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Plasmas for accelerators come in many flavors…

Gas jet



Plasmas for accelerators come in many flavors…

Multi-compartment plasma cell



Plasmas for accelerators come in many flavors…

Capillary discharge waveguide



Plasmas for accelerators come in many flavors…

Alkali vapor oven



Plasmas for accelerators come in many flavors…

Active plasma lens
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Outline

> Introduction to laser-driven plasma wakefield accelerators: why do we care?


> Properties of plasma wakefields


> Example of current research: FLASHForward at DESY 
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Accelerators are the heart of high-energy photon sources & colliders
Cutting-edge, high-end slow-motion-cameras and microscopes to study the structure of matter

8

Simulation of the decay of 
a Higgs Boson (LHC, CERN)

DESY Hamburg

Particle colliders

investigation of the fundamental 
forces and constituents of matter
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Accelerators are the heart of high-energy photon sources & colliders
Cutting-edge, high-end slow-motion-cameras and microscopes to study the structure of matter
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Simulation of the decay of 
a Higgs Boson (LHC, CERN)

DESY Hamburg

Particle colliders

investigation of the fundamental 
forces and constituents of matter

Illustration of an FEL-pulse diffracting 
off a protein (XFEL, DESY)

Anton Barty, CFEL/DESY Hamburg

Synchrotron photon sources, e.g. Free-Electron Lasers (FELs)

investigation of processes on atomic and molecular scales



Accelerators for research are powerful, large scale machines

European XFEL 
17 GeV electron accelerator



Page 00 |  Jens Osterhoff  |  DESY Summer School  |  August 19, 2021

What defines the scale length of the accelerator?
Limits of conventional technology
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Accelerating field strength limited to 
~50 MV/m by electrical breakdown

Energy increase can only be achieved 
by longer acceleration distances!

�Wkin = eEzdKinetic energy gain

The goal: electrons with well defined energy gain

~1 m long TESLA-type superconducting structure

To be added here: Working principle of RF cavities, 
focus on electron accelerators

Electron 
bunch

Alternating longitudinal electric field Ez

Standing microwave (1.3 GHz)

Working principle of an RF-cavity
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What defines the scale length of the accelerator?
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Ring accelerators for electrons?

Advantage: the same (short) acceleration section may be used multiple times
Disadvantage: the energy loss by synchrotron radiation limits the maximum energy


(and achievable beam quality: insufficient for X-ray FELs…)
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Example: utilize the LEP/LHC ring (27 km circumference) for electrons
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Computers shrunk and became super powerful in the past 60 years
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IBM NORC supercomputer (1954)

NORC Supercomputer, 1954

Computers shrunk and became super powerful in the past 60 years

Can the same be done with 
particle accelerators?

What new applications will this 
enable?
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Plasma is everywhere
A soup of inoized (broken-down) matter
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© Kyrre Ness Sjøbæk (2020)

Plasma 
source
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FBPIC simulation simulation by Ángel Ferran Pousa (2020)

Wake on a lake
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FBPIC simulation

Electron beam can be externally injected 
or formed from trapped plasma electrons (internal injection)

~10 – 100 µm

simulation by Ángel Ferran Pousa (2020)
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FBPIC simulation

Electron beam can be externally injected 
or formed from trapped plasma electrons (internal injection)

~10 – 100 µm

simulation by Ángel Ferran Pousa (2020)



© Kyrre Ness Sjøbæk (2020)© Kyrre Ness Sjøbæk (2020)

FBPIC simulation

Electron beam can be externally injected 
or formed from trapped plasma electrons (internal injection)

~10 – 100 µm

Plasma wakefields can sustain accelerating fields of up to ~1-100 GV/m 
with focusing gradients above ~1 MT/m

x1000 more than 
RF technology

simulation by Ángel Ferran Pousa (2020)

Plasma accelerators are a centimeter-scale source of GeV beams
→ Leemans et al., Nature Physics 2, 696 (2006)
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Simple fluid model for plasma-wave excitation
1D in space / 3D in momentum

23

20 Stable, ultra-relativistic electron beams by laser-wakefield acceleration

In this one-dimensional description the scalar field potential ⇧ does not vary in transverse
direction with respect to the x-axis, hence (⌃⇧)(⌃y)�1 = 0 does not appear in the expression
above. Consequently, the temporal integration of (1.4.2) gives a relation for py assuming a
negligible initial transverse drift:

py = eAy (1.4.3)

