

The Compact Linear Collider Accelerator, Detector, Physics – An Overview

CL

Simon Spannagel, DESY

2nd Future Colliders @ DESY Meeting 17 June 2021

• The Compact Linear Collider

- Experimental conditions
- Luminosity
- The CLIC detector concept
- Detector Technologies
 - Vertex & tracking detectors
 - Calorimeters
- CLIC Physics Program
 - Staged scenario
 - Higgs, top quark & BSM physics
- Summary, Further Reading

The Compact Linear Collider

e⁺e⁻ Collisions at the Energy Frontier

The Compact Linear Collider

- Proposed e+e- linear collider at CERN for the era beyond HL-LHC (~2035)
- Staging of the machine in 3 steps
- Novel and unique two-beam acceleration
 - High-current low-energy drive beam to accelerate high-energy main beam
 - High accelerating gradient of 100 MV/m

S. Spannagel - Compact Linear Collider - Future Colliders @ DESY

CLIC Accelerator Complex @ 3 TeV

S. Spannagel - Compact Linear Collider - Future Colliders @ DESY

Experimental Conditions

- CLIC operates in bunch trains, repetition rate of 50 Hz
 - Low duty cycle
 - Possibility for power pulsing:
 switch detector components off between trains to reduce heat dissipation

CLIC@3TeV

beam -

- 312 bunches within train (at 3 TeV), separated by 0.5 ns
- Bunch separation & cross-section of background events drive timing requirements for detector
 - 1 ns time resolution for calorimeters
 - 5 ns single-hit resolution for vertex/tracking detectors

156ns

20ms

Beam-induced Backgrounds

- High luminosity achieved by extremely small beam
 - Bunch size at 3 TeV CLIC: **40 nm** (x) x **1 nm** (y) x **44 \mum** (z)
 - Resulting high e-field leads to beam-beam interactions
- Generates background particles, reduces \sqrt{s}

Main backgrounds in detector acceptance:

- Incoherent e + e pairs
 - 19k particles / bunch train at 3 TeV
 - High occupancies, stringent requirements on granularity

• yy → hadrons

- 17k particles / bunch train at 3 TeV
- Impact on detector granularity, layout, physics

Integrated Luminosity

- Updated projections for luminosity
 - Harmonized with other future collider projects
 - Based on 185 days of physics operation per year
 - Luminosity ramp-up at beginning of each stage
- ±80% longitudinal polarization for the electron beam
- Total integrated luminosities:
 - Stage 1 @ 380 GeV: 1.0 ab⁻¹ (including tt threshold scan around 350 GeV)
 - Stage 2 @ 1.5 TeV: 2.5 ab⁻¹
 - Stage 3 @ 3 TeV: 5.0 ab⁻¹

CLICdet the CLIC detector Concept

CLICdet – the CLIC detector Concept

- Started as combination of SiD and ILD concepts
- Low-mass all-silicon vertex and tracking detectors, R = 1.5 m
- High-granularity calorimeters:
 - ECAL: 22 X₀, 1 λ₁
 40 layers Si sensors, W plates
 - HCAL: 7.5 λ_l
 60 layers plastic scintillator/SiPM, steel
- 4T superconducting solenoid
- Return yoke, Muon detectors interleaved
- Forward instrumentation: LumiCal, BeamCal
- Optimized for Particle Flow Analysis

Detector requirements

- Momentum resolution
 - Higgs recoil mass, Higgs coupling to muons
 - σ_{pT}/p_T² ~ 2 × 10⁻⁵ GeV⁻¹ above 100 GeV
- Impact parameter resolution
 - c/b-tagging, Higgs branching ratios
 - **σ_{rφ} ~ a ⊕ b / (p[GeV] sin**^{3/2} **θ) μm** with a = 5 μm, b = 15 μm
- Jet energy resolution
 - Separation of W/Z/H di-jets
 - σ_E/E ~ 5% 3.5% for jets at 50 GeV 1000 GeV
- Angular coverage
 - Very forward electron and photon tagging
 - Down to $\theta = 10 \text{ mrad} (\eta = 5.3)$

