NNLO 

  [ : Boughezal, Focke, Giele, Liu, Petriello (2015)], [ : Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello (2016)], [ : Boughezal, Liu, 
Petriello (2016)] 

  no full computation available for 2-jettiness 

N τN

1 jet

H + jet Z + jet W + jet

Introduction
N-jettiness  (beyond 0-jet case) :
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  -jettiness ( ) [Stewart, Tackmann, Waalewijn (2010)] is so far the only player in the game! 

  it has proved a successful resolution variable for processes with  up to NNLO 

  [ : Boughezal, Focke, Giele, Liu, Petriello (2015)], [ : Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello (2016)], [ : Boughezal, Liu, 
Petriello (2016)] 

  no full computation available for 2-jettiness 

   

  large missing power corrections (logarithmically enhanced already @ NLO)  

  instabilities under hadronisation and multiple-parton interactions (MPI)
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Introduction
N-jettiness  (beyond 0-jet case) :
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drawbacks:

it may prove worthwhile to explore other resolution 
variables which overcome some of the shortcomings of 
jettiness: 
-  smaller power corrections 
-  more direct experimental evidence 



  it is the natural extension of the transverse momentum used in the colour-singlet case 

  it is defined as the transverse momentum of the  system after applying 

  a clustering algorithm (anti-  with radius ) 

  resummation formula up to  

  it was applied as a slicing parameter @NLO for   [M.Costantini, Master thesis, UZH (2021)] 

   

V + 1jet

kT R

NLL′ 

H + 1jet

⃗p V

⃗p j

Exploring jet resolution variables
-imbalance  (for  processes) :                                                   [Buonocore, Grazzini, Haag, Rottoli (2021)]qT V + 1jet
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qT = | ( ⃗p V + ⃗p j)T | = 0

linear power corrections



  it is the natural extension of the transverse momentum used in the colour-singlet case 

  it is defined as the transverse momentum of the  system after applying 

  a clustering algorithm (anti-  with radius ) 

  resummation formula up to  

  it was applied as a slicing parameter @NLO for   [M.Costantini, Master thesis, UZH (2021)] 

   

  dependence of the observable on the additional cutting variable  (the extension to higher orders is more complicated) 

  presence of non-global logarithms starting at NNLO

V + 1jet

kT R
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H + 1jet

R

Exploring jet resolution variables
-imbalance  (for  processes) :                                                   [Buonocore, Grazzini, Haag, Rottoli (2021)]qT V + 1jet
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drawbacks:

linear power corrections

⃗p V

⃗p j

qT = | ( ⃗p V + ⃗p j)T | = 0



  it is a global observable defined as the difference between the transverse energy and the transverse momentum of the 
vector boson                 

  

  it has a more convoluted structure than  -imbalance due to the different scaling in each singular region 

   

   

qT

Exploring jet resolution variables
  (for  processes) :ΔET V + 1jet
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ΔET =
n

∑
i=1

| ⃗p T,i | − | ⃗p T,V |

IS : ΔET ≈ kT(1 + cos ϕ) FS : ΔET ≈ k⊥θ sin2 ϕ



  it is a global observable defined as the difference between the transverse energy and the transverse momentum of the 
vector boson                 

  

  it has a more convoluted structure than  -imbalance due to the different scaling in each singular region 

  non-trivial azimuthal dependence of the observable: 

  different beam functions @NLO and non-vanishing spin-correlations 

  logarithmically enhanced linear power corrections 

qT

Exploring jet resolution variables
  (for  processes) :ΔET V + 1jet
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ΔET =
n

∑
i=1

| ⃗p T,i | − | ⃗p T,V |

IS : ΔET ≈ kT(1 + cos ϕ) FS : ΔET ≈ k⊥θ sin2 ϕ

drawbacks:

PRELIMINARY



  dimensional variable able to capture the  jet transition 

  global 

  extendable to any number of jets 

  variable that reduces to  in the -jet case and for ISC radiation 

  nice convergence properties (linear scaling or better) 

  stable under hadronisation and MPI

N → N + 1

qT 0

Exploring jet resolution variables
main goal :    find an “IDEAL” jet resolution variable with the following properties