In normalized measures, this corresponds to:

⇥�y = a0 (1.4.4)

Longitudinal momentum equation. The Lorentz equation for the longitudinal electron-
momentum component in laser propagation direction px yields:

dpx
dt

= �e (Ex + vyBz)

Similar to eq. (1.4.2), the electric and magnetic fields can be expressed also in this case by scalar
and vector potentials with Ex = �(⌃⇧)(⌃x)�1 and Bz = (⌃Ay)(⌃x)�1, respectively. Here it is
assumed that Ax = 0, which will be justified retroactively with the application of the Coulomb
gauge later in the derivation. The longitudinal Lorentz equation can be further transformed
by making use of (1.4.3) and by substituting the quantities Ay, ⇧ and vx with their normalized
counterparts:

d

dt
(⇥�x) = c

⇤
⌃⌅0
⌃x
� 1

2⇥
⌃a20
⌃x

⌅

(1.4.5)

Continuity equation. The total charge contained inside the fluid-like plasma medium is
preserved as long as ionization and recombination do not play a role. Hence a continuity
equation can be introduced:

⌃ne
⌃t

+ c ⌃
⌃x

(ne�x) = 0 (1.4.6)

Electro-magnetic wave equation. The propagating electro-magnetic modes may be for-
malized by expressing the electric and magnetic fields through potentials (1.1.1) as done before,
which then are combined with Ampere’s law under consideration of the Coulomb gauge ⇤ �A = 0
(compare to eqs. 1.1.2):

1
c2
⌃2Ay
⌃t2
�⇤2Ay = �µ0enevy

Here, the vector identity ⇤⇥
�
⇤⇥ �A

⇥
= ⇤

�
⇤ �A
⇥
�⇤2 �A was used and, as noted above, Ax and

(⌃⇧)(⌃y)�1 equal zero. This expression can be rewritten in normalized units when considering
eq. (1.4.3) and the definition of the plasma frequency ⇧p in the unperturbed system:

⌃2a0
⌃t2
� c2⌃

2a0
⌃y2

= �⇧2
p
n0a0
⇥

(1.4.7)

with the electron density normalized to the initial electron background density n0 = ne(Zni)�1.
Poisson’s equation. Local charge separation sets up electric potentials, which can be ob-

Transverse electron momentum 
(from equation of motion)
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Electro-magnetic wave equation
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tained from Poisson’s equation:

⇥2⇧ = � e
⇤0

(Zni � ne)

In normalized units this transmutes into:

�2⌃0
�x2 =

⌥2
p
c2

(n0 � 1) (1.4.8)

The relativistic “-factor. ⇥ can be expressed more conveniently by substituting eq. (1.4.4)
for the transverse velocity:

⇥ = 1
 

1� �2
x � �2

y
=
 

1 + a20 
1� �2

x
(1.4.9)

Then, the light amplitude a0 constitutes the only influence on the electron velocity �y normal
to the longitudinal component �x, which is governed by both the wake potential and the laser
vector potential. Therefore, it is common to split ⇥ into an a0-dependent transverse factor and
a longitudinal part:

⇥ = ⇥⇥⇥⇤ with

⇧
�⌥

�⌃

⇥⇥ =
�
1 + a20

⇥1/2

⇥⇤ =
�
1� �2

x
⇥�1/2

Coordinate transformation into a co-moving frame

The just presented expressions for the longitudinal momentum (1.4.5), electron density conti-
nuity (1.4.6), the electro-magnetic modes (1.4.7), the potentials originating from local charge
separation (1.4.8) and the factor ⇥ (1.4.9) constitute a closed set of equations coupling electro-
magnetic and plasma waves. For further progress it is convenient to apply a coordinate trans-
formation of the form ⇧ = t and ⌅ = x � vgt to these relations, which converts them into a
frame co-moving with the light wave at its group velocity vg. Then the spatial and temporal
derivatives become:

�

�x
= �
�⌅

and �

�t
= �
�⇧
� vg
�

�⌅

As may be seen, the transformation is of the Eulerian type and not Lorentz invariant. A Lorentz
transformation would be applicable as well, but leads to more complicated formulas and entails
a reinterpretation of the results in the laboratory frame [McKinstrie and DuBois 1988].
Now, the identity (1.4.9) can be solved for �a20(�⌅)�1:

�a20
�⌅

= 2⇥
⇤
�⇥

�⌅
� ⇥�x

��x
�⌅
� �2

x
�⇥

�⌅

⌅

(1.4.10)

