NNLO Photon Production with Realistic Photon Isolation

Robin Schürmann

Loops and Legs 2022

Physik-Institut, Universität Zürich

Work in collaboration with X. Chen, E.W.N. Glover, T. Gehrmann, M. Höfer and A. Huss

Based on 2201.06982, 22xx.xxxx

European Research Council Established by the European Commission

Outline

1. Photons in hadronic collisions: fragmentation and isolation

3. Numerical results

2. Antenna subtraction with identified final-state particles

Photon Production @ the LHC

- γ (+jet) important observable:
- 1. Testing ground for precise QCD predictions
 - \rightarrow clean, well-reconstructable final state
 - \rightarrow precise data from experiment available ATLAS 2018, CMS 2019, ALICE 2019
- 2. High sensitivity on gluon PDF

 \rightarrow Compton scattering @ LO

- 3. Important background for new physics searches
 - \rightarrow new physics decaying into photons
 - $\rightarrow \gamma$ + jet as data driven background estimate for dark matter searches

З

Photons @ the LHC

Three different kinds of photons in hadronic collisions:

- 1. Direct photons
- \rightarrow point-like coupling of quarks and photons
- 2. Partons fragmenting into photons
- \rightarrow fragmentation functions (FF) $D_{k \rightarrow \gamma}(z)$
- 3. Photons from hadronic decays ($\pi^0 \rightarrow \gamma \gamma$)

Photon Isolation

Fixed cone isolation

$$R^2 = \Delta \eta^2 + \Delta \phi^2$$

 $E_T^{\text{had}} < E_T^{\max}(E_T^{\gamma})$

- Used in experimental analyses
- $q \parallel \gamma$ singularity
- $\cdot \sigma$ contains fragmentation contribution

Smooth cone isolation S. Frixione 1998

arbitrary cones with $r_d < R$

$$\frac{E_T^{\text{had}}(r_d) < \epsilon E_T^{\gamma} \left(\frac{1 - \cos(r_d)}{1 - \cos(R)}\right)^n$$

- Idealised photon isolation
- No $q \parallel \gamma$ singularity
- σ has no fragmentation contribution

Theory Predictions

$$\mathrm{d}\hat{\sigma}^{\gamma+X} = \mathrm{d}\hat{\sigma}_{\mathrm{dir}}^{\gamma+X} + \sum_{p} \mathrm{d}\hat{\sigma}_{p} \otimes D_{p \to \gamma}$$

Only with fixed cone isolation

New NNLO QCD calculation with fixed cone isolation

- Overcoming systematic uncertainty from mismatch of photon isolation in theory and experiment
- Implementing fragmentation processes in NNLOJET
- Extending antenna subtraction to allow for identified final-state particles

NNLO QCD with idealised isolation

J. M. Campbell et al., 2017 X. Chen et al., 2019

NLO QCD with fixed cone isolation

P. Aurenche et al., 1993

S. Catani et al., 2002

Antenna Subtraction

$$d\sigma^{S} \propto A_{3}^{0}(q(k_{1}), g(k_{3}), \bar{q}(k_{3})) |M_{2}^{0}(\tilde{k}_{1}, \tilde{k}_{2}, p_{i}, p_{j})|^{2} J(\tilde{k}_{1}, \tilde{k}_{2}) d\Phi_{3}$$

- Only dependence on $\{k_1, k_2, k_3\}$ in antenna function
- Jet function and reduced matrix element only depend on mapped momenta $\{\tilde{k}_1, \tilde{k}_2\}$
- \rightarrow phase space can be factorised

$$d\sigma^{T} \propto \left(\int d\Phi_{A} A_{3}^{0}(q(k_{1}), g(k_{2}), \bar{q}(k_{3})) \right) |M_{2}^{0}(\tilde{k}_{1}, \tilde{k}_{2}; p_{i}, p_{j})|^{2} J(\tilde{k}_{1}, \tilde{k}_{2}) d\Phi_{2}$$

 \mathscr{A}_3^0

 \rightarrow explicit ϵ -poles in \mathscr{A}_3^0

Fragmentation Antenna Functions

$$\mathrm{d}\sigma^{S} \propto A_{3}^{0}(q(k_{1}),\gamma^{\mathrm{id.}}(k_{3}))$$

