Vector and axial-vector coefficient functions for DVCS at NNLO

A. N. Manashov

Hamburg University

Based on 2007.06348, 2106.01437 V. Braun, A.M., S. Moch, J. Schoenleber

Loops and Legs, Ettal, 29 April 2022
Deeply Virtual Compton Scattering, Müller 94, Ji 96, Radyushkin 96

$\gamma^* N \rightarrow \gamma N'$

Goeke et al. 01, Diehl 03, Belitsky, Radyushkin 05, Müller 14

The DVCS amplitude

$$A_{\mu\nu}(q, q', p) = i \int d^4x \, e^{-iqx} \langle p' | T\{j^\text{em}_\mu(x) j^\text{em}_\nu(0)\} | p \rangle.$$

The leading twist approximation

$$A_{\mu\nu} = -g^\perp_{\mu\nu} V_+ + \epsilon^\perp_{\mu\nu} V_- + \ldots$$
(Axial) vector flavor nonsinglet amplitude

\[V_{\pm}(\xi, t, Q^2) = \sum_q e_q^2 \int_{-1}^{1} \frac{dx}{\xi} C_{\pm}(x/\xi, Q^2/\mu^2) F_{q}^{\pm}(x, \xi, t, \mu). \]

\(C_{\pm} \) are the coefficient functions, \(F_{q}^{\pm} \) - the generalized parton distributions (GPD)

\[\xi = -(\Delta, q)/2(P, q), \quad t = \Delta^2, \quad \Delta = p' - p, \quad P = (p + p')/2, \]

\[\langle p' | [\bar{q}(z_1 n) \Gamma_{\pm} q(z_2 n)] | p \rangle = 2P_+ \int_{-1}^{1} dx \, e^{-iP+\xi(z_1+z_2)+iP+x(z_1-z_2)} F_{q}^{\pm}(x, \xi), \]

where \(\Gamma_+ = \gamma_+ = \gamma \cdot n, \Gamma_- = \gamma_+ \gamma_5, \, n^2 = 0. \)
LO coefficients functions

\[C_{\pm}^{(0)}(z) = \frac{1}{1 - z} \mp \frac{1}{1 + z}, \]

NLO functions \textit{Ji, Osborne, 98, Belitsky, Müller, 98}

\[C_{\pm}^{(1)}(x) = \frac{C_F}{1 - z} \left(-9 + \ln^2(1 - z) - (2 \pm 1) \frac{1 - z}{1 + z} \ln(1 - z) \right) \]
DVCS vs DIS

DIS ↔ DVCS

Amplitudes of both processes are derived from the OPE of two electromagnetic currents:

\[
T\{j_{\mu}^{em}(x)j_{\nu}^{em}(0)\} = \sum_{N,k} C_{Nk}(x) \partial^k \mathcal{O}_N(0),
\]

DIS: Only the operators with \(k = 0 \) are relevant, \(C_{N0} \) – moments of the coefficient function.

DVCS: All operators contribute to the amplitude. One need to know \(C_{Nk} \) for all \(k \).

In a conformal theory \(C_{Nk} \) for \(k > 0 \) are completely determined by \(C_{N0} \)

\[
T\{j_{\mu}^{em}(x)j_{\nu}^{em}(0)\} = \sum_N C_N(x, \partial) \mathcal{O}_N(0),
\]

Ferrara, Gatto, Grillo, Parisi, 1970

DIS: the coefficient functions and anomalous dimensions are known at NNLO, **Moch, Vermaseren, Vogt, 2004**
QCD at the critical point, $\beta(a_*) = -2a_*(\epsilon + \beta_0a_* + \cdots) = 0$, in $d = 4 - 2\epsilon$ dimensions

Conformal OPE for two conserved vector currents:

$$
T \left\{ j^{\mu}(x)j^{\nu}(0) \right\} = \sum_N \frac{\mu^{\gamma_N}}{(-x^2)^{\tau_N}} \int_0^1 du (u\bar{u})^{j_N-1} \left\{ a_N \left(g^{\mu\nu} - \frac{2x^\mu x^\nu}{x^2} \right) + b_N g^{\mu\nu} + \ldots \right\} O_N^{(x)}(xu),
$$

