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We need just a program 
that describes the data, 

don’t we?
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Introduction

Picture: ATLAS simulation

The LHC is running and we will have to deal with the data soon.

0

3750

7500

11250

15000

LEP 1 LEP 2 HERA Tevetron LHC

90 180 820
1960

14000
Centre of Mass  Energy in GeV

MC@2TeV MC@14TeVExtrapolation

LHC = QCD + ε
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Hadron-hadron Collision
In hardon-hadron collision the picture is more complicated. 

Resolution scale: 400 GeV
Decreasing the resolution scale 
more and more partons are 
visible and less absorbed by the 
incoming hadrons and the final 
state jets. 

Important observation: The 
total cross section is independent 
of the resolution of the 
measurement (or detector).  

We have to also consider the evolution of the final state jets.

Does perturbative QCD 
support this nice intuitive 
picture?
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Hadron-hadron Collision
In hardon-hadron collision the picture is more complicated. 

Decreasing the resolution scale 
more and more partons are 
visible and less absorbed by the 
incoming hadrons and the final 
state jets. 

Important observation: The 
total cross section is independent 
of the resolution of the 
measurement (or detector).  

Resolution scale: 100 GeV

We have to also consider the evolution of the final state jets.

Does perturbative QCD 
support this nice intuitive 
picture?
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Approx. of the Density Operator
The m+1 parton physical state is represented by density operator in the quantum space 

and by the statistical state in the statistical space. 

ρ
�
{p, f}m+1

�
⇔

��ρ({p, f}m+1)
�

This is based on the m+1 parton matrix elements. They are very complicated (especially 

the loop matrix elements). We try to approximate them by using their soft collinear 

factorization properties. For this we introduce operators in the statistical space:

Collinear and soft-
collinear contribution

Wide angle soft 
contributions

This parameter represents  
the hardness of the 
splitting. We will call it 
shower time.

��ρ({p̂, f̂}m+1)
�
≈

� ∞

tm

dt
�
HC(t)� �� � +

� �� �
HS(t)

���ρ({p, f}m)
�

HI(t) = HC(t) +HS(t)

The total splitting operator is 

Monday, May 17, 2010



Collinear Singularities
The QCD matrix elements have universal factorization property when two external partons 
become collinear

HC ∼

�

l

tl ⊗ t†l Vij(si, sj)⊗ V †
ij(s

�
i, s

�
j)⇔

αs

2π

�

l

1
pi · pj

Pfl,fi(z) + . . .

i�j−−−−→

...
..

1

m + 1

i
j

M
m

+
1

⊗

...
..

1

m + 1

M
m l

2 2

i

j

Vij

2

Altarelli-Parisi splitting kernels
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Soft Singularities
The QCD matrix elements have universal factorization property when an external 
gluon becomes soft

HS ∼ −

�

l,k
l �=k

p̂l · ε(s) p̂k · ε(s�)
p̂l · p̂m+1 p̂k · p̂m+1

tl ⊗ t†k

pr→0−−−−−→

l

k

�

l,kM
m

+
1

M
m

+
1

M
m

M
m

Soft gluon connects everywhere and the color structure is not diagonal; quantum 
interferences in the color space.
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Resolvable Splittings
Let us consider a physical state at shower time t,         . This means every parton is 
resolvable at this time (this scale). Now, we apply the splitting operator:

��ρ(t)
�

           operator changes

- the number of the partons, m ➝ m+1
- the color and spin structure
-flavors and momenta

HI(t)

This is good approximation if we allow 
only softer radiations than t, τ > t

Now, let us consider a measurement with a resolution scale which correspond to 
shower time t’

Resolved radiations Unresolved radiations
This is a singular contribution           operator

-changes only the color structure
-

VI(t)

�
1
��VI(t) =

�
1
��HI(t) What can we do about it?

��ρR
∞

�
=

� ∞

t
dτ HI(τ)

��ρ(t)
�

��ρR
∞

�
≈

� t�

t
dτ HI(τ)

��ρ(t)
�

� �� �
+

� ∞

t�
dτ V(�)

I (τ)
��ρ(t)

�

� �� �
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Virtual Contributions
There is another type of the unresolvable radiation, the virtual (loop graph) contributions. 
We have universal factorization properties for the loop graphs. E.g.: in the soft limit, when 
the loop momenta become soft we have

m m This is again a singular 
operator only in the color space.

We can use this factorization to dress up partonic states with virtual radiation. After careful 
analysis one can found that the virtual contribution can be approximated by 

��ρV
∞

�
≈ −

� ∞

t
dτ V(�)

I (τ)
��ρ(t)

�

i

j

...
..

1

...
..

M
(1

)
m

l → 0

i

j

...
..

1

...
..

