Plasma Wakefield Acceleration An introduction to laser- and beam-driven concepts

Jens Osterhoff Head of Plasma Accelerator R&D DESY. Accelerator Division

Multi-compartment plasma cell

Capillary discharge waveguide

Alkali vapor oven

Active plasma lens

Outline

- > Introduction to laser-driven plasma wakefield accelerators: why do we care?
- > Properties of plasma wakefields
- > Example of current research: FLASHForward at DESY

Accelerators are the heart of high-energy photon sources & colliders Cutting-edge, high-end slow-motion-cameras and microscopes to study the structure of matter

Particle colliders

investigation of the fundamental forces and constituents of matter

8

Accelerators are the heart of high-energy photon sources & colliders

Illustration of an FEL-pulse diffracting off a protein (XFEL, DESY)

> Simulation of the decay of a Higgs Boson (LHC, CERN)

Cutting-edge, high-end slow-motion-cameras and microscopes to study the structure of matter

Synchrotron photon sources, e.g. Free-Electron Lasers (FELs)

investigation of processes on atomic and molecular scales

Particle colliders

investigation of the fundamental forces and constituents of matter

9

Accelerators for research are powerful, large scale machines

Schenefeld

Osdorfer Born

500 m

European XFEL 17 GeV electron accelerator

DESY-Bahrenfeld

What defines the scale length of the accelerator? Limits of conventional technology

Working principle of an RF-cavity

The goal: electrons with well defined energy gain

Kinetic energy gain $\Delta W_{kin} = eE_z d$

Accelerating field strength limited to ~50 MV/m by electrical breakdown

~1 m long TESLA-type superconducting structure

Energy increase can only be achieved by longer acceleration distances!

What defines the scale length of the accelerator? Limits of conventional technology

Ring accelerators for electrons?

- Advantage: the same (short) acceleration section may be used multiple times
- *Disadvantage:* the energy loss by synchrotron radiation limits the maximum energy
 - (and achievable beam quality: insufficient for X-ray FELs...)

Can the same be done with particle accelerators?

DESY. | Jens Osterhoff | DESY Summer School | August 19, 2021

What new applications will this enable?

Plasma is everywhere

Figure: nasa.gov

© Kyrre Ness Sjøbæk (2020)

FBPIC simulation

© Kyrre Ness Sjøbæk (2020)

Electron beam can be externally injected or formed from trapped plasma electrons (internal injection)

~10 – 100 µm

simulation by Ángel Ferran Pousa (2020)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

FBPIC simulation

© Kyrre Ness Sjøbæk (2020)

Electron beam can be externally injected or formed from trapped plasma electrons (internal injection)

~10 – 100 µm

simulation by Ángel Ferran Pousa (2020)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Plasma accelerators are a centimeter-scale source of GeV beams

FBPIC simulation

Plasma wakefields can sustain accelerating fields of up to ~1-100 GV/m with focusing gradients above ~1 MT/m

 \rightarrow Leemans *et al.*, Nature Physics **2**, 696 (2006)

simulation by Ángel Ferran Pousa (2020)

x1000 more than RF technology

Simple fluid model for plasma-wave excitation 1D in space / 3D in momentum

Transverse electron momentum (from equation of motion)

Longitudinal electron momentum (from equation of motion)

Continuity equation

Electro-magnetic wave equation

Poisson's equation

$$\gamma \beta_{\rm y} = a_0$$

$$\frac{d}{dt} (\gamma \beta_{\rm x}) = c \left(\frac{\partial \phi_0}{\partial x} - \frac{1}{2\gamma} \frac{\partial a_0^2}{\partial x} \right)$$

$$\frac{\partial n_{\rm e}}{\partial t} + c \frac{\partial}{\partial x} (n_{\rm e} \beta_{\rm x}) = 0$$

$$\frac{\partial^2 a_0}{\partial t^2} - c^2 \frac{\partial^2 a_0}{\partial y^2} = -\omega_{\rm p}^2 \frac{n_0 a_0}{\gamma}$$

$$\frac{\partial^2 \phi_0}{\partial x^2} = \frac{\omega_{\rm p}^2}{c^2} (n_0 - 1)$$