where

$$
O_N^{(x)}(y) = x_{\mu_1} \ldots x_{\mu_N} O_N^{\mu_1 \ldots \mu_N}(y),
$$

$$
\Delta_N = d - 2 + N + \gamma_N \quad \text{(scaling dimension)}
$$

$$
\jmath_N = \frac{1}{2}(\Delta_N + N) \quad \text{(conformal spin)}
$$

$$
\tau_N = d - 1 - t_N/2 \quad t_N = \Delta_N - N \quad \text{(twist)}
$$

The coefficients a_N and b_N are related to the DIS coefficient functions $C_2(N)$ and $C_L(N)$.
The coefficient function for DVCS process depends on x/ξ so we can put $\xi = 1$

$$V(\xi = 1) = \int_{-1}^{1} dx \; C(x) \; F(x, \xi = 1). \quad \text{(definition)}$$

$$V(\xi = 1) = \sum_{N, \text{even}} f_N \; C_1(N) \frac{\Gamma(d/2 - 1) \Gamma(2j_N)}{\Gamma(j_N) \Gamma(j_N + d/2 - 1)} \quad \text{(OPE result, Müller, 95)}$$

and $P_N^+ f_N = \langle p' | \mathcal{O}_N | p \rangle$

$$\mathcal{O}_N \rightarrow P_N(x) \quad F(x) = \sum_{N} f_N P_N(x) \quad \text{(at LO} \; P_N(x) = (1 - x^2)C_{N}^{3/2}(x))$$

$$\int_{-1}^{1} dx \; C(x) \; P_N(x) = C_1(N) \times \frac{\Gamma(d/2 - 1) \Gamma(2j_N)}{\Gamma(j_N) \Gamma(j_N + d/2 - 1)}$$

all factors in the r.h.s. of this equation are known.
What is necessary to do

- Construct functions $P_N(x)$, $N = 2, 4, \cdots$

- Restore the coefficient function $C(x)$ from its (P_N) moments
Symmetry generators

Braun, A.M., Moch, Strohmaier, 1601.05937, 1703.09532

Symmetry generators for the light-ray operator

\[\mathcal{O}(z_1, z_2) = [\bar{q}(z_1 n) \gamma_+ q(z_2 n)] = \sum_{Nk} \Psi_{Nk}(z_1, z_2) \partial_+^k \mathcal{O}_N \]

\[S_- = -\partial z_1 - \partial z_2 \]

\[S_0 = z_1 \partial z_1 + z_2 \partial z_2 + 2 + \left(-\epsilon + \frac{1}{2} H(a_*) \right) \]

\[S_+ = z_1^2 \partial z_1 + z_2^2 \partial z_2 + 2(z_1 + z_2) + (z_1 + z_2) \left(-\epsilon + \frac{1}{2} H(a_*) \right) + (z_1 - z_2) \Delta(a_*) \]

Quantum corrections

RG equation at the critical point

\[\left(\mu \partial \mu + H(a_*) \right) \mathcal{O}(z_1, z_2) = 0 \]

\[[S_\alpha, H(a_*)] = 0 \]

Changing renormalization scheme:

\[\mathcal{O} \mapsto \mathcal{O}' = U \mathcal{O} \]

\[H \mapsto H' = U H U^{-1} \]

\[\Delta \mapsto \Delta'(= 0?) \]
Conformal scheme

In a scheme with $\Delta' = 0$ the generator S_+ depends only H':

$$H'(z_1 - z_2)^{N-1} = \gamma_N(z_1 - z_2)^{N-1}$$

$$\Psi_{N,k}(z_1, z_2) = (S_+(H'))^k(z_1 - z_2)^{N-1} = (S_+(H' \mapsto \gamma_N))^k(z_1 - z_2)^{N-1}$$

$$P_N(x) = (1 - x^2)^{\lambda_N - 1/2}C^{(\lambda_N)}_{N-1}(x), \quad \lambda_N = \frac{3}{2} - \epsilon + \frac{1}{2} \gamma_N(a_*)$$

C^λ_N – Gegenbauer polynomials

U: MS scheme \mapsto "conformal scheme": is known with two loop accuracy
How to restore the coefficient function?