M
m

⊗

i

j×

×�
ddl

(2π)d

Same structure like in the 
real unresolved case but 
here with opposite sign.
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Physical States
Combining the real and virtual contribution we have got

��ρR
∞

�
+

��ρV
∞

�
=

� t�

t
dτ [HI(τ)− VI(τ)]

��ρ(t)
�

This operator dresses up the physical state with one real and virtual radiations that is 
softer or more collinear than the hard state.  Thus the emissions are ordered. Now we can 

use this to build  up physical states by considering all the possible way to go from t to t’.
��ρ(t�)

�
=

��ρ(t)
�

+
� t�

t
dτ [HI(τ)− VI(τ)]

��ρ(t)
�

+
� t�

t
dτ2 [HI(τ2)− VI(τ2)]

� τ2

t
dτ1 [HI(τ1)− VI(τ1)]

��ρ(t)
�

+ · · ·

= T exp

�� t�

t
dτ [HI(τ)− VI(τ)]

�

� �� �

��ρ(t)
�

U(t�, t) shower evolution operator

��ρ(t�)
�

= U(t�, t)
��ρ(t)

�
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Multiple Interaction
µ = 100 GeVµ = 100 GeV

Let us see how it looks at hadron collider

In hadron-hadron collision the parton distribution 

function also absorbs the contribution of the multiple 
interactions, correlations and rescattering.

Our strategy:

- Identify factorazible singular contributions 
systematically.

- Sum up the strongly ordered radiations.

- Minimize the number of the ad-hoc assumptions 
and tuning parameters.

Now, one can try to define the evolution operator in the following form

Everything elseSingle radiations

U(t, t�) = T exp






� t�

t
dτ

�
HI(τ)− VI(τ) +

�

β=MI,C,RC

�
Hβ(τ)− Vβ(τ)

��
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Multiple Interaction

µ = 125 GeVµ = 125 GeV

Let us see how it looks at hadron collider

In hadron-hadron collision the parton distribution 

function also absorbs the contribution of the multiple 
interactions, correlations and rescattering.

Our strategy:

- Identify factorazible singular contributions 
systematically.

- Sum up the strongly ordered radiations.

- Minimize the number of the ad-hoc assumptions 
and tuning parameters.

Now, one can try to define the evolution operator in the following form

Everything elseSingle radiations

U(t, t�) = T exp






� t�

t
dτ

�
HI(τ)− VI(τ) +

�

β=MI,C,RC

�
Hβ(τ)− Vβ(τ)

��
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Multiple Interaction
µ = 50 GeVµ = 50 GeV

Let us see how it looks at hadron collider

In hadron-hadron collision the parton distribution 

function also absorbs the contribution of the multiple 
interactions, correlations and rescattering.

Our strategy:

- Identify factorazible singular contributions 
systematically.

- Sum up the strongly ordered radiations.

- Minimize the number of the ad-hoc assumptions 
and tuning parameters.

Now, one can try to define the evolution operator in the following form

Everything elseSingle radiations

U(t, t�) = T exp






� t�

t
dτ

�
HI(τ)− VI(τ) +

�

β=MI,C,RC

�
Hβ(τ)− Vβ(τ)

��
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Multiple Interaction
µ = 25 GeVµ = 25 GeV

Let us see how it looks at hadron collider

In hadron-hadron collision the parton distribution 

function also absorbs the contribution of the multiple 
interactions, correlations and rescattering.

Our strategy:

- Identify factorazible singular contributions 
systematically.

- Sum up the strongly ordered radiations.

- Minimize the number of the ad-hoc assumptions 
and tuning parameters.

Now, one can try to define the evolution operator in the following form

Everything elseSingle radiations

U(t, t�) = T exp






� t�

t
dτ

�
HI(τ)− VI(τ) +

�

β=MI,C,RC

�
Hβ(τ)− Vβ(τ)

��
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Multiple Interaction

µ = 15GeV

Correlation

µ = 15GeV

Correlation

Let us see how it looks at hadron collider

In hadron-hadron collision the parton distribution 

function also absorbs the contribution of the multiple 
interactions, correlations and rescattering.

Our strategy:

- Identify factorazible singular contributions 
systematically.

- Sum up the strongly ordered radiations.

- Minimize the number of the ad-hoc assumptions 
and tuning parameters.

Now, one can try to define the evolution operator in the following form

Everything elseSingle radiations

U(t, t�) = T exp






� t�

t
dτ

�
HI(τ)− VI(τ) +

�

β=MI,C,RC

�
Hβ(τ)− Vβ(τ)

��
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Multiple Interaction

µ = 10GeV

Rescattering

µ = 10GeV

Rescattering

Let us see how it looks at hadron collider

In hadron-hadron collision the parton distribution 

function also absorbs the contribution of the multiple 
interactions, correlations and rescattering.

Our strategy:

- Identify factorazible singular contributions 
systematically.

- Sum up the strongly ordered radiations.

- Minimize the number of the ad-hoc assumptions 
and tuning parameters.

Now, one can try to define the evolution operator in the following form

Everything elseSingle radiations

U(t, t�) = T exp






� t�

t
dτ

�
HI(τ)− VI(τ) +

�

β=MI,C,RC

�
Hβ(τ)− Vβ(τ)

��
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Multiple Interaction
t = ∞

t = 0

•

•

•

•
HMI(t) =

�αs

2π

�2
O(et)

Actually the real scaling is weaker due 
to the power suppression:

et−t0 ∼
Λ2
QCD

p2⊥

➭ This is important in the very small pT regions and negligible in the large pT regions but it is hard 
to tell how import in the intermediate region. The cumulative effect could be sizable. 