Occupancies

- Charged particles produced • by beam-induced background
- Detector layout and granularity dependent on particle flux •
- Goal: keep occupancies below 3% per bunch train including safety factors
- **Occupancy limits:**
 - Vertex: pitch **25 µm x 25 µm**
 - Tracker: **50 μm** in rφ and **1mm – 10mm** in z

E 60 ch.part mm² bx @ 3 TeV vertex detector cylindrica ſ oiection 50 40 30 beam pipe 20 10 100 200 250 300 50 150 350 z [mm]

17/06/2021

10-1

 10^{-2}

 10^{-3}

Same Detector for 380 GeV and 3 TeV?

- Different beam conditions would allow to consider different detectors
- Solenoid, yoke, calorimeters (tracker?) unchanged for practical reasons
- Possible differences:
 - Replacement of BeamCal necessary
 - Reduced beamstrahlung @ 380 GeV
 - Allows smaller beam pipe ($\Delta r \sim 3 \text{ mm}$)
 - Move innermost vertex layer closer to interaction point
- Current studies focused on **single detector**, with a layout **optimized for 3 TeV**

Defining reconstruction window

- 10 ns before, 30 ns after event
- Building physics objects

Background suppression by

Fully-hadronic tt event

- Suppression via
 - Timing requirements
 - Particle type and $p_{_T}$
 - Retaining high-p_τ objects
- Cuts adapted per detector region

16

full event

Background suppression @ 380 GeV

Background suppression @ 380 GeV

- Fully-hadronic tt event
- Background suppression by
 - Defining reconstruction window 10 ns before, 30 ns after event
 - Building physics objects
 - Suppression via
 - Timing requirements
 - Particle type and $p_{_{T}}$
 - Retaining high-p_T objects
 - Cuts adapted per detector region

background suppressed

Background suppression @ 3 TeV

full event

- Fully-hadronic tt event
- Background suppression by
 - Defining reconstruction window 10 ns before, 30 ns after event
 - Building physics objects
 - Suppression via
 - Timing requirements
 - Particle type and $p_{_{T}}$
 - Retaining high- p_{T} objects
 - Cuts adapted per detector region

Background suppression @ 3 TeV

DESY.

- Fully-hadronic tt event
- Background suppression by
 - Defining reconstruction window 10 ns before, 30 ns after event
 - Building physics objects
 - Suppression via
 - Timing requirements
 - Particle type and $p_{_{T}}$
 - Retaining high- p_{T} objects
 - Cuts adapted per detector region

Detector Technologies and Prototype Evaluation

Vertex Detector

Design driven by flavor tagging

- Minimal scattering
- High-resolution

Requirements

- Low mass
 0.2% X₀ per layer
- Low power consumption
 50 mW/cm⁻² for air-flow cooling
- High single-point resolution $\sigma_{_{SP}} \sim 3 \ \mu m$
- **Precise time stamping** ~ 5 ns

Current design:

- Hybrid pixel detectors in double layers
- 50+50 μm sensor+ASIC, 25 μm pitch
- Surface area of ~ 0.84 m²
- Three barrel layers, 2x three spiral disks

Tracking Detector

Design optimized for good efficiency & momentum resolution

- Many layers
- Large lever arm

Requirements

- Low mass, high rigidity
 1 2% X₀ per layer
- * Good single-point resolution $\sigma_{_{SP}} \sim 7 \; \mu m$
- High granularity few % occupancy from backgrounds

Current design:

- Monolithic detector with (elongated) pixels
- 200 μm sensor, including electronics
- Surface area of approx. 140 m²
- Leakless water cooling

Silicon Technologies

DESY.

- Looking at large range of silicon detector technologies
- Collaboration with other experiments (ALICE: HR-CMOS, ATLAS: HV-CMOS, ...)