CF in the conformal scheme $C'(x) = \int dx' C(x') U^{-1}(x', x)$

\[
\int dx C''(x) P_N(x) = C_{1}^{\text{DIS}}(N)/U_N \times \frac{\Gamma(d/2 - 1)\Gamma(2j_N)}{\Gamma(j_N)\Gamma(j_N + d/2 - 1)} = 1 + O(a)
\]

Ansatz for $C'(x)$:

\[
C'(x) = \int dx' C_0(x') K(x', x),
\]

where K is $SL(2)$ invariant operator,

\[
KP_N = K(N)P_N,
\]

$C_0(x)$ is the leading order coefficient function, $C_0(x) = 1/(1 - x) - 1/(1 + x)$.

\[
K(N) \times B(\lambda_N + 1/2, \lambda_N - 1/2) = C_{1}^{\text{DIS}}(N)/U_N \times \frac{\Gamma(d/2 - 1)\Gamma(2j_N)}{\Gamma(j_N)\Gamma(j_N + d/2 - 1)}
\]

\[
K(N) = 1 + aK_1(N) + a^2K_2(N) + \ldots \quad K(N) \simeq K(-N - 1) \text{ (reciprocity)}
\]

K is completely determined by its eigenvalues!
\[K(N) = 1 \]

\[+ a_s 2 C_F \left\{ \left(\frac{\tilde{\gamma}_N^{(1)}}{2} + \frac{3}{2} \right)^2 + \frac{5}{2} \frac{1}{N(N + 1)} - \frac{9}{2} \right\} \]

\[+ a_s^2 \frac{C_F}{N_c} \left[16 S_1 (2 S_1 - 2 - S_3) - 12 S_{-2}^2 - 8 S_{-4} + 16 S_1 S_3 + 4 (2 S_{1,3} - S_4) - \frac{20 S_3}{N(N + 1)} \right] \]

\[+ \frac{32}{N(N + 1)} \left(S_{-3} - 2 S_{1, -2} \right) + \left(\frac{44}{N^2(N + 1)^2} + \frac{24}{(N - 2)(N + 3)} + \frac{52}{N(N + 1)} + 8 \right) S_{-2} \]

\[+ \frac{32}{3} S_1^2 + \left(-\frac{8}{N^3(N + 1)^3} - \frac{8}{N^2(N + 1)^2} - \frac{86}{3 N(N + 1)} + \frac{52}{9} \right) S_1 \]

\[+ \frac{20}{3 N^2(N + 1)^2} - \frac{59}{9 N(N + 1)} + \frac{18}{(N - 2)(N + 3)} - \frac{35}{4} + \left(\frac{50}{N(N + 1)} + 54 \right) \zeta_3 \]

\[- \frac{\pi^4}{9} - 36 \xi_3 S_1 - \frac{2 \pi^2 S_1}{N(N + 1)} + \pi^2 \left(\frac{4}{3 N^2(N + 1)^2} + \frac{2}{3 N(N + 1)} - \frac{10}{9} \right) \right) + \ldots \]
The invariant kernel in the coordinate representation has the form:

\[
[Kf](z_1, z_2) = \int_0^1 d\alpha \int_0^{\bar{\alpha}} d\beta \; k(\tau) f(z_{12}^\alpha, z_{21}^\beta),
\]

\[z_{12}^\alpha = z_1(1 - \alpha) + z_2 \alpha \text{ and } \tau = \alpha \beta / \bar{\alpha} \bar{\beta}\]

The eigenvalues

\[K(N) = \int_0^1 d\alpha \int_0^{\bar{\alpha}} d\beta \; k(\tau)(1 - \alpha - \beta)^{N-1}\]

Some examples

\[1 \mapsto \frac{1}{N(N+1)}, \quad -\ln(\bar{\tau}) \mapsto \frac{1}{N^2(N+1)^2}, \quad \frac{1}{2} \operatorname{Li}_2(\tau) \mapsto \frac{(-1)^N(S_{-2}(N) + \zeta_2/2)}{N(N+1)}\]

\[K(N) \mapsto k(\tau)\]
Coordinate representation \leftrightarrow momentum fraction \leftrightarrow CF

$$C'(x) = \int dx' C^{(0)}(x') K(x', x) = \int_0^1 d\alpha \int_0^{\tilde{\alpha}} d\beta \left(\frac{\kappa(\tau)}{\tilde{\alpha}(1 - x) + \beta(1 + x)} - (x \leftrightarrow -x) \right).$$