Jet function needs information about momentum fraction z of the photon within the quark-photon cluster Q_{γ} :

z = -

Reconstruction of photon and quark momentum in photon isolation and jet algorithm:

$$\tilde{k}_1$$

 $(\bar{q}(k_3)) |M_2^0(\tilde{k}_1, \tilde{k}_2, p_i, p_j)|^2 J(\tilde{k}_1, \tilde{k}_2; z) d\Phi_3$

$$\frac{s_{23}}{s_{23} + s_{12}} \xrightarrow{q \parallel \gamma} \frac{E_{\gamma}}{E_{\gamma} + E_{q}}$$

$$\rightarrow \{ z \, \tilde{k}_1, (1 - z) \, \tilde{k}_1 \}$$

Fragmentation Antenna Functions

$$\mathrm{d}\sigma^S \propto A_3^0(q(k_1),\gamma^{\mathrm{id.}}(k_3))$$

Jet function needs information about momentum fraction z of the photon within the quark-photon cluster $Q_{
m y}$: \rightarrow antenna phase space can not be fully integrated out

Integration over antenna phase space must remain differential in z:

$$\mathrm{d}\sigma_{\gamma}^{T} \propto -\int_{0}^{1} \mathrm{d}z \left(\int \frac{\mathrm{d}\Phi_{A}}{\mathrm{d}z} A_{q\gamma\bar{q}}^{0} \right) |M_{2}^{0}(\tilde{k}_{1}, \tilde{k}_{2}; p_{i}, p_{j})|^{2} J(\tilde{k}_{1}, \tilde{k}_{2}; z) \,\mathrm{d}\Phi_{2}$$

 $\mathscr{A}_{3}^{0}(z)$

), $\bar{q}(k_3)$) $|M_2^0(\tilde{k}_1, \tilde{k}_2, p_i, p_j)|^2 J(\tilde{k}_1, \tilde{k}_2; z) d\Phi_3$

NNLO

Subtraction of double unresolved limits (RR) and one-loop unresolved limits (RV)

- kinematic configuration (initial-final)
 - \rightarrow final-final configuration needed for identified hadrons (see Giovanni's talk on Friday)
- Combining integrated antenna functions with counter-terms from fragmentation functions
- Inheritance of the momentum fraction z in consecutive unresolved limits

• Integration of fragmentation X_4^0 and X_3^1 while retaining information on momentum fraction z in one

Applications of the new NNLO calculation with realistic photon isolation

- 1. <u>Precision Phenomenology</u>
 - Overcome mismatch between photon isolations in experiment and theory prediction
 - Needed for comparison to data at the percent level

2. <u>Alternative isolation parameters and isolation prescriptions</u>

- Raise $E_T^{\max} \rightarrow$ higher sensitivity on photon fragmentation
- Democratic clustering / no photon isolation

3. <u>Possibility to constrain the photon fragmentation functions from LHC data</u>

- Which observables provide a high sensitivity on photon fragmentation
- New observable z_{rec}

Photon Production Cross Section

 $d\hat{\sigma}^{\gamma+X}$ receives contributions from direct photons and fragmentation photons:

Power Counting for fragmentation functions: $D_{q \rightarrow}$

Composition of the cross section:

$$d\hat{\sigma}^{\gamma+X,\text{NLO}} = d\hat{\sigma}_{\gamma}^{\text{LO}}$$
$$d\hat{\sigma}^{\gamma+X,\text{NLO}} = d\hat{\sigma}_{\gamma}^{\text{NLO}} + d\hat{\sigma}_{\text{MF}}^{\text{NLO}} + \sum_{p} d\hat{\sigma}_{p}^{\text{LO}} \otimes D_{p \to \gamma}$$
$$d\hat{\sigma}^{\gamma+X,\text{NNLO}} = d\hat{\sigma}_{\gamma}^{\text{NNLO}} + d\hat{\sigma}_{\text{MF}}^{\text{NNLO}} + \sum_{p} d\hat{\sigma}_{p}^{\text{NLO}} \otimes I$$

$$D_{\gamma}(\mu_A, z) = \mathcal{O}(\alpha) \text{ and } D_{g \to \gamma}(\mu_A, z) = \mathcal{O}(\alpha)$$

Choice of fragmentation scale μ_A :

- Without isolation: $\mu_A = p_T^{\gamma}$
- In presence of isolation: $\mu_A = m_{\text{cone}}$ with $m_{\text{cone}}^2 = E_T^{\max} p_T^{\gamma} R^2 + \mathcal{O}(R^4)$ $\mu_F = \mu_R = p_T^{\gamma} \gg \mu_A$