Calorimeters

- JER of $\sigma_{_E}/E \sim 5 3.5\%$
- Electromagnetic Calorimeter: Si-W
 - 2 mm tungsten plates, 500 μm silicon sensors
 - 40 layers 22 X_0 or 1 λ_1 , 5 × 5 mm² cell size
 - ~2500 m² silicon, 100 million channels
- Hadronic Calorimeter: Scint-Fe
 - 19 mm steel plates, interleaved with 3 mm thick plastic scintillator + SiPMs
 - 60 layers: 7.5 λ_{l} , 30 × 30 mm² scintillators
 - ~ 9000 m² scintillator, 10M channels / SiPMs
- Benefited greatly from CALICE developments

Forward Instrumentation: BeamCal & LumiCal

- Very forward electromagnetic sampling calorimeters
 - **LumiCal** for luminosity measurement via Bhabha scattering (few per mille accuracy)
 - BeamCal for very forward electron tagging (for beam tuning)
- e and γ acceptance down to small angles
 - Compact design, small Molière radius
- Current design: BeamCal: GaAs, LumiCal: Si

e⁻ DESY Testbeam

S. Spannagel - Compact Linear Collider - Future Colliders @ DESY

CLIC Physics Program

Standard Model & beyond

2.1

CLIC Physics Program – in 3 Stages

• Staged running scenario for CLIC

Stage 1: √s = 380 GeV (1.0 ab⁻¹)

- Higgs/top precision physics
- Top mass threshold scan

Stage 2: √s = 1.5 TeV (2.5 ab⁻¹)

- Focus: BSM searches
- Higgs/top precision physics

Stage 3: √s = 3 TeV (5.0 ab⁻¹)

- Focus: BSM searches
- Higgs/top precision physics

Higgs Physics

- Initial stage: Higgs boson production in
 - Higgsstrahlung (e⁺e⁻ → ZH)
 - WW-fusion ($e^+e^- \rightarrow H v_e v_e$)
 - Precise measurements of cross sections, decay width $\Gamma_{\rm H}$, couplings (model-independent)
- High-energy stages:
 - High-statistics WW-fusion samples constrain Higgs couplings
 - Studies of rarer processes (e⁺e⁻ → ttH, e⁺e⁻ → HH v_ev_e) to measure top Yukawa coupling,
 - Direct meas. of Higgs self-coupling
- Detailed paper published:

"Higgs physics at the CLIC electron-positron linear collider"

 e^+

Top-Quark Physics

- Initial stage: focus on
 - top-quark pair production
 - tt pair production threshold scan at 350 GeV
 - Precise measurement of top-quark mass in well-defined theoretical framework
- Higher-energy stages:
 - top-quark pairs in association with other particles
 - ttH production, top Yukawa coupling
 - Vector boson fusion (VBF) production
 - Combine measurements in global fits
- Detailed paper in journal review:

"Top-Quark Physics at the CLIC Electron-Positron Linear Collider"

Beyond-Standard-Model Physics

- Indirect searches through precision observables
 - Allow discovery of new physics beyond the center-of-mass energy of the collider
- Direct production of new particles
 - Possible up to the kinematic limit
 - Precision measurements
 - Complements the HL-LHC program
- EFT fits combining measurements

• **Comprehensive report published:** "The CLIC Potential for New Physics"

Summary Documents

2012 CLIC Conceptional Design Report

- A Multi-TeV Linear Collider Based on CLIC Technology
- Towards a staged e+e- linear collider exploring the terascale
- Physics and Detectors at CLIC

2016 Updated Baseline for a staged Compact Linear Collider

- 2018 Documents for the European Strategy Update
 - CLIC 2018 Summary Report
 - CLIC Project Implementation Plan
 - The CLIC Potential for New Physics
 - Detector technologies for CLIC