Transformation into a co-moving frame with

 $\tau = t$ and $\xi = x - v_{g}t$ and quasi-static approximation

Resulting differential equation for scalar potential

$$\frac{\partial^2 \phi_0}{\partial \xi^2} = \frac{\omega_{\rm p}^2}{2c^2} \left[\frac{1+a_0^2}{\left(1+\phi_0\right)^2} - 1 \right]$$

1D in space / 3D in momentum

$$\frac{\partial^2 \phi_0}{\partial \xi^2} = \frac{\omega_{\rm p}^2}{2c^2} \left[\frac{1 + a_0^2}{\left(1 + \phi_0\right)^2} - 1 \right]$$

Temporal laser-pulse shape in intensity

$$a^{2}(\xi) = a_{0}^{2} \exp\left[-\left(\frac{\xi - \xi_{0}}{L}\right)^{2} 4\log(2)\right]$$

Nonlinear regime

Accelerating field strength

$$E \sim \left(\frac{mc\omega_p}{e}\right) \frac{a^2}{(1+a^2/2)} \approx (96\text{V/m})\sqrt{n_0[\text{cm}^{-3}]} \frac{a^2}{(1+a^2/2)}$$

e.g. $E \approx 100 \text{ GV/m}$ (for $n \approx 10^{18} \text{ cm}^{-3}$, $a \approx 1$)

1D in space / 3D in momentum

3D in space / 3D in momentum

30 -----0.2

Wakefield properties in transverse dimensions **3D in space / 3D in momentum**

from C.B.Schroeder *et al.*, PRSTAB **13**, 101301 (2010)

The LWFA process can be complex

- laser self-focussing
- laser self-compression
- wave breaking
- beam hosing
- beam loading
- ...

Our customers: high-energy physics and photon science

> High-energy physics and photon science demand high(est) energy at low cost.

> Solution: Plasma accelerators — significantly higher acceleration gradients.

> Simultaneously, particle colliders have strict demands for luminosity: (FELs have similar demands for brightness)

> Energy efficiency motivates use of beam-driven plasma acceleration.

 $\eta = \eta_{wall \to DB} \times \eta_{DB \to WB}$

Beam-drivers are orders of magnitude more efficient than laser-drivers (for now)

Primary goal of FLASHFORWARD

Develop a self-consistent plasma-accelerator stage with high-efficiency, high-quality, and high-average-power

High efficiency

Transfer efficiency

Driver depletion

Energy-spread preservation

Emittance preservation

High beam quality

High average power

High repetition rate

FLASHFORWARD utilizes FLASH superconducting accelerator

Plasma accelerator tightly integrated into facility and benefits from Free-Electron Laser beam quality

> FLASH is an FEL user facility

- 10% of beam time dedicated to generic accelerator research

Superconducting accelerator based on ILC/XFEL technology

- ≤ 1.25 GeV energy with ~nC charge at few 100 fs bunch duration
- $\sim 2 \,\mu m$ trans. norm. emittance
- ~10 kW average beam power, MHz repetition rate in 10 Hz bursts
- exquisite stability by advanced feedback/feedforward systems

> Unique opportunities for plasma accelerator science

FLASHFORWARD utilizes FLASH superconducting accelerator

Plasma accelerator tightly integrated into facility and benefits from Free-Electron Laser beam quality

R. D'Arcy et al., Phil. Trans. R. Soc. A 377, 20180392 (2019)

1.1 GeV energy gain and loss achieved in a 195 mm plasma module Plasma accelerator essentials — demonstrating 6 GV/m field strength

> Problem 1: Compared to RF cavities (Q ~ 104–1010), the electric fields in a plasma decay very rapidly ($Q \sim 1-10$).

bean

The energy needs to be extracted very rapidly -ideally within the first oscillation.

