
Introduction to EUDAQ 2

16.06.21
Lennart Huth

LUXE DAQ discussion

16-June-2021 lennart.huth@desy.de 2

Outline

● Basics of data acquisition system
● Multi-platform network DAQ: EUDAQ2
● Implementing a device in EUDAQ2
● Data quality monitoring

I interpret this meeting as a discussion – so feel free to interrupt me during the
presentation or ask any question at the end!

16-June-2021 lennart.huth@desy.de 3

From particle interaction to data

image credit

Digitization

Processing

Data quality monitoringStorage

https://www.nbi.dk/~xella/lecture_16Feb2009.pdf

16-June-2021 lennart.huth@desy.de 4

From particle interaction to data

image credit

Digitization

Processing

Data quality monitoringStorage

EUDAQ2

https://www.nbi.dk/~xella/lecture_16Feb2009.pdf

16-June-2021 lennart.huth@desy.de 5

A bit more complex example
Operating a MIMOSA Telescope at the test beam with an additional timing layer and a DUT

MIMOSA26MIMOSA26MIMOSA26MIMOSA26MIMOSA26MIMOSA26MIMOSA26
DUT Timepix3

Hardware Layer

DUT - PCNI-Windows Unix TPX3

Central RunControl

Software Layer

In charge of steering and monitoring
all DAQ sub systems

16-June-2021 lennart.huth@desy.de 6

EUDAQ2 - Concept

● One central runcontrol instance to steer all other
components within the same network

● Runs on MAC,Windows and Unix – developments focused
on unix (no request for other OS by users since years)

● Finite state machine defining behavior
● Communication with different computers via custom TCP/IP

stack
● Each (set of) physical devices is implemented as a

‘Producer’
● Offers data sorting based on trigger Ids or event numbers.

Alternatively direct data storage
● Provides basic data quality monitoring
● Central instance to collect log messages/errors etc
● Synergies with the AIDA TLU (see next talk by D. Cussans)

16-June-2021 lennart.huth@desy.de 7

EUDAQ2 Architecture/Linking

EUDAQ2 is split into several
components:
– Core: All central components discusses

before
– Executable
– Plugin library: User code, which is loaded

at run time if requested

 → Only the core and the plugin to
control the detector needs to be
installed on the readout-PC. Reduces
build complexity

16-June-2021 lennart.huth@desy.de 8

Finite State Machine
Runcontrol state is defined as the lowest state of any component

Each component reports its state to the run control

Default after
startup

Time consuming once after power up steps: At initialize → Frequent steps: At configure

16-June-2021 lennart.huth@desy.de 9

Communication & Configuration

● All components (but the runcontrol)
inherit from a CommandReceiver,
which implements all required
communication protocols
– Connection procedure
– Virtual function to react on state

changes
– Connections to a logging instance
– TCP/IP connection

● A central logger is used to collect,
display and store Log messages
from all connected components

Configuration/Initialization are passed by
simple plain text files:

Unique nameType

16-June-2021 lennart.huth@desy.de 10

Data Collectors
Any data collection method can be implemented – currently three versions are provided

P
roducer 1

P
roducer 2

P
roducer n-1

P
roducer n

12
10
8
6
4
2
0

12
5
4
3
2
1
0

12
9
7

13
11
4
3

12
7
6
5
3
2
1

Direct data storage Triger/EventID sorting

0

0 1

1

2

2

2

3

3

3

4

4

4

5

5

6

6 7

8 10

11

12

12

12

Lost events

16-June-2021 lennart.huth@desy.de 11

Default Online Monitor

● Root(6) based gui
● Plots inter event correlations and hitmaps

of all devices in a single data stream
● Requires sorted data collection
● Fixed fraction of events will be forwarded to

monitor
● Monitored values are limited to x/y position
● More flexible root monitor implemented by

testbeam users: RootMonitor (would be a
talk on its own:BTTB8 Talk)

https://indico.cern.ch/event/813822/contributions/3648334/attachments/1976417/3289790/bttb8_forthomme_eudaqdqm.slides.pdf

16-June-2021 lennart.huth@desy.de 12

User Code - Producer/Converter
Producer Converter

Implement these
functions

Producer stores data as char vector –
converter implements the re-conversion
to a std event

16-June-2021 lennart.huth@desy.de 13

Getting started and Summary

EUDAQ2 provides:
– A finite state machine to steer a set of

subsystems
– Common Data structure
– Network communication
– Logging
– Basic DQM
– Data storage

EUDAQ2 is a community project and
actively used within test beams User →
input always welcome

● Check the repository:

eudaq2
● Run the examples and get

familiar with the structure
● Implement your own devices
● Test beam campaign to study

your developments under
realistic conditions :)

http://www.github.com/eudaq/eudaq

16-June-2021 lennart.huth@desy.de 14

Backup

16-June-2021 lennart.huth@desy.de 15

Basic principles

➢ Three core components:
➢ The detector
➢ Readout hardware
➢ Readout software

➢ A very simple example: Reading out a
photomultiplier with an oscilloscope.

➢ This talk will focus on the last component:
readout software (and some level of detail
about detector hardware)

➢ Starting and stopping data taking
➢ State machines to control readout

In general

image credit

Image credit

https://kaizerpowerelectronics.dk/high-voltage/photomultiplier-tube/
https://twiki.cern.ch/twiki/pub/AtlasPublic/ApprovedPlotsDAQ/tdaq-run2-schematic2017.png

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