Summary

- CLIC is a proposed linear collider providing collisions up to 3 TeV
 - Two-beam acceleration method with 100 MV/m normal-conducting cavities
 - Bunch train beam structure, 0.5ns bunch spacing
- Detector model CLICdet optimized and validated in full simulation
- Broad and active R&D on detector technologies
 - Vertex and tracking detector development of technologies to simultaneously fulfill all CLIC requirements
 - Calorimeter design with strong contributions to CALICE and FCAL R&D collaborations
- CLIC offers opportunity for broad precision physics program
- The CLICdp Collaboration has prepared comprehensive documentation on physics program, detector design, R&D activities and implementation plan

Resources

Compact Linear Collider Portal http://clic.cern/

CLIC input to the European Strategy for Particle Physics Update 2018-2020 http://clic.cern/european-strategy

CLICdp Publications on CERN Document Server https://cds.cern.ch/collection/CLIC Detector and Physics Study

The CLIC detector and physics Collaboration

Collaboration with

- 30 institutes
- 159 members formed to carry out
 - physics studies
 - detector technology R&D

Close collaboration with other R&D / LC projects such as CALICE, FCAL as well as AIDA-2020 and LHC experiments

Cost Estimate for the CLIC Detector

- Based on detector work breakdown structure, aimed at 30% uncertainty
- Main cost driver: silicon sensors for electromagnetic calorimeter
 - Example: 25% cost reduction of silicon per unit of surface → overall detector cost reduction by > 10%

System	Cost fraction						Cost[MCHF]
Vertex							13
Silicon Tracker							43
Electromagnetic Calorimeter							180
Hadronic Calorimeter						-	39
Muon System							16
Coil and Yoke							95
Other							11
	0	10%	20%	30%	40%	50%	
Total							397

Hybrid Silicon Detectors

- Traditional design of HEP silicon pixel detectors: independent sensor/readout
 - Sensor contains pn-junction
 - Readout chip implements front-end
- Different possibilities for interconnects: solder bumps, glue
- Small pixel cell sizes achieved, down to 25 µm limited by interconnects

37

Established mixed-mode CMOS Complex circuits possible Small technology nodes available

Relatively high material budget Interconnects: cost-driver, limits pixel pitch & thickness (stability)

Hybrid Prototypes

CLICpix2 + planar sensor

- Goal: 50 μm thin planar silicon sensors
- Challenge: single-chip
 bump bonding at 25 μm pitch
- First successes, 130 µm thick sensor

- First assemblies tested in beam
- Calibration ongoing

CLICpix2 + C3PD

- Capacitively coupled
- Active sensor fabricated in 180 nm HV-CMOS process

Finite-element simulation of capacitive coupling

S. Spannagel - Compact Linear Collider - Future Colliders @ DESY

3.2 mm

Monolithic Silicon Detectors

- Depleted Monolithic Active Pixel Sensors (DMAPS)
 - Electronics and sensor on same wafer
 - Fully integrated: amplification & readout
- Shield electronics via additional implants
 - Deep collection diode surrounding electronics
 - Separate shielding & collection diode

Lower mass than hybrids No bump-bonding Cheaper manufacturing

Smaller depletion volume & signal Intricate sensor design Limited in-pixel functionality

Monolithic Prototypes

ALICE Investigator

- Analog test chip for technology evaluation
 - 180 nm HR-CMOS process
- Different pixel pitches & geometries

ATLASpix_Simple

- Commercial 180nm HV-CMOS process
- Designed for ATLAS ITK Upgrade

• Timing performance investigated in test beams

•

Vertex Detector Air Cooling

- Vertex detector cooled with forced air flow for minimum material
- Spiral vertex disks allow air flow through detector
 - Simulation studies of air velocity, temperature, vibrations
 - Verification with 1:1 thermo-mechanical mockup

Mass Flow: 20.1 g/s Average velocity @ inlet 11.0 m/s @ center: 5.2 m/s @ outlet: 6.3 m/s