This will soon turn out to be useful for applying the transformation on the longitudinal mo-
mentum equation. In the new coordinate system eq. (1.4.5) yields:

d

dt
(⇥�x) =

⇤
�

�⇧
� vg
�

�⌅
+ c�x

�

�⌅

⌅

(⇥�x) = c
⇤
�⌃0
�⌅
� 1

2⇥
�a20
�⌅

⌅

Poisson’s equation
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Continuity equation
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Longitudinal electron momentum 
(from equation of motion)

Transformation into a co-moving frame with
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and quasi-static approximation
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From this, it follows that C ⇥ = �1 and C ⇥⇥ = �g. Now, (1.4.13) and (1.4.14) become:

⌅0 = ⇥ (1� �g�x)� 1 (1.4.15)

n0 = �g
�g � �x

(1.4.16)

Owing to the fixed electro-magnetic fields on the fluid timescale, the wakefield quantities can
be given independently of the laser evolution only depending on the normalized amplitude a0.
The square of (1.4.15) yields after utilizing (1.4.9) and introducing ⇥g = (1� �g)�1/2:

⇥ = ⇥2
g (1 + ⌅0) (1� �g⇧) with ⇧ =

����1� 1 + a20
⇥2

g (1 + ⌅0)2

This explicit expression for ⇥ allows to solve (1.4.15) for �x:

�x = �g � ⇧
1� �g⇧

(1.4.17)

That result may be used to eliminate �x from (1.4.16) to obtain the sought-after expression:

n0 = ⇥2
g�g

�
1
⇧
� �g

⇥

(1.4.18)

Numerical solution and discussion of the results

Finally, this leads to a set of di↵erential equations, which details the temporal and spatial
evolution of electron density and electric potentials in a laser-driven plasma wake. The total
scalar potential is determined by Poisson’s equation (1.4.8), which can be written as:

⌥2⌅0
⌥⇤2

=
⌃2

p
c2

(n0 � 1)

=
⌃2

p
c2
⇥2

g

⇧

  ⌥
�g (1 + ⌅0)2

↵
(1 + ⌅0)2 � 1+a2

0
�2g

� 1

⌃

⌦⌦�

(1.4.19)

This is a nonlinear ordinary di↵erential equation and can be solved numerically. When applying
the QSA for the case of �g ⇥ 1, (1.4.19) transforms into:

⌥2⌅0
⌥⇤2

=
⌃2

p
2c2

⇤
1 + a20

(1 + ⌅0)2 � 1
⌅

(1.4.20)

Once ⌅0 is determined, �x and n0 are easily calculated with the help of (1.4.17) and (1.4.18).
An example of a relativistic laser-driven plasma wake is depicted in figure 1.4.1. There, the
wakefield quantities ⌅0, n0 and the normalized longitudinal electric field e0 = �c⌃�1

p ⌥⌅0(⌥⇤)�1

display typical behavior for the relativistic regime such as spiked electron-density maxima at
the local minima of the electric potential and almost linear electric fields trailing those spikes.

Resulting differential equation for scalar potential
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scalar potential is determined by Poisson’s equation (1.4.8), which can be written as:
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This is a nonlinear ordinary di↵erential equation and can be solved numerically. When applying
the QSA for the case of �g ⇥ 1, (1.4.19) transforms into:
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Once ⌅0 is determined, �x and n0 are easily calculated with the help of (1.4.17) and (1.4.18).
An example of a relativistic laser-driven plasma wake is depicted in figure 1.4.1. There, the
wakefield quantities ⌅0, n0 and the normalized longitudinal electric field e0 = �c⌃�1

p ⌥⌅0(⌥⇤)�1

display typical behavior for the relativistic regime such as spiked electron-density maxima at
the local minima of the electric potential and almost linear electric fields trailing those spikes.
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Owing to the fixed electro-magnetic fields on the fluid timescale, the wakefield quantities can
be given independently of the laser evolution only depending on the normalized amplitude a0.
The square of (1.4.15) yields after utilizing (1.4.9) and introducing ⇥g = (1� �g)�1/2:
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An example of a relativistic laser-driven plasma wake is depicted in figure 1.4.1. There, the
wakefield quantities ⌅0, n0 and the normalized longitudinal electric field e0 = �c⌃�1
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Solution for the scalar wake potential for a Gaussian laser pulse
1D in space / 3D in momentum
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From this, it follows that C ⇥ = �1 and C ⇥⇥ = �g. Now, (1.4.13) and (1.4.14) become:

