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The CDM standard model of cosmology

P
la

n
c
k
 c

o
lla

b
o

ra
ti
o
n

 (
2
0

2
1

)



 Best measurements: 

  0.68 

M  0.32 (b  0.05)

rad  10−5

H0  70 km/s/Mpc

 The Universe 

 is flat

 is infinite

 accelerates!

 expands for ever

 is 13.8  109 yr old

 consists of unknown 

mass/energy components

at the 95% level!

Our Universe



Two elephants in the room:

So what is there left to do (for surveys)?

xkcd



Is the model beginning to crack?

 Hubble tension

So what is there left to do (for surveys)?

Ezquiaga et al. (2018)



Di Valentino et al. (2021)
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 A complete description of the 

dynamical structure of the 

Milky Way requires a survey of 

the 6D phase space of its stars

 3D position in space

 Position on sky

 Distance

 3D velocity

 Tangential velocity           

(i.e. in the plane of the sky)

 Radial velocity

Gaia and the Dark Mater halo of the Milky Way



Distance determination by parallax

Trigonometric parallax

 Direct distance determination

 Parallax angle : sin()   = a/r

(for r ≫ a)

 Definition of the unit of length 

parallax second = parsec = pc:

a = 1 AU ( 150  106 km)

 = 1”

 r ≡ 1 pc = 3.26 Lj = 30.9  1012 km

 Works only for very nearby stars

 Except when you can measure 

positions with extreme precision 

 Gaia: 26 as (G = 15 mag)!



 Tangential velocity vt

 Causes proper motion  = 

change of position in the sky 

(angular velocity)

 Measure from repeated 

astrometric observations

 Radial velocity vr

 Spectroscopy  Doppler effect

Velocities



Gaia: a 6D survey of the Milky Way



Gaia

Credit: ESA

https://www.esa.int/spaceinvideos/Videos/2018/12/The_Universe_of_Gaia


Gaia in numbers

First astrometry space mission 

(ESA, 1989 – 1993) 



Gaia in numbers

 Originally planned as 5-yr mission, now extended to 10 yr

 Astrometry (G < 20 mag):

 Complete to 20 mag (on-board detection)  109 stars!!!

 Precision: 26 as at G=15 mag (Hipparcos: 1 mas at 9 mag)

 Scanning satellite, two viewing directions

 global accuracy, with optimal use of observing time

 Principle: global astrometric reduction (as for Hipparcos)

 Photometry (G < 20 mag):

 Astrophysical diagnostics (low-dispersion photometry) + chromaticity  
 Teff ~ 100 K, log g, [Fe/H] to 0.2 dex, extinction (at G=15 mag)

 Radial velocity (GRVS < 16 mag):

 Precision: 15 km/s at GRVS=16 mag

 Principle: slitless spectroscopy of Ca triplet (845 – 872 nm) at                  
R = 10,800



Payload and telescope

Figure courtesy EADS-Astrium

Two SiC primary mirrors 

1.45  0.50 m2 at 106.5°

SiC torus

(optical bench)

Basic-Angle-Monitoring 

(BAM) system

Combined 

Focal-Plane 

Assembly 

(FPA) with 

106 CCD 

detectors

Rotation axis (6h)

Radial-Velocity 

Spectrometer (RVS)

Superposition of two 

Fields of View (FoV)



Inside Gaia

Figure courtesy EADS-Astrium

Blue photometer:

330 – 680 nm

Red photometer:

640 – 1050 nm



Gaia focal plane

Star motion in 10 s

Total field:

- active area: 0.75 deg2 

- CCDs: 14 + 62 + 14 + 12 (+ 4)

- 4500 x 1966 pixels (TDI)

- pixel size = 10 µm  30 µm

= 59 mas  177 mas

Astrometric Field 

CCDs
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Radial-Velocity 

Spectrometer 

CCDs

Basic 

Angle 

Monitor

Wave 
Front 
Sensor

Basic 

Angle 

Monitor

Wave 
Front 
Sensor

Sky mapper:

- detects all objects to G=20 mag

- rejects cosmic-ray events

- field-of-view discrimination

Astrometry:

- total detection noise ~4 e-

Photometry:

- spectro-photometer

- blue and red CCDs

Spectroscopy:

- high-resolution spectra

- red CCDs
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Figure courtesy Alex Short



Gaia

Credit: ESA

https://sci.esa.int/web/gaia/-/53281-inside-gaia-s-billion-pixel-camera


Gaia

Credit: ESA

https://www.esa.int/spaceinvideos/Videos/2018/12/The_Universe_of_Gaia


Gaia



Gaia: Parallax and proper motion

Credit: ESA

http://sci.esa.int/gaia/60224-parallax-and-proper-motion-on-the-sky/


Gaia: 109 stars in 6D

 Will provide in our Galaxy:

 Distance and velocity distributions of all stellar populations

 Spatial and dynamical structure of the disk and halo

 Formation history

 Detailed mapping of the Galactic Dark Matter distribution

• Extent and shape of the halo

• DM(r)

• Towards full 6D distribution function of DM



 Density and velocity distribution of 

DM at the Sun’s location in the MW

 Essential for the interpretation of 

DM direct detection experiments

 DM flux distribution on sky

Gaia: early results

Sivertsson et al. (2018)

O’Hare et al. (2020)



Gaia: early results

 Density and velocity distribution of 

DM at the Sun’s location in the MW

 Essential for the interpretation of    

DM direct detection experiments

 DM flux distribution on sky

 Spectral line shape in axion haloscope

 WIMP interaction event rates

O’Hare et al. (2020)



 Rotation curve  mass profile and 

total mass of the MW 

 Stars

 Stellar streams

 Globular cluster

 MW dwarf satellites               

(Which are bound to MW? Orbits? 