Choice of fragmentation functions: BFG2 set L. Bourhis et al., 1998

ATLAS 13 TeV γ + jet study (ATLAS, 2018):

Fixed cone isolation: $R = 0.4, E_T^{\text{max}} = 0.0042 p_T^{\gamma} + 10 \,\text{GeV}$

ALICE 7 TeV isolated photon study (ALICE, 2019):

Fixed cone isolation: $R = 0.4, E_T^{\text{max}} = 2 \text{ GeV}$

Numerical Results: $d\sigma/dp_T'$

<u>Photon transverse momentum distribution:</u>

<u>Comparison of different isolations:</u>

• Cone based isolations (R = 0.4): • Default isolation: $E_T^{\rm max} \approx 10 \,{\rm GeV}$ • Hybrid isolation: default isolation + smooth cone ($R_{inner} = 0.1$) • Loose isolation: $E_T^{\rm max} \approx 50 \,{\rm GeV}$ Non-isolated cross section

 Cone-based isolations deviate at small transverse momenta • At large p_T^{γ} : photon well separated from hadronic energy

Numerical Results: $d\sigma/dp_T^{\prime}$

<u>Photon transverse momentum distribution:</u>

- Largest sensitivity on fragmentation processes at low p_T^γ
- For tightly isolated photon production: small fragmentation contribution
- Fragmentation increases with increasing E_T^{\max}

LO

NLO

NNLO

Numerical Results: $d\sigma/dp_{T}^{jet}$

- Cone based isolations (R = 0.4): • Default isolation: $E_T^{\rm max} \approx 10 \,{\rm GeV}$ • Hybrid isolation: default isolation + smooth cone ($R_{inner} = 0.1$) • Loose isolation: $E_T^{\rm max} \approx 50 \,{\rm GeV}$ Non-isolated cross section

- Cone-based isolations deviate at small and mid transverse
 - momenta
- Strong enhancement of the non-isolated cross section at high $p_T^{\rm jet}$
 - \rightarrow fragmentation photons accompanied by hadronic energy

<u>Comparison of different isolations:</u>

Jet transverse momentum distribution:

Numerical Results: $d\sigma/dp_{T}^{jet}$

Jet transverse momentum distribution:

- Isolated photon production: largest sensitivity on fragmentation processes at low $p_T^{
 m jet}$ • Non-isolated photon production: high- $p_T^{\rm jet}$ regime dominated by fragmentation photons
- Fragmentation increases with increasing E_T^{\max}

Numerical Results: $d\sigma/d |\cos\theta^*|$

$\cos \theta^*$ -distribution:

- θ^* polar scattering angle of the underlying 2 \rightarrow 2 scattering event: $\cos \theta^* \equiv \tanh(\Delta y/2)$
- increases towards larger $|\cos \theta^*|$
- Fragmentation increases with increasing E_T^{\max}

• Different dependence on $|\cos \theta^*|$ for direct and fragmentation contribution \rightarrow fragmentation contribution

New Observable: *z*_{rec}

Imbalance of photon and jet transverse momenta: $z_{\text{rec}} = \frac{p_T'}{p_T^{\text{jet}}}$

 \rightarrow yields differential sensitivity on the photon fragmentation functions

<u>Leading order for direct photons:</u>

Lowest order for fragmentation photons:

($z_{rec} = z$ does not hold beyond lowest order)

New Observable: *z*_{rec}

 $z_{\rm rec}$ -distribution:

- Sudakov shoulder at $z_{\rm rec} = 1 \rightarrow$ resummation needed for reliable results in this regime
- photons at lowest order
- Non-isolated photon production: fragmentation processes dominate for $z_{\rm rec} < 1$

• Isolated photon production: instability at $z_{rec} = z_{rec}^{min} \rightarrow minimal momentum fraction for fragmentation$

Conclusion

- First NNLO calculation of the photon production cross section with realistic photon isolation (crucial for comparison to data at this level of precision)
- Requires identification of final-state photons in unresolved limits
- Strongest sensitivity on photon isolation and photon fragmentation in the low p_T^{γ} and low $p_T^{
 m jet}$ -region
- Possibility to constrain the photon fragmentation functions with LHC data
 - Looser isolations needed (ideally no isolation at all!)
 - Differential sensitivity through z_{rec}

Thank you for your attention!

n functions with LHC data all!)