⌅0 = ⇥ (1� �g�x)� 1 (1.4.15)

n0 = �g
�g � �x

(1.4.16)

Owing to the fixed electro-magnetic fields on the fluid timescale, the wakefield quantities can
be given independently of the laser evolution only depending on the normalized amplitude a0.
The square of (1.4.15) yields after utilizing (1.4.9) and introducing ⇥g = (1� �g)�1/2:
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This explicit expression for ⇥ allows to solve (1.4.15) for �x:
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That result may be used to eliminate �x from (1.4.16) to obtain the sought-after expression:

n0 = ⇥2
g�g

�
1
⇧
� �g

⇥

(1.4.18)

Numerical solution and discussion of the results

Finally, this leads to a set of di↵erential equations, which details the temporal and spatial
evolution of electron density and electric potentials in a laser-driven plasma wake. The total
scalar potential is determined by Poisson’s equation (1.4.8), which can be written as:
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This is a nonlinear ordinary di↵erential equation and can be solved numerically. When applying
the QSA for the case of �g ⇥ 1, (1.4.19) transforms into:
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Once ⌅0 is determined, �x and n0 are easily calculated with the help of (1.4.17) and (1.4.18).
An example of a relativistic laser-driven plasma wake is depicted in figure 1.4.1. There, the
wakefield quantities ⌅0, n0 and the normalized longitudinal electric field e0 = �c⌃�1

p ⌥⌅0(⌥⇤)�1

display typical behavior for the relativistic regime such as spiked electron-density maxima at
the local minima of the electric potential and almost linear electric fields trailing those spikes.

λp ∝ np-1/2
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Solution for the scalar wake potential for a Gaussian laser pulse
1D in space / 3D in momentum
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From this, it follows that C ⇥ = �1 and C ⇥⇥ = �g. Now, (1.4.13) and (1.4.14) become:

⌅0 = ⇥ (1� �g�x)� 1 (1.4.15)

n0 = �g
�g � �x

(1.4.16)

Owing to the fixed electro-magnetic fields on the fluid timescale, the wakefield quantities can
be given independently of the laser evolution only depending on the normalized amplitude a0.
The square of (1.4.15) yields after utilizing (1.4.9) and introducing ⇥g = (1� �g)�1/2:

⇥ = ⇥2
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This explicit expression for ⇥ allows to solve (1.4.15) for �x:
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That result may be used to eliminate �x from (1.4.16) to obtain the sought-after expression:
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Numerical solution and discussion of the results

Finally, this leads to a set of di↵erential equations, which details the temporal and spatial
evolution of electron density and electric potentials in a laser-driven plasma wake. The total
scalar potential is determined by Poisson’s equation (1.4.8), which can be written as:
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This is a nonlinear ordinary di↵erential equation and can be solved numerically. When applying
the QSA for the case of �g ⇥ 1, (1.4.19) transforms into:
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Once ⌅0 is determined, �x and n0 are easily calculated with the help of (1.4.17) and (1.4.18).
An example of a relativistic laser-driven plasma wake is depicted in figure 1.4.1. There, the
wakefield quantities ⌅0, n0 and the normalized longitudinal electric field e0 = �c⌃�1

p ⌥⌅0(⌥⇤)�1

display typical behavior for the relativistic regime such as spiked electron-density maxima at
the local minima of the electric potential and almost linear electric fields trailing those spikes.

λp ∝ np-1/2

2

Probing underdense interactions @ FSU-Jena: 
Laser wakefield acceleration of electrons 

2

100 µm

10 µm

100 µm

10 µm

High-resolution (µm and fs) visualization of plasma wave and its evolution

Also high-sensitivity measurement of pulse front tilt!
M. Schwab et al., Applied Physics Letters 103, 191118 (2013)
M. Schnell et al., Nature Communications 4, 2421 (2013) 
A. Sävert et al., Physical Review Letters 115, 055002 (2015)

ne = 1.7�1019 cm-3, !plasma = 9 µm

M. Schnell et al., Nat. Comm. 4, 2421 (2013)
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Wakefield properties in transverse dimensions
3D in space / 3D in momentum
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Electron density modification
Longitudinal electric field
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Electron self-injection

The effects taking place when focusing a relativistic laser pulse into underdense plasma not
only enable relativistic electron acceleration due to high longitudinal fields, but inherently
provide the mechanism of the electron placement in the accelerating phase of the wakefield.
This inherent injection is called self-injection.