Lightweight Support for the Tracking Detector

- Proof-of-concept for light tracking detector mechanics
 - Confirm stability and material budget assumptions
 - Off-the-shelf carbon fiber tubes
 - Custom nodes developed and fabricated

- Synergies with ALICE ITS upgrade's outer stave
- Stiffness achieved with low mass structure
- Total weight of the prototype: 926 g

ECAL: CALICE SiECAL Prototype

- Highly granular calorimeter, optimized for particle flow
 - Si sensors, W absorbers
 - Many years of experience: ASICs, sensor studies, physics prototypes
- Recently developments:
 - Test beams at SPS H2
 - First functional "long slab" built
- Synergies with CMS HGCal project

43

HCAL: CALICE AHCAL Prototype

- Highly granular scintillator SiPM-on-tile HCAL
 - 3 x 3 cm² scintillator tiles, fully integrated design
 - 38 active layers of 72 x 72 cm² in steel absorber
 - Automatic temperature compensation for SiPMs
- Design optimized for mass production:
 - Automatic SMD SiPM soldering
 - Injection-molded polystyrene tiles
 - Automated wrapping in reflector foil

AHCAL Prototype Test Beam Results

- Many test beam campaigns in 2018 at SPS H2 beam line
 - Calibration with muons, energy scans for e-, π
- Prototype can resolve spatial and temporal development of hadronic showers in detail

S. Spannagel - Compact Linear Collider - Future Colliders @ DESY

Performance Studies

and Detector Design Validation

S. Spannagel - Compact Linear Collider - Future Colliders @ DESY

Performance Studies & Validation

- Full simulation and reconstruction studies performed with iLCSoft framework, developed by the Linear Collider Community
- Continuous improvements of simulation & reconstruction software
 - **DD4HEP** for geometry description, others are on the move: LHCb, CMS...

- **DELPHES** card available for fast simulation in their official repository
 - Three cards for the different CLIC stages

• Document with comprehensive performance studies published: "A detector for CLIC: main parameters and performance"

17/06/2021

DD4hep

Tracking

Tracking based on conformal transformation: $u = \frac{x}{x^2 + y^2}$ $v = \frac{y}{x^2 + y^2}$

"maps circles passing through the origin onto straight lines"

- Pattern recognition: straight line search with cellular automaton (robust: noise, missing hits)
- Fit in z-s (along helix) reduces combinatorics
- Displaced tracks do not go through origin
 - Apply second-order corrections to transformation
 - Adapt search parameters and order
- Kalman-filter based fit of reconstructed tracks

CLICdet Tracking Performance

- Achieved momentum resolution 2 x 10⁻⁵ GeV⁻¹ for high energy muons in the barrel
- Tracking efficiency very high, negligible impact of background particles > 1 GeV
- High efficiency for displaced tracks within acceptance (min. 5 tracker hits required)

Flavor Tagging Performance

- Several studies on flavor tagging efficiencies performed, to be found in performance note
 - LCFIPlus package is used for flavor tagging
- Charm tagging performance
 - Using di-jet samples, E_{CM} = 500 GeV
 - With and without background (3 TeV, 30 BX)
 - At 80% charm identification efficiency, beauty/light-flavor misidentification is
 - 25% without backgrounds
 - 30% with 3 TeV background overlay

Jet Reconstruction & Particle Flow Algorithm

- Calorimeter clusters reconstructed via particle flow by **PandoraPFA**
 - Uses reconstructed tracks and muon hits to match calorimeter hits

- Requires highly granular calorimeter detectors
- Jets formed using VLC algorithm with R = 0.7
- Dedicated note:
 "Jet performance at CLIC" (CLICdp-Note-2018-004)

17/06/2021

Jet Energy & Missing E_T Resolution

- Jet energy resolution from $Z/\gamma^* \rightarrow qq$, compare reconstructed and MC truth jets
 - Impact from 3 TeV backgrounds especially for low-energy jets, resolution 6-8%
- W/Z mass: 2σ separation with VLC7 jets, including 3 TeV backgrounds