BACKUP

ATLAS 13 TeV γ + jet study (ATLAS, 2018):

$$p_T^{\gamma} > 125 \text{ GeV}, |y_{\gamma}| < 2.37 \text{ excl.} [1.37, 1.56]$$

 $p_T^{\text{jet}} > 100 \text{ GeV}, |y_{\text{jet}}| < 2.37$

ATLAS 13 TeV γ + jet study (ATLAS, 2018):

$$p_T^{\gamma} > 125 \text{ GeV}, |y_{\gamma}| < 2.37 \text{ excl.} [1.37, 1.56]$$

 $p_T^{\text{jet}} > 100 \text{ GeV}, |y_{\text{jet}}| < 2.37$

ATLAS 13 TeV γ + jet study (ATLAS, 2018):

$$p_T^{\gamma} > 125 \text{ GeV}, |y_{\gamma}| < 2.37 \text{ excl.} [1.37, 1.56]$$

 $p_T^{\text{jet}} > 100 \text{ GeV}, |y_{\text{jet}}| < 2.37$

ATLAS 13 TeV γ + jet study (ATLAS, 2018):

$$p_T^{\gamma} > 125 \text{ GeV}, |y_{\gamma}| < 2.37 \text{ excl.} [1.37, 1.56]$$

 $p_T^{\text{jet}} > 100 \text{ GeV}, |y_{\text{jet}}| < 2.37$

Numerical Results: $d\sigma/d |\cos\theta^*|$

- Cone based isolations (R = 0.4): • Default isolation: $E_T^{\rm max} \approx 10 \,{\rm GeV}$ • Hybrid isolation: default isolation + smooth cone ($R_{inner} = 0.1$) • Loose isolation: $E_T^{\rm max} \approx 50 \,{\rm GeV}$ Non-isolated cross section

$\cos \theta^*$ -distribution:

- $\cos \theta^* \equiv \tanh(\Delta y/2)$
- $\rightarrow \theta^*$ polar scattering angle of the underlying 2 \rightarrow 2 scattering event • Largest sensitivity on photon isolation in high $\cos \theta^*$ -region

<u>Comparison of different isolations:</u>

Integration of Fragmentation X_4^0

Necessary fragmentation antenna functions for photon production:

 $ilde{A}^0_{q,\gamma g q}$ subtracts $q \parallel g \parallel \gamma$ limit

 $ilde{E}^0_{q,q'ar{q}'\gamma}$ subtracts the $q'\parallel\gamma\parallelar{q}'$ limit

Initial-final antenna phase space: d $\Phi_{\!A} \propto \mathrm{d}\Phi_3(q(Q$

Additional δ -distribution in phase space integral fixes momentum fraction z:

$$\mathcal{X}_{4}^{0}(x,z) \propto \int \mathrm{d}^{d}k_{1} \,\mathrm{d}^{d}k_{2} \,\delta(k_{1}^{2}) \,\delta(k_{2}^{2}) \,\delta((p_{i}-q-k_{1}-k_{2})^{2}) \,\delta\left(z - \frac{s_{i3}}{s_{i1}+s_{i2}+s_{i3}}\right) X_{4}^{0}$$

For initial-final configuration: additional dependence on the initial-state momentum fraction x

$$(2^{2}) + p_{i} \rightarrow k_{1} + k_{2} + \gamma(k_{3}))$$

Integration of Fragmentation X_{4}^{0}

Strategy:

Unitarity \rightarrow replace δ -distributions by propagators

 $2\pi i\delta(k_1^2) =$

Phase space integral = cut through loop integral:

- Reduction of integrals using IBP-relations to 9 master integrals (MI)
- MI are calculated by solving differential equations in x and z
- Integration constants fixed by integrating over z and comparing to inclusive result

$$\frac{1}{k_1^2 + i\epsilon} - \frac{1}{k_1^2 - i\epsilon}$$

Integration of Fragmentation X_3^1

Antenna phase space in initial-final configuration:

 $d\Phi_A \propto d\Phi_2(q(Q^2) + p_i \rightarrow k$

No actual integration has to be performed:

$$\mathscr{X}_{3}^{1}(x,z) = \frac{1}{C(\epsilon)} \int \frac{\mathrm{d}\Phi_{2}}{\mathrm{d}z} \frac{Q^{2}}{2\pi} X_{3}^{1} = \frac{Q^{2}}{2} \frac{e^{\gamma_{E}\epsilon}}{\Gamma(1-\epsilon)} \left(Q^{2}\right)^{-\epsilon} \mathrm{J}^{\gamma}(x,z) X_{3}^{1}$$