Different mechanisms for self-injection or self-trapping of electrons in the accelerating phase
of the wake exist. The one-dimensional fluid theory cannot provide a full description but the
understanding for some of these mechanisms.

The energy of an electron in presence of the vector potential a(ξ) of a laser pulse and the
scalar potential φ(ξ) induced by a plasma wave in accordance to the one-dimensional fluid
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Electron self-injection

The effects taking place when focusing a relativistic laser pulse into underdense plasma not
only enable relativistic electron acceleration due to high longitudinal fields, but inherently
provide the mechanism of the electron placement in the accelerating phase of the wakefield.
This inherent injection is called self-injection.

Different mechanisms for self-injection or self-trapping of electrons in the accelerating phase
of the wake exist. The one-dimensional fluid theory cannot provide a full description but the
understanding for some of these mechanisms.

The energy of an electron in presence of the vector potential a(ξ) of a laser pulse and the
scalar potential φ(ξ) induced by a plasma wave in accordance to the one-dimensional fluid
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Wakefield properties in transverse dimensions
3D in space / 3D in momentum
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from C.B.Schroeder et al., PRSTAB 13, 101301 (2010)

Quasi-linear regime Non-linear regime
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The LWFA process 
can be complex

27

Initial laser pulse

a0 = 2


λc = 800 nm 
Δτ = 25 fs FWHM


w0 = 23 μm FWHM


Plasma density 
np ≤ 5×1018 cm-3

3D particle-in-cell (PIC
) sim

ulation

- laser self-focussing

- laser self-compression

- wave breaking 
- beam hosing

- beam loading

- …
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Our customers: high-energy physics and photon science

28

Luminosity distribution across collision energies. 
Source: M. Boronat et al., Phys. Lett. B 804, 135353 (2020).

ℒ =
HD

8πmec2

Pwall

βxβy

ηN
ϵnxϵny

Low emittanceLow energy spread

(luminosity spectrum, final focusing)

High energy efficiencyHigh repetition rate

> Energy efficiency motivates use of beam-driven plasma acceleration.

η = ηwall→DB × ηDB→WB

Beam-drivers are orders of magnitude more efficient 

than laser-drivers (for now)

> High-energy physics and photon science demand high(est) energy at low cost.


> Solution: Plasma accelerators — significantly higher acceleration gradients.


> Simultaneously, particle colliders have strict demands for luminosity: 
(FELs have similar demands for brightness)
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Primary goal of FLASHFORWARD‣‣ 

29

Develop a self-consistent plasma-accelerator stage

with high-efficiency, high-quality, and high-average-power

High beam quality


Energy-spread preservation

Emittance preservation

High average power


High repetition rate

High efficiency


Transfer efficiency

Driver depletion
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FLASHFORWARD‣‣ utilizes FLASH superconducting accelerator
Plasma accelerator tightly integrated into facility and benefits from Free-Electron Laser beam quality

30

BC3BC2ACC1 ACC23 ACC45 ACC67

ACC39

Photo 
cathode

FLASH 1

FLASH 2ACC → SCRF modules
BC → Bunch compressors

> FLASH is an FEL user facility

- 10% of beam time dedicated 

to generic accelerator research

> Superconducting accelerator based on ILC/XFEL technology 

- ≲ 1.25 GeV energy with ~nC charge at few 100 fs bunch duration

- ~2 µm trans. norm. emittance

- ~10 kW average beam power, MHz repetition rate in 10 Hz bursts

- exquisite stability by advanced feedback/feedforward systems


> Unique opportunities for plasma accelerator science
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FLASHFORWARD‣‣ utilizes FLASH superconducting accelerator
Plasma accelerator tightly integrated into facility and benefits from Free-Electron Laser beam quality
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BC3BC2ACC1 ACC23 ACC45 ACC67

ACC39

Photo 
cathode

FLASH 1

FLASH 2ACC → SCRF modules
BC → Bunch compressors

FLASHFORWARD‣‣

25 TW laser

EXTRACTION & 
COMPRESSION UNDULATORS

X-BAND

TDS

PHOTON

DIAGNOSTICS

BROAD- AND NARROW-BAND 

SPECTROMETERS
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R. D’Arcy et al., Phil. Trans. R. Soc. A 377, 20180392 (2019)



1.1 GeV energy gain and loss achieved in a 195 mm plasma module
Plasma accelerator essentials — demonstrating 6 GV/m field strength