9

does such a 
variable exist ?
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does such a 
variable exist ?

our proposal is called kness
T



dij = min(pT,i, pT,j)
ΔRij

D

  we consider a process with -jets at Born level, possibly accompanied by a generic colourless system  

  we introduce the usual distances between partons 

  we can define -  via a recursive procedure  

  physically, the variable represents an effective transverse momentum: 

•  if the unresolved radiation is close to the beams (ISR),  is the transverse momentum of the hard system 

•  if the unresolved radiation is collinear to one of the final-state jets (FSR),  describes the relative transverse 
momentum of the hard system wrt the jet direction

N F

N kness
T

kness
T

kness
T

Our proposal:  kness
T
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h1(P1) + h2(P2) → j(p1) + . . . + j(pN) + F(pF) + X

diB = pT,iΔRij = (yi − yj)2 + (ϕi − ϕj)2with and



Our proposal:  kness
T

definition :    run the  -algorithm till  proto-jets are leftkT N + 1
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min({dij}, {diB})

⃗p T,rec

example of  1-kness
T
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Our proposal:  kness
T

definition :    run the  -algorithm till  proto-jets are leftkT N + 1
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⃗p T,rec

when  proto-jets are left, compare the 
minimum between  and : 

if   is the min                  

N + 1
diB dij

dij kness
T = dijmin(dij, diB)

kness
T

⃗p i⃗p j



Our proposal:  kness
T

definition :    run the  -algorithm till  proto-jets are leftkT N + 1
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⃗p T,rec

when  proto-jets are left, compare the 
minimum between  and :        

if   is the min            

N + 1
diB dij

diB kness
T = | ⃗p T,i + ⃗p T,rec |

min(dij, diB)

kness
T

⃗p i⃗p j



we consider the NLO cross section, at the partonic level,     and we introduce a slicing cut  on 
the variable  : 

                                                       

in the region above the cut the additional radiation is resolved and the real integration can be performed in  

it is divergent for 

d ̂σNLO = dσV + dσR rcut
r = kness

T /M

d ̂σNLO = (dσV + dσR)Θ(rcut − r) + dσRΘ(r − rcut)

d = 4

rcut → 0

Handling of IR-singularities
 -subtraction :kness

T

12



we consider the NLO cross section, at the partonic level,     and we introduce a slicing cut  on 
the variable  : 

                                                       

in the region below the cut, the computation must be performed in  and we can rely on the IR-factorisation 
of the real matrix element 

the real computation is performed by organising the relevant terms in each singular region and removing double 
counting (beam, jet and soft functions) 

soft and collinear poles cancel between real and virtual contributions  

the sensitivity to IR kinematics appears as  

d ̂σNLO = dσV + dσR rcut
r = kness

T /M

d ̂σNLO = (dσV + dσR)Θ(rcut − r) + dσRΘ(r − rcut)

d = 4 − 2ϵ

log(rcut)

Handling of IR-singularities
 -subtraction :kness

T
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Handling of IR-singularities
 -subtraction :kness

T

14

we consider the NLO cross section, at the partonic level,     and we introduce a slicing cut  on 
the variable  : 

                                                       

the master formula for NLO subtraction is 

                                                   

where the counterterm is  

d ̂σNLO = dσV + dσR rcut
r = kness

T /M

d ̂σNLO = (dσV + dσR)Θ(rcut − r) + dσRΘ(r − rcut)

d ̂σF+Njets+X
NLO = ℋF+Njets

NLO ⊗ d ̂σF+Njets
LO + [d ̂σF+(N+1)jets

LO − d ̂σCT,F+Njets
NLO ]r>rcut

with γq =
3
2

CF and γg =
11CA − 2nf

6



we consider the NLO cross section, at the partonic level,     and we introduce a slicing cut  on 
the variable  : 

                                                       

the master formula for NLO subtraction is 

                                                   

where the finite piece is  

d ̂σNLO = dσV + dσR rcut
r = kness

T /M

d ̂σNLO = (dσV + dσR)Θ(rcut − r) + dσRΘ(r − rcut)

d ̂σF+Njets+X
NLO = ℋF+Njets

NLO ⊗ d ̂σF+Njets
LO + [d ̂σF+(N+1)jets

LO − d ̂σCT,F+Njets
NLO ]r>rcut

Handling of IR-singularities
 -subtraction :kness

T
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ℋF+Njets
cd;ab = (HS)cdCcaCdb