However, X_3^1 has to be cast into a form suitable for an expansion in distributions in 1 - x and z

$$k_1 + \gamma(k_2)$$
; $z = \frac{s_{i2}}{s_{i2} + s_{i1}}$

Integration of Fragmentation X_3^1

 X_3^1 can be expressed in terms of Box and Bubble MIs:

$$X_{3}^{1}(x,z) = \sum_{i=1}^{3} f_{i}(x,z) \operatorname{Box}_{i}(x,z) + \sum_{k=1}^{4} F_{i}(x,z) = \sum_{i=1}^{3} f_{i}(x,z) \operatorname{Box}_{i}(x,z) + \sum_{k=1}^{4} F_{i}(x,z) = \sum_{i=1}^{3} f_{i}(x,z) \operatorname{Box}_{i}(x,z) + \sum_{k=1}^{4} F_{i}(x,z) + \sum_{k$$

Box-integrals: real-valued and well defined in Euclidean region only

 \rightarrow analytic continuation needed

Branch cuts ($a_{i,j}(x,z) = 1, \pm \infty$) within the physical region \rightarrow distinguish different regions in the *x*-*z*-plane

 $g_k(x,z) \operatorname{Bub}_k(x,z) + h(x,z)$

 $-\epsilon; 1-\epsilon; a_{i,j}(x,z))$

Inheritance of z

In consecutive unresolved limits a proper inheritance of z is required:

Subtraction Term

Subtraction term for subleading color matrix element $\tilde{\tilde{B}}_{3}^{\gamma,0}(\hat{q},\hat{g},g_{1},g_{2},q,\gamma)$