Mean spectrometer image
Imaging energy = 6 MeV
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Energy extraction ➞ plasma beam dump (+ efficiency) Energy doubling to 2.2 GeV ➞ plasma booster

First realization of deceleration to rest
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Optimal beam loading enables uniform and efficient acceleration

33

experimental observation window, we assume a symmetric
beam driver and perform simulations in cylindrical coordi-
nates. The drive-bunch parameters are deduced from refer-
ence shots with the second jet switched off, i.e., 520 pC at
150 MeVand 14-μm width at the second jet. The simulation
window has a size of ðr × zÞ ¼ ð45 × 440Þk−2p , at a reso-
lution of Δr ¼ Δz ¼ 0.033k−1p , with n0 ¼ 6 × 1018 cm−3

inferred from interferometry measurements. In each cell of
the mesh, four electron and four ion macroparticles are
initialized.
The simulations [see Figs. 4(b)–4(e)] indeed show a

conelike structure appearing in the ion distribution in the
trail of the wake. While our shadowgraphy diagnostic is
sensitive to diffraction caused by changes in the local
electron density, the ion distribution itself is not visible.
However, the plasma-wave decays after around 400 μm
behind the driver such that the large charge imbalance
vanishes and the plasma becomes quasineutral, leading to
approximately equal electron and ion distributions from
400 to 700 μm. As a result, also the electron distribution
exhibits the cone-shaped structure, which allows us to
observe this ion motion using shadowgraphy.
For better comparison with the experimental data,

we simulate the propagation of the probe through the
electron distribution calculated in the PIC simulation
(see the Appendix for more information). The synthetic

shadowgram, shown in Fig. 4(b), is in excellent agreement
with the experimental data and reproduces the same
diffraction features. The radial velocity of the ion momen-
tum mivsim⊥ ∼ 4 keV=c is also compatible with the mea-
sured miv

exp
⊥ ¼ 4.1þ1.6

−1.4 keV=c.
However, our analysis shows that the mechanism caus-

ing the ion motion differs from common ion channel
formation due to Coulomb explosion [56,57]. While a
Coulomb explosion leads to a radial expulsion of ions,
and, hence, an annularly shaped distribution, the ion
density in our simulations also increases close to the
propagation axis. The reason for this is that the ions in a
plasma wave experience radial focusing and defocusing
fields in alternation. The net effect of such oscillating forces
can be calculated using the ponderomotive formalism.
In the nonrelativistic limit, which is justified since v⊥ ¼
0.0017 c ≪ c, the ponderomotive force exerted by the
plasma wave is [58]

F⃗pond;PW ¼ −
e2

4ω2
p
∇⃗jE⃗PWj2; ð4Þ

where E⃗PW is the local amplitude vector of the wakefield. In
contrast to the well-known ponderomotive force of a laser
pulse, the plasma-wave amplitude remains almost constant

(a1)

(a2)

(a3)

(a4)

(a5)

(b)

(c)

(d)

(e)

FIG. 4. Ion-channel formation from a plasma wakefield. Left: (a) Raw shadowgrams showing electron-driven plasma waves
(propagating to the right) and their trailing ion channels for five consecutive shots. The dashed lines in the lower shadowgram
exemplarily show the maxima of the ion distribution (via the electron distribution), the radial velocity of the maxima ṽ and the
momentum of an ion with p̃ ¼ miṽ. Right: Corresponding particle-in-cell simulations and synthetic shadowgram (b). The electron (c)
and ion densities (d) clearly show quasineutrality after several plasma-wave periods. The channel in the synthetic shadowgram is in
excellent agreement with the measured ones. The ion trajectories (e) on a radially scaled ion density from (d) show that ions close to the
symmetry axis are accelerated towards the axis, while ions with r0⪆2k−1p are accelerated away from it. Arrows along with the color scale
indicate the instantaneous momenta.