N

∏
i=1

Ji

with jet function



we consider the NLO cross section, at the partonic level,     and we introduce a slicing cut  on 
the variable  : 
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where the finite piece is  
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Handling of IR-singularities
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ℋF+Njets
cd;ab = (HS)cdCcaCdb

N

∏
i=1

Ji

with soft factor



Phenomenological applications
Setup and implementation
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  we implemented  -subtraction @NLO, for processes with 1 and 2 jets, in a private Fortran code. The subtraction 
is now implemented, for an arbitrary number of jets, also in the MATRIX framework [work done by J.Haag and S.Kallweit] 

  we consider proton-proton collisions @ LHC with  TeV 

  the parameters common to all studied processes are: 

•     GeV       (  scheme to treat the EW input parameters) 
•     GeV                    
•     GeV                GeV 
•     GeV 
•    anti-  algorithm with   
•    NNPDF_nlo_as_0118   with   

kness
T

s = 13

GF = 1.16639 × 10−5 −2 Gμ
mW = 80.385
mZ = 91.1876 ΓZ = 2.4952
mH = 125

kT R = 0.4
αs(mZ) = 0.118



Phenomenological applications
 production @NLOH + 1jet
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Phenomenological applications
 production @NLOZ + 2jets
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the cut is applied on  normalised over the hard scale  
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linear power behaviour in all channels 

control of the NLO correction ( ) at the percent 
level
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Phenomenological applications
 production @NLOZ + 2jets
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Phenomenological applications
Dijet production @NLO
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PRELIMINARY

MATRIX framework

D = 1
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pj
T > 30 GeV

comparison between the results obtained with 2-  and 
CS local subtraction, at the level of the total cross section 

the cut is applied on  normalised over the hard scale 
 which is the invariant mass of the dijet system 

linear power behaviour
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M



τ1 Q

comparison between the results obtained with 1-  and 
1-jettiness (treated as event shape variables)  

1-  shows a peak at  GeV which remains stable 
under hadronisation and MPI 

1-  is overall much more stable than 1-jettiness

kness
T

kness
T ∼ 15

kness
T

Phenomenological applications
 production: hadronisation and MPI effectsZ + 1jet
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 we introduced a new variable  able to capture the  jet transition 

 we computed all relevant ingredients necessary for the construction of a subtraction formula @NLO 

 we showed that  has promising properties: pure linear power corrections, stability under NP effects  

  

 future goals: 

•  extension of the subtraction method @NNLO [ongoing work on Z+1jet] 

•  inclusion of processes with heavy quarks plus jets 

•  resummation (factorisation in b-space ?) 

•  implementation in MATRIX framework 

  

kness
T N → N + 1

kness
T

Conclusions
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 we introduced a new variable  able to capture the  jet transition 

 we computed all relevant ingredients necessary for the construction of a subtraction formula @NLO 

 we showed that  has promising properties: pure linear power corrections, stability under NP effects  

  

 future goals: 

•  extension of the subtraction method @NNLO [ongoing work on Z+1jet, mainly by J.Haag] 

•  inclusion of processes with heavy quarks plus jets 

•  resummation (factorisation in b-space ?) 

•  implementation in MATRIX framework 

  

kness
T N → N + 1

kness
T

Conclusions

THANKS !



BACKUP SLIDES



the master formula for NLO subtraction is 

                                                   

where the finite piece is   

the soft factor   is an operator in colour space and it is related to the integral, over the radiation phase space, of the 
soft-subtracted current  

d ̂σF+Njets+X
NLO = ℋF+Njets

NLO ⊗ d ̂σF+Njets
LO + [d ̂σF+(N+1)jets

LO − d ̂σCT,F+Njets
NLO ]r>rcut

S(1)

-subtractionkness
T

finite piece :

ℋF+Njets
cd;ab = (HS)cdCcaCdb

N

∏
i=1

Ji

with soft factor