(*HyperInt* package by E. Panzer)
Two loop CF

CF at the critical point

\[C^{(2)}_*(x) = \beta_0 C_F C^{(2\beta)}_*(x) + C_F^2 C^{(2P)}_*(x) + \frac{C_F}{N_c} C^{(2A)}_*(x). \]

\[C^{(2P)}_*(x) = \frac{1}{\omega} \left(6H_{0000} - H_{1000} - 2H_{200} - H_{1100} - H_{120} - H_{210} + H_{1110} \right) \]

\[- \frac{1}{\bar{\omega}} H_{000} - \left(\frac{4}{\omega} - \frac{2}{\bar{\omega}} \right) H_{100} + \frac{1}{\bar{\omega}} H_{20} + \frac{2}{\omega} H_{110} \]

\[- \left(\frac{13}{2\bar{\omega}} + \frac{19}{3\omega} \right) H_{00} + \left(\frac{3}{\bar{\omega}} + \frac{11}{3\omega} \right) H_{10} + \frac{1}{\omega} \zeta_2 \left(H_{11} - H_2 - H_{10} - 4H_{00} \right) \]

\[+ \left(\frac{1}{\bar{\omega}} \left(\frac{223}{12} + 5\zeta_2 - 2\zeta_3 \right) + \frac{1}{\omega} \left(3\zeta_2 + 16\zeta_3 - \frac{32}{9} \right) \right) H_0 \]

\[+ \frac{1}{48\omega} \left(701 + 128\zeta_2 + 936\zeta_3 + 72\zeta_2^2 \right) - (\omega \leftrightarrow \bar{\omega}) \]

\[\omega = \frac{1-x}{2} \text{ and } H_n = H_n(\omega) \text{ HPL functions} \]
Two loop CF

\[
C^{(2)}(x) = C_\star^{(2)}(x) + \beta_0 C^{(1,1)}(x),
\]

\[
C^{(1,1)}(x) = -C_F \frac{1}{2\omega} \left\{ 18 - \frac{\pi^2}{4} - \left(5 - \frac{4}{\bar{\omega}} + \frac{\pi^2}{6} \right) \ln \omega - \frac{3}{2} \frac{\omega}{\bar{\omega}} \ln^2 \omega + \frac{1}{3} \ln^3 \omega \right\} - (\omega \leftrightarrow \bar{\omega})
\]

\(C^{(1)}\) comes from one loop diagrams.

The leading double-logarithmic asymptotic of the CF at \(\omega \to 0\):

\[
C(x, a_s) \simeq \frac{1}{2\omega} \left(1 + C_F a_s \ln^2 \omega + \frac{1}{2} (C_F a_s)^2 \ln^4 \omega + \mathcal{O}(a_s^3) \right),
\]

suggesting that the series exponentiates. (disagrees with Altinoluk, Pire, Szymanowski and Wallon, 2012)

Axial-vector CF:

agrees with Jing Gao, Tobias Huber, Yao Ji, Yu-Ming Wang, Phys.Rev.Lett. 128 (2022)
B. Melic, B. Nizic, K. Passek 2002 (\(\beta_0\) contribution)
Figure: The DVCS CF $C(x/\xi)$ at $\mu = Q = 2$ GeV in the ERBL region $x < \xi$. The LO (tree-level), NLO (one-loop) and NNLO (two-loop) CFs are shown by the black solid, blue dashed and blue dash-dotted curves on the left panel, respectively. The right panel shows the ratios NLO/LO (dashed), NNLO/LO (dash-dotted) and NNLO/NLO (solid).
Figure: The DVCS CF $C(x/\xi)$ at $\mu = Q = 2$ GeV analytically continued into the DGLAP region $x > \xi$: real part on the left and imaginary part on the right panel. The LO (tree-level), NLO (one-loop) and NNLO (two-loop) CFs are shown by the black solid, blue dashed and blue dash-dotted curves. Note, that imaginary part of the LO CF contains a local term $\sim \delta(x - \xi)$ (not shown).
Figure: Higher-order QCD corrections to the Compton form factor $\mathcal{H}(\xi)$. The ratios of the Compton form factor calculated to the NNLO and NLO accuracy with respect to the tree-level are shown for the absolute value and the phase of $\mathcal{H}(\xi) = Re^{i\Phi}$ on the left and the right panels, respectively.
Conclusions

- Using an approach based on conformal symmetry we have calculated two loop DVCS CFs in MS scheme for the flavor-nonsinglet vector and axial-vector operators.

- Numerical estimates show that the two loop corrections to the Compton Form Factors are relatively large.