DIRECT OBSERVATION OF PLASMA WAVES AND DYNAMICS … PHYS. REV. X 9, 011046 (2019)

011046-7

experimental observation window, we assume a symmetric
beam driver and perform simulations in cylindrical coordi-
nates. The drive-bunch parameters are deduced from refer-
ence shots with the second jet switched off, i.e., 520 pC at
150 MeVand 14-μm width at the second jet. The simulation
window has a size of ðr × zÞ ¼ ð45 × 440Þk−2p , at a reso-
lution of Δr ¼ Δz ¼ 0.033k−1p , with n0 ¼ 6 × 1018 cm−3

inferred from interferometry measurements. In each cell of
the mesh, four electron and four ion macroparticles are
initialized.
The simulations [see Figs. 4(b)–4(e)] indeed show a

conelike structure appearing in the ion distribution in the
trail of the wake. While our shadowgraphy diagnostic is
sensitive to diffraction caused by changes in the local
electron density, the ion distribution itself is not visible.
However, the plasma-wave decays after around 400 μm
behind the driver such that the large charge imbalance
vanishes and the plasma becomes quasineutral, leading to
approximately equal electron and ion distributions from
400 to 700 μm. As a result, also the electron distribution
exhibits the cone-shaped structure, which allows us to
observe this ion motion using shadowgraphy.
For better comparison with the experimental data,

we simulate the propagation of the probe through the
electron distribution calculated in the PIC simulation
(see the Appendix for more information). The synthetic

shadowgram, shown in Fig. 4(b), is in excellent agreement
with the experimental data and reproduces the same
diffraction features. The radial velocity of the ion momen-
tum mivsim⊥ ∼ 4 keV=c is also compatible with the mea-
sured miv

exp
⊥ ¼ 4.1þ1.6

−1.4 keV=c.
However, our analysis shows that the mechanism caus-

ing the ion motion differs from common ion channel
formation due to Coulomb explosion [56,57]. While a
Coulomb explosion leads to a radial expulsion of ions,
and, hence, an annularly shaped distribution, the ion
density in our simulations also increases close to the
propagation axis. The reason for this is that the ions in a
plasma wave experience radial focusing and defocusing
fields in alternation. The net effect of such oscillating forces
can be calculated using the ponderomotive formalism.
In the nonrelativistic limit, which is justified since v⊥ ¼
0.0017 c ≪ c, the ponderomotive force exerted by the
plasma wave is [58]

F⃗pond;PW ¼ −
e2

4ω2
p
∇⃗jE⃗PWj2; ð4Þ

where E⃗PW is the local amplitude vector of the wakefield. In
contrast to the well-known ponderomotive force of a laser
pulse, the plasma-wave amplitude remains almost constant
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FIG. 4. Ion-channel formation from a plasma wakefield. Left: (a) Raw shadowgrams showing electron-driven plasma waves
(propagating to the right) and their trailing ion channels for five consecutive shots. The dashed lines in the lower shadowgram
exemplarily show the maxima of the ion distribution (via the electron distribution), the radial velocity of the maxima ṽ and the
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and ion densities (d) clearly show quasineutrality after several plasma-wave periods. The channel in the synthetic shadowgram is in
excellent agreement with the measured ones. The ion trajectories (e) on a radially scaled ion density from (d) show that ions close to the
symmetry axis are accelerated towards the axis, while ions with r0⪆2k−1p are accelerated away from it. Arrows along with the color scale
indicate the instantaneous momenta.
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propagation axis. The reason for this is that the ions in a
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fields in alternation. The net effect of such oscillating forces
can be calculated using the ponderomotive formalism.
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excellent agreement with the measured ones. The ion trajectories (e) on a radially scaled ion density from (d) show that ions close to the
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Image source: M. F. Gilljohann et al., Phys. Rev. X 9, 011046 (2019)

> Problem 1: Compared to RF cavities (Q ~ 104–1010), the electric 
fields in a plasma decay very rapidly (Q ~ 1–10).


> The energy needs to be extracted very rapidly 
—ideally within the first oscillation.
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> Problem 1: Compared to RF cavities (Q ~ 104–1010), the electric 
fields in a plasma decay very rapidly (Q ~ 1–10).


> The energy needs to be extracted very rapidly 
—ideally within the first oscillation.


> Solution: Beam loading 
The trailing-bunch wakefield “destructively interferes” with 
the driver wakefield—extracting energy. 

> Problem 2: to extract a large fraction of the energy, the beam will 
cover a large range of phases (~90 degrees or more).


> Large energy spread is induced.

Image credit: M. Litos et al., Nature 515, 92 (2014)

> Not (easily) possible: 
Dechirping

R. D'Arcy et al., 
PRL 122, 034801 (2019)
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> Problem 1: Compared to RF cavities (Q ~ 104–1010), the electric 
fields in a plasma decay very rapidly (Q ~ 1–10).


> The energy needs to be extracted very rapidly 
—ideally within the first oscillation.