Image source: M. F. Gilljohann *et al.*, Phys. Rev. X9, 011046 (2019)

a celeration

Optimal beam loading enables uniform and efficient acceleration

> Problem 1: Compared to RF cavities (Q ~ 10^4 – 10^{10}), the electric fields in a plasma decay very rapidly ($Q \sim 1-10$).

> The energy needs to be extracted very rapidly -ideally within the first oscillation.

> Solution: Beam loading The trailing-bunch wakefield "destructively interferes" with the driver wakefield – extracting energy.

> Problem 2: to extract a large fraction of the energy, the beam will cover a large range of phases (~90 degrees or more).

> Large energy spread is induced.

R. D'Arcy et al., PRL **122**, 034801 (2019)

Optimal beam loading enables uniform and efficient acceleration

> Problem 1: Compared to RF cavities (Q ~ 10^4 – 10^{10}), the electric fields in a plasma decay very rapidly ($Q \sim 1-10$).

> The energy needs to be extracted very rapidly -ideally within the first oscillation.

> Solution: Beam loading The trailing-bunch wakefield "destructively interferes" with the driver wakefield – extracting energy.

> Problem 2: to extract a large fraction of the energy, the beam will cover a large range of phases (~90 degrees or more).

> Large energy spread is induced.

> Solution: Optimal beam loading The current profile of the trailing bunch is *precisely tailored* to exactly flatten the wakefield.

> This requires <u>extremely precise control</u> of the current profile.

> FLASHForward provides the tools to do that.

Image credit: M. Tzoufras *et al.*, Phys. Rev. Lett. **101**, 145002 (2008)

High-resolution plasma wakefield sampling demonstrated **Opens a pathway to targeted and precise field manipulation**

Beam itself acts as a probe

 \rightarrow measures in-situ (under actual operation conditions) the effective field acting on beam with μ m / fs resolution

а

current Ε ea m

High-resolution plasma wakefield sampling demonstrated **Opens a pathway to targeted and precise field manipulation**

Beam itself acts as a probe

 \rightarrow measures in-situ (under actual operation conditions) the effective field acting on beam with μ m / fs resolution

current

Loading the wakefield and beam shaping flattens the gradient **Direct visualization of electric-field control by wakefield sampling**

DESY. | Jens Osterhoff | DESY Summer School | August 19, 2021

High-quality, efficient acceleration for sustainable applications Beam-loading facilitates 42% energy-transfer efficiency, 0.2% energy spread with full charge coupling

Accelerating gradient of 1.3 GV/m

Energy gain 45 MeV (over 3.5 cm distance) of 100 pC witness, with energy spread of 1.4 MeV FWHM and no charge loss

Few-percent-level wakefield flattening demonstrated

- 0.2% energy spread (input 0.16%) (improvement by factor 10 over state-of-the-art)
- (42±4)% energy transfer efficiency (improvement by factor 3 over state-of-the-art)

40
35
30
25
20
15
10
5

Spectral density (pC MeV⁻¹

FLASHFORWARD roadmap aims at 10 kW with high beam quality

Plan covers major plasma accelerator challenges

FLASHFORWARD roadmap aims at 10 kW with high beam quality

Plan covers major plasma accelerator challenges

High-power plasma accelerators unlock new areas of application Miniaturize current concepts and change the paradigm: bring the machine to the problem

Summary

- > Accelerators are at the heart of photon science and particle physics experiments, but are large installations
- Plasma wakefield technology offers a promising path to compact accelerators with > 1 GV/m fields
- > Two alternative driver technologies: laser- and beam-excited plasma wakes
- Common goal:
 - plasma accelerator research \rightarrow usable plasma accelerators
- Hope: miniaturization of accelerators leads to
 - significant cost reduction
 - widespread proliferation of compact accelerator technology
 - beams with new and extreme properties
- Plasmas may have a revolutionary influence on accelerator applications and society

Thank you for your attention!