➭ Important to note that this is an NLO contributions. Thus, compared to the standard shower 
this is also suppressed by an extra power of αs.

➭ Requires multi parton PDF (mPDF).

➭ Implemented in HERWIG & PYTHIA. (No “proper” mPDF implemented.)
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➭ Important to note that this is an NLO contributions. Thus, compared to the standard shower 
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Standard Initial State Radiations
t = ∞

t = 0

a1 a2 a2 a1

HI(t) =
αs

2π
O(t2)

+
αs

2π

1

N2
c

O(t)

+
�αs

2π

�2
O(t3)

➭ This is the standard shower evolution. Adds LL and NLL contributions. Not power suppressed. 

➭ Since the MPI kernel is NLO contribution we should consider the standard shower at NLO level 
as well. (Just to be systematic.) 

➭ If we consider NLO terms then we need  subleading color contributions, too.

➭ Adds correction to the primary interaction as well as to the MPI contributions.

➭ It is implemented only at LO level in HERWIG & PYTHIA.

αs ≈
1

N2
c

≈ 0.1
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Standard Initial State Radiations
t = ∞

t = 0

a1 a2 a2 a1

HI(t) =
αs

2π
O(t2)

+
αs

2π

1

N2
c

O(t)

+
�αs

2π

�2
O(t3)

➭ This is the standard shower evolution. Adds LL and NLL contributions. Not power suppressed. 

➭ Since the MPI kernel is NLO contribution we should consider the standard shower at NLO level 
as well. (Just to be systematic.) 

➭ If we consider NLO terms then we need  subleading color contributions, too.

➭ Adds correction to the primary interaction as well as to the MPI contributions.

➭ It is implemented only at LO level in HERWIG & PYTHIA.

αs ≈
1

N2
c

≈ 0.1
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Correlations
t = ∞

t = 0

a1 a2 a2 a1

HC(t) =
αs

2π
O(t2)

+
αs

2π

1

N2
c

O(t)

+
�αs

2π

�2
O(t3)

➭ This operator can be applied on states with at least two chains. (They are already power 
suppressed.)

➭ Since the MPI kernel is NLO contribution we should consider the correlation at NLO level as 
well. (Just to be systematic.) 

➭ In MPI terms it is as important as the standard shower. 

➭ It is NOT implemented in HERWIG & PYTHIA.
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Correlations
t = ∞

t = 0

a1 a2 a2 a1

HC(t) =
αs

2π
O(t2)

+
αs

2π

1

N2
c

O(t)

+
�αs

2π

�2
O(t3)

➭ This operator can be applied on states with at least two chains. (They are already power 
suppressed.)

➭ Since the MPI kernel is NLO contribution we should consider the correlation at NLO level as 
well. (Just to be systematic.) 

➭ In MPI terms it is as important as the standard shower. 

➭ It is NOT implemented in HERWIG & PYTHIA.
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Rescattering
t = ∞

t = 0

a1
a2 a2

a1

HRS(t) =
αs

2π
O(t)

+
�αs

2π

�2
O(t2)

This is the most problematic contribution 

➭ This operator can be applied on states with at least two chains. (They are already power 
suppressed.)

➭ No corresponding factorizable virtual contribution. ➠ No associated Sudakov factor.

➭ Only NLL contribution to the MPI terms.

➭ It is NOT implemented in HERWIG & PYTHIA.

VRS(t) = 0
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Rescattering
t = ∞

t = 0

a1
a2 a2

a1

HRS(t) =
αs

2π
O(t)

+
�αs

2π

�2
O(t2)
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Multi Parton PDF
We need PDF functions with multiple parton. Of course there no factorization proven but one 
can set up a scheme by trying to follow some kind of systematic treatment.

Standard DGLAP part

Correlation
I think C = 0

Rescattering

d

dt
Dm({x, a}m, t) = [P ⊗Dm] ({x, a}m, t)

+ [C ⊗Dm] ({x, a}m, t)

+ [R⊗Dm−1] ({x, a}m, t)

�

{a}m

� 1

0
dx1 · · ·

� 1

0
dxm θ(

�

i

xi ≤ 1)
�

i

xi Dm({x, a}m, t) = 1

The momentum sum rules are important

PYTHIA & HERWIG mPDF modeling do not obey the momentum sum rules and their evolution are 
not synchronized  with the shower evolution.

Gaut & Stirling, JHEP 1003:005,2010 
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Conclusion

Wizard of ID

.... I hope we are doing better than Rodney ....
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a1 a2 a2 a1
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µ = 15GeV

Correlation

µ = 10GeV

Rescattering
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µ = 50 GeV

µ = 100 GeV

µ = 25 GeV

µ = 125 GeV

Monday, May 17, 2010