Effect of LMC?)

 Mtot = 1.1  1012 M⨀

Gaia: early results

Cautun et al. (2020)

Helmi et al. (2018), 

Maarten Breddels



 DM substructure from

 Substructure in stellar streams

Gaia: early results

Helmi et al. (2020) SDSS / Koposov et al. (2017)



 DM substructure from

 Substructure in stellar streams

Gaia: early results

Bonaca et al. (2019)
Erkal et al. (2017)



 DM substructure from

 Substructure in stellar streams

 Warp and ripples in disk

Gaia: early results

Poggio et al. (2020), S. Payne-Wardenaar



Questions?
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Credit: Rubin Obs

Large Synoptic Survey Telescope

Vera C. Rubin Observatory



LSST

 The Vera C. Rubin Observatory will deliver the Legacy 

Survey of Space and Time (LSST)

 LSST = An optical/near-IR survey of half the sky in ugrizy

bands to r  27.5 mag based on ~1000 visits over a 10-

year period

 90% of time will be spent on a uniform survey: every 3-4 

nights, the whole observable sky will be scanned twice 

per night

 A catalogue of 20 billion stars and 20 billion galaxies with 

exquisite photometry, astrometry and image quality!

 ~1 billion 16 Mpix images  ~100 PB of data

 Digital colour movie of the Universe
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Start of ops: Oct 2022



Förster et al. (2020)

Start of ops: Oct 2022



Credit: Rubin Obs



Credit: Rubin Obs



Credit: Rubin Obs



Credit: Rubin Obs



Credit: Rubin Obs



Credit: Rubin Obs



Credit: Rubin Obs



Credit: Rubin Obs



Credit: Rubin Obs



Credit: Rubin Obs



Credit: Rubin Obs



 Covers over half of the entire sky

 Six photometric bands

 Each visit: 2×15 s exposure

 ~1000 visits of every patch of sky

 Colour movie of the Universe

 Enormous depth when stacked

 Exact cadence still being worked out

 Deep Drill Fields

 Headline science goals:

 Probing dark energy and dark matter

 Taking an inventory of the solar system

 Exploring the transient optical sky

 Mapping the Milky Way

Legacy Survey of Space and Time (LSST)
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How will LSST constrain dark energy?

 Cosmic shear (growth of structure + cosmic geometry)

 Counts of massive structures vs redshift (growth of structure)

 Baryon acoustic oscillations (angular diameter distance)

 Measurements of type Ia SNe (luminosity distance)

 Mass power spectrum on very large scales tests CDM paradigm

 Multiple probes are the key!

LSST and dark energy



 White Dwarf in binary system with mass transfer:

 MWD  critical mass  core reaches T needed for C-fusion

 Type Ia Supernova = thermonuclear explosion

Type Ia Supernovae
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 White Dwarf in binary system with mass transfer:

 MWD  critical mass  core reaches T needed for C-fusion

 Type Ia Supernova = thermonuclear explosion

 Extremely bright  observable over cosmological distances

Type Ia Supernovae

NASA/ESA, The Hubble Key 

Project Team and The High-

Z Supernova Search Team



 Every SNIa explosion proceeds very 

similarly because the initial conditions 

are always the same

 Maximum luminosity of a SNIa is 

correlated with the width of its lightcurve

 SNIa are “standardisable”, but need to 

calibrate the width-luminosity relation

Type Ia Supernovae

Hamuy et al. (1996) 



 Cepheids = periodic pulsating variable stars

 Giant stars, extremely bright  observable 

over large distances (Local Group)

 Amplitudes < 2 mag, Periods: 1 − 130 d

 Empirical relationship between period and 

luminosity: L ∝ Pn, n  1.1

 Cepheids are “standardisable”, but need to 

calibrate the period-luminosity relation

 Gaia!

Cepheids

Henrietta Swan Leavitt (1868 − 1921)



 Every SNIa explosion proceeds very 

similarly because the initial conditions 

are always the same

 Maximum luminosity of a SNIa is 

correlated with the width of its lightcurve

 SNIa are “standardisable”, but need to 

calibrate the width-luminosity relation

 Comparison of derived luminosity with 

observed brightness  luminosity 

distance

 Measurement of luminosity distance as 

function of redshift: DL(z) ∝  1/H(z)

Type Ia Supernovae

Riess et al. (1998)



 Measurement of luminosity 

distance as function of redshift: 

DL(z) ∝  1/H(z)

 Largest current sample: JLA + 

Pantheon  1000 SNIa

Type Ia SNe

Betoule et al. (2014), Scolnic et al. 

(2018), Planck Collaboration (2021)



 Measurement of luminosity 

distance as function of redshift: 

DL(z) ∝  1/H(z)

 Largest current sample: JLA + 

Pantheon  1000 SNIa

 As a transient detection machine, 

LSST is perfect for detecting large 

samples of SNIa

 Expected sample: a few  105!

 Need identifications and redshifts 

 spectroscopy

 Will need to rely on photo-z for 

some (large) fraction

 Interesting constraints on dark 

energy equation of state 

parameters from SNe alone

Type Ia SNe

LSST Science Book (2009)

10 k SNe

50 k SNe



Is the model beginning to crack?

 Hubble tension

So what is there left to do (for surveys)?

Planck Collaboration (2021)



Questions?


