

ACCLAIM, GSI: **Progress in ML Projects** Conrad Caliari, Sabrina Appel, Adrian Oeftiger

Context of Current Studies

Beam loss prediction for FAIR SIS100 heavy-ion synchrotron

- currently with detailed 3D beam dynamics simulations in SixTrackLib and PyHEADTAIL
 - thin-lens symplectic tracking
 - using GPUs: self-consistent (2 days) + frozen space charge (2min)
 - magnet error model based on cold bench measurements
- chromaticity correction in SIS100: limited dynamic aperture
 - reason: only few sextupole magnets (24+18)
 - classical 2-family correction approach problematic
 - → strong losses in case of heavy-ion beams

Figure: PIC + magnet errors sims. (natural chroma)

Figure: Corrected chroma sims. (no SC, no errors) 28 May 2021

Goals

Goals of ML studies:

- establish ML trained surrogate model for beam loss simulations
- optimise chromaticity correction with more than 2 sextupole families

⇒ minimise beam loss / maximise dynamic aperture

- exploit physics-inspired NN (PINN) to improve error model:
 - set up lattice with expected magnet error model (bench measurements)
 - use beam-based measurements (BPM data) to train PINN
 - extract improved magnet error model from trained PINN
 - → later include space charge into approach

(Figure taken from thesis proposal talk by Conrad Caliari)

Goals

Goals of ML studies:

- establish ML trained surrogate model for beam loss simulations
- optimise chromaticity correction with more than 2 sextupole families

minimise beam loss / maximise dynamic aperture

- exploit physics-inspired NN (PINN) to improve error model:
 - set up lattice with expected magnet error model (bench measurements)
 - use beam-based measurements (BPM data) to train PINN
 - extract improved magnet error model from trained PINN
 - → later include space charge into approach

Restricted Dynamic Aperture

Chromaticity Correction

correct chromaticity, avoid small dynamic aperture

▶ approximate dynamic aperture : $\mathbb{R}^{N-2} \to \mathbb{R}$ via surrogate model

7/19

(Slide taken from thesis proposal talk by Conrad Caliari)

Adrian Oeftiger

Progress in PINN:

- extended Taylor map approach by IA20¹ to 6D treatment
- implemented alternative PINN structure: intrinsically symplectic approach with Lie maps based on separable Hamiltonian
 - \implies quadrupole errors can be learned with Lie approach PINN, success!
 - currently working on sextupole errors, in line with goal of chromaticity correction

¹A. Ivanov, I. Agapov, PRAB 2020

PINN: Quadrupole Error Learning

Thin-Lens Model

Adrian Oeftiger

Figure: Difference in predicted and actual particle positions.

Figure: Tune evolution during training.

25 / 19

(Slide taken from thesis proposal talk by Conrad Caliari)

28 May 2021

