

Lepton Trigger efficiency evaluation for the first measurement of the top-quark pair production cross-section at ATLAS

Valentina Ferrara

Hamburg, 21.06.2010

Outline

* Intro

* Determination of top-quark pair production cross section

- * signal acceptance
- * trigger efficiency evaluation
- * scale factors
- Conclusions and Outlook

Standard Model Predictions

Production @ LHC

q q q t

gluon-gluon fusion 90%

quark-antiquark annihilation 10%

Cross-Section

- σ_{tt} (\sqrt{s} = 14 TeV) \approx 886 pb
- σ_{tt} (\sqrt{s} = 10 TeV) \approx 403 pb
- $\sigma_{tt} (\sqrt{s} = 7 \text{ TeV}) \approx 161 \text{ pb}$

This translates into ~1600 top pairs in 10 pb⁻¹ for $\sqrt{s} = 7$ TeV.

(*) arXiv:0907.2527

Top-Quark Phenomenology

The top-quark decays rapidly without forming hadrons, and almost exclusively through the single mode $t \rightarrow Wb$ Name | Signature | BR | xsec at 10 TeV

Name	Signature	BR	xsec at 10 TeV
Fully Hadronic	jets	45.7%	191.5 pb
Lepton + Jets	e + jets	17.2%	71.9 pb
	$\mu + ext{jets}$	17.2%	71.9 pb
Dilepton	$e\mu + \text{jets}$	3.18%	13.3 pb
	$\mid \mu \mu + ext{jets}$	1.59%	$6.67 \mathrm{\ pb}$
	ee + jets	1.59%	6.67 pb
Tau + Jets	$ au + ext{jets}$	9.49%	39.8 pb
Lepton + Tau	$\tau + e/\mu + \text{jets}$	3.54%	14.8 pb
Tau + Tau	$\tau + \tau + \text{jets}$	0.49%	2.06 pb
total	all	100%	419 pb

Lepton + Jets:

Signature:

- one lepton
- missing energy from the neutrino
- two jets from a W boson
- two jets from the b quarks

Determination of the Cross Section

Counting method: Accuracy in 100 pb⁻¹: $\Delta\sigma/\sigma = (3(\text{stat}) \pm 16(\text{syst}) \pm 3(\text{pdf}) \pm 5(\text{lumi}))\%$ arxiv hep-ex 0901.0512

The signal acceptance depends on:

- the geometry of the ATLAS detector
- object reconstruction (e.g. lepton reconstruction) efficiency
- analysis identification efficiency (e.g. top analysis specific selections)
- the ATLAS trigger efficiency

ATLAS Trigger System

- * Only events that fire a trigger will make it to storage
- * The primary triggers for $t\overline{t}$ leptonic decays are the <u>leptonic triggers</u>

The Muon Trigger is designed to select events with high P_T muons.

- **LI** defines Regions of Interests (RoI), with a rough estimate of the candidate P_T and position
- **L2** runs on full granularity of the data within the RoI: improves P_T resolution and performs fast track combination between Muon Spectrometer and Inner Detector
- **EF** has access to full event with full granularity. Using offline muon reconstruction algorithms , it confirms or discards L2 candidates.

The Tag&Probe method

Method to evaluate lepton trigger efficiencies from real data, using $Z{\rightarrow}\ell\ell$.

The 2 daughter leptons from the decay of a Z boson produced at the LHC have a large transverse momentum.

When only one of the two daughter leptons fires a trigger with a defined P_T threshold, we say the trigger has been inefficient in detecting the other one.

$$\varepsilon_{\text{tot}} = \frac{N_{(Tag\&Probe)}}{N_{(Tag)}}$$

In general, the muon trigger efficiency depends on a number of kinematic and isolation variables.

MC Muon Trigger efficiency

Comparison between the muon trigger efficiency measured with the Tag&Probe method and that from MC truth: the integrated trigger efficiency is found to be 85.77% from MC truth and 85.74% from Tag&Probe.

The signal acceptance for the first measurement of the top-quark production cross-section will be estimated from MC $t\bar{t}$ samples:

Scale Factors

$$\sigma_{t\bar{t}} = \frac{N_{sig}}{L \times \alpha'}$$

lpha' needs to be corrected for imperfect detector modeling and object reconstruction in the MC.

A set of scale factors (SF) are defined to express the difference in the efficiency between data and MC at the trigger, reconstruction and identification stage:

$$SF_{trigger,reco,Id} = \frac{\varepsilon_{trigger,reco,Id}(Z, data)}{\varepsilon_{trigger,reco,Id}(Z, MC)}$$

Scale Factors

Assuming that:

$$SF_{trigger,reco,Id} = \frac{\epsilon_{trigger,reco,Id}(Z,data)}{\epsilon_{trigger,reco,Id}(Z,MC)} = \frac{\epsilon_{trigger,reco,Id}(t\bar{t},data)}{\epsilon_{trigger,reco,Id}(t\bar{t},MC)}$$

and that the SFs do not depend on any kinematic or isolation variable (i.e. that the data/MC ratio is flat within errors), the Lepton+Jets $t\bar{t}$ cross-section becomes:

$$\sigma_{t\bar{t}} = \frac{N_{sig}}{\mathscr{L} \times \alpha \times SF_{trigger} \times SF_{reco} \times SF_{Id}}$$

So far, we have only been able to evaluate:

$$\epsilon_{trigger,reco,Id}(Z,MC) = \epsilon_{trigger,reco,Id}(T\&P(Z),MC) \quad \text{ in } L = 10 \text{ pb}^{-1}$$

Summary and Outlook

The top-quark pair production cross section will be one of the first measurements at ATLAS, requiring $O(10-100 \text{ pb}^{-1})$ for first results.

The signal acceptance in the leptonic channels comprises lepton reconstruction, event identification and the leptonic trigger efficiency.

For the first cross-section measurement, the signal acceptance will be estimated from $t\overline{t}$ MC and corrected with SFs. Only the MC-based part of the SFs has been evaluated.

We are waiting for the first 10 pb⁻¹ of data to evaluate $\epsilon_{trigger, reco, Id}(Z, data)$.

back up

back up