> Solution: Beam loading 
The trailing-bunch wakefield “destructively interferes” with 
the driver wakefield—extracting energy. 

> Problem 2: to extract a large fraction of the energy, the beam will 
cover a large range of phases (~90 degrees or more).


> Large energy spread is induced.


> Solution: Optimal beam loading 
The current profile of the trailing bunch is precisely tailored 
to exactly flatten the wakefield.


> This requires extremely precise control of the current profile.


> FLASHForward provides the tools to do that. Image credit: M. Tzoufras et al., Phys. Rev. Lett. 101, 145002 (2008)



Page 00 |  Jens Osterhoff  |  DESY Summer School  |  August 19, 2021

High-resolution plasma wakefield sampling demonstrated
Opens a pathway to targeted and precise field manipulation
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> Beam itself acts as a probe 
➞ measures in-situ (under actual operation conditions) the effective field acting on beam with µm / fs resolution
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S. Schröder et al., Nat. Commun. 11, 5984 (2020)
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> Beam itself acts as a probe 
➞ measures in-situ (under actual operation conditions) the effective field acting on beam with µm / fs resolution
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Page 00 |  Jens Osterhoff  |  DESY Summer School  |  August 19, 2021

Loading the wakefield and beam shaping flattens the gradient
Direct visualization of electric-field control by wakefield sampling
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Nearly flat field
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> Accelerating gradient of 1.3 GV/m


> Energy gain 45 MeV (over 3.5 cm distance) of 100 pC witness, 
with energy spread of 1.4 MeV FWHM and no charge loss

> Few-percent-level wakefield flattening demonstrated

C.A. Lindstrøm et al., PRL 126, 014801 (2021)
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High-quality, efficient acceleration for sustainable applications
Beam-loading facilitates 42% energy-transfer efficiency, 0.2% energy spread with full charge coupling
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> (42±4)% energy transfer efficiency 
(improvement by factor 3 over state-of-the-art)

> 0.2% energy spread (input 0.16%) 
(improvement by factor 10 over state-of-the-art)
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> Accelerating gradient of 1.3 GV/m 

> Energy gain 45 MeV (over 3.5 cm distance) of 100 pC witness, 
with energy spread of 1.4 MeV FWHM and no charge loss 
> Few-percent-level wakefield flattening demonstrated

C.A. Lindstrøm et al., PRL 126, 014801 (2021)
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FLASHFORWARD‣‣ roadmap aims at 10 kW with high beam quality
Plan covers major plasma accelerator challenges
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2018

2030

Energy spread preservation by beam loading control
• Lindstrøm et al., PRL 126, 014801 (2021)

2019

Detection of slice properties with fs resolution

kHz-to-GHz plasma response

Emittance preservation

10 kW avg. power operation

2022

2024

High gain and overall efficiency for sustainable operation

2026

Plasma dechirper
• D’Arcy et al., PRL 122, 034801 (2019)

Energy depletion and energy doubling

Wakefield sampling
• Schröder et al., Nat. Commun. 11 5984 (2020)

2020
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FLASHFORWARD‣‣ roadmap aims at 10 kW with high beam quality
Plan covers major plasma accelerator challenges
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2018

2030

Energy spread preservation by beam loading control
• Lindstrøm et al., PRL 126, 014801 (2021)

2019

Detection of slice properties with fs resolution

kHz-to-GHz plasma response

Emittance preservation

10 kW avg. power operation

2022

2024

High gain and overall efficiency for sustainable operation

2026

Plasma dechirper
• D’Arcy et al., PRL 122, 034801 (2019)

Energy depletion and energy doubling

Wakefield sampling
• Schröder et al., Nat. Commun. 11 5984 (2020)

2020

kHz-to-GHz plasma response
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High-power plasma accelerators unlock new areas of application
Miniaturize current concepts and change the paradigm: bring the machine to the problem
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Cole et al, PNAS 115 (2018)
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Summary
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> Accelerators are at the heart of photon science and particle physics experiments, but are large installations


> Plasma wakefield technology offers a promising path to compact accelerators with > 1 GV/m fields


> Two alternative driver technologies: laser- and beam-excited plasma wakes


> Common goal: 
- plasma accelerator research → usable plasma accelerators


> Hope: miniaturization of accelerators leads to 

- significant cost reduction 

- widespread proliferation of compact accelerator technology

- beams with new and extreme properties


> Plasmas may have a revolutionary influence 
on accelerator applications and society



Thank you for your attention!