$$\begin{split} \mathrm{d}\sigma^{S,a}_{\mathrm{QCD}} &= +A^0_{3,q}(\hat{q},g_1,q)\,\tilde{B}^{G,0}_2(\overline{\hat{q}},\hat{g},g_2,\tilde{q}_{g_1},\gamma)\,J^{(3)}_1(\{\tilde{p}\}_3) \\ \mathrm{d}\sigma^{S,a}_{\gamma} &= +A^0_{3,q}(\hat{q},\gamma^{\mathrm{id.}},q)\,\tilde{\tilde{B}}^0_3(\overline{\hat{q}},\hat{g},g_1,g_2,\tilde{q}_{\gamma})\,J^{(3)}_1(\{\tilde{p}\}_3;z) \\ \mathrm{d}\sigma^{S,b}_{\gamma} &= +\tilde{A}^0_4(\hat{q},g_1,\gamma^{\mathrm{id.}},q)\,\tilde{B}^0_2(\overline{\hat{q}},\hat{g},g_2,\tilde{q}_{\gamma g_1})\,J^{(2)}_1(\{\tilde{p}\}_2;z) \\ &\quad -A^0_{3,q}(\hat{q},g_1,q)\,A^0_{3,q}(\overline{\hat{q}},\gamma^{\mathrm{id.}},\tilde{q}_{g_1})\,\tilde{B}^0_2(\overline{\hat{q}},\hat{g},g_2,(\gamma\tilde{q}_{g_1}))\,J^{(2)}_1(\{\tilde{p}\}_2;z) \\ &\quad -A^0_{3,q}(\hat{q},\gamma^{\mathrm{id.}},q)\,A^0_{3,q}(\overline{\hat{q}},g_1,\tilde{q}_{\gamma})\,\tilde{B}^0_2(\overline{\hat{q}},\hat{g},g_2,(\gamma\tilde{q}_{g_1}))\,J^{(2)}_1(\{\tilde{p}\}_2;z) \\ &\quad -A^0_{3,q}(\hat{q},\gamma^{\mathrm{id.}},q)\,A^0_{3,q}(\overline{\hat{q}},g_1,\tilde{q}_{\gamma})\,\tilde{B}^0_2(\overline{\hat{q}},\hat{g},g_2,(g_1\tilde{q}_{\gamma}))\,J^{(2)}_1(\{\tilde{p}\}_2;z) \\ &\quad -A^0_{3,q}(\hat{q},\gamma^{\mathrm{id.}},q)\,A^0_{3,q}(\overline{\hat{q}},g_1,\tilde{q}_{\gamma})\,\tilde{B}^0_2(\overline{\hat{q}},\hat{g},g_2,(g_1\tilde{q}_{\gamma}))\,J^{(2)}_1(\{\tilde{p}\}_2;z) \\ &\quad -A^0_{3,q}(\hat{q},\gamma^{\mathrm{id.}},q)\,A^0_{3,q}(\overline{\hat{q}},g_1,\tilde{q}_{\gamma})\,\tilde{B}^0_2(\overline{\hat{q}},\hat{g},g_2,(g_1\tilde{q}_{\gamma}))\,J^{(2)}_1(\{\tilde{p}\}_2;z) \\ &\quad -A^0_{3,q}(\hat{q},\gamma^{\mathrm{id.}},q)\,A^0_{3,q}(\overline{\hat{q}},g_1,\tilde{q}_{\gamma})\,\tilde{B}^0_2(\overline{\hat{q}},\hat{g},g_2,(g_1\tilde{q}_{\gamma}))\,J^{(2)}_1(\{\tilde{p}\}_3;z) \\ &\quad -A^0_{3,q}(\hat{q},\gamma^{\mathrm{id.}},q)\,A^0_{3,q}(\overline{\hat{q}},g_1,\tilde{q}_{\gamma})\,\tilde{B}^0_2(\overline{\hat{q}},g_1,g_2,(g_1\tilde{q}_{\gamma}))\,J^{(2)}_1(\{\tilde{p}\}_3;z) \\ &\quad -A^0_{3,q}(\hat{q},\gamma^{\mathrm{id.}},q)\,A^0_{3,q}(\overline{\hat{q}},g_1,g_1,\tilde{q}_{\gamma})\,\tilde{B}^0_2(\overline{\hat{q}},g_1,g_2,(g_1\tilde{q}_{\gamma}))\,J^{(2)}_1(\{\tilde{p}\}_3;z) \\ &\quad -A^0_{3,q}(\hat{q},\gamma^{\mathrm{id.}},q)\,A^0_{3,q}(\overline{\hat{q}},g_1,g_1,\tilde{q}_{\gamma})\,\tilde{B}^0_2(\overline{\hat{q}},g_1,g_2,(g_1\tilde{q}_{\gamma}))\,J^{(2)}_1(\{\tilde{p}\}_3;g_1,g_2,(g_1\tilde{q}_{\gamma}))\,J^{(2)}_1(\{\tilde{p}\}_3;g_1,g_2,(g_1\tilde{q}_{\gamma}))\,J^{(2)}_1(\{\tilde{p}\}_3;g_1,g_2,(g_1\tilde{q}_{\gamma}))\,J^{(2)}_1(\{\tilde{p}\}_3;g_1,g_2,(g_1\tilde{q}_{\gamma}))\,J^{(2)}_1(\{\tilde{p}\}_3;g_2,(g_1\tilde{q}_{\gamma}))\,J^{(2)}_1(\{\tilde{p}\}_3;g_1,g_2,(g_1\tilde{q}_{\gamma}))\,J^{(2)}_1(\{g_1,g_1,g_2,(g_1\tilde{q}_{\gamma}))\,J^{(2)}_1(\{g_1,g_2,(g_1,g_1,g_2,(g_1,g_1,g_2))\,J^{(2)}_1(\{g_1,g_2,(g_1,g_1,g_2,(g_1,g_1,g_2))\,J^{(2)}_1(\{g_1,g_1,g_2,(g_1,g_1,g_2))\,J^{(2)}_1(\{g_1,g_2,(g_1,g_1,g_2))\,J^{(2)}_1(\{g_1,g_2,(g_1,g_1,g_2,(g_1,g_2))\,J^{(2)}_1(\{g_1,g_2,(g_1,g_1,g_2))\,J^{(2)}_1(\{g_1,$$

- . $d\sigma_{\rm QCD}^{S,a}$ and $d\sigma_{\gamma}^{S,a}$ subtract the single unresolved limits of the matrix element
- $d\sigma_{\gamma}^{S,b}$ subtract double unresolved limits of the matrix element

Full subtraction term: $d\sigma^{S} = d\sigma^{S,a}_{OCD} + d\sigma^{S,a}_{\gamma} + d\sigma^{S,b}_{OCD}$

$$_{D} + \mathrm{d}\sigma_{\gamma}^{S,b}$$