

Convolutional neural networks (CNNs) Stefan Funk - Erlangen Centre for astroparticle physics (ECAP)

 $\operatorname{conv1}$

Deconv softmax

WHAT ARE CNNS?

Input image

- > Inspired by visual cortex (small region of cells sensitive to specific regions of the visual field)
 - Some neurons fire when they see vertical edges, others for diagonal ones
- CNN learns to look features (=values of the filters) on its own through learning
 - Technically: slide convolution 'filter' over input volume
 - Learning part: determine optimal parameter of filters
- Able to derive patterns in a highly-complex input space

WHY ARE THEY USEFUL IN PHYSICS?

- Very often measurements consist of sensor grids in space and time
 - Small signal large background
 - Reconstruction of data from huge noisy dataset
- \succ 70% of all data retained at the LHC are classified by machine-learning algorithms (Radovic et al. 2018).
 - Example: LHCb search for dark photons reached a sensitivity within a year that is comparable to the 10-year sensitivity without machine learning.

FAKULTÄT

EXAMPLE ASTROPARTICLE PHYSICS

- makes networks more robust
- ► Almost bias-free determination of X_{max}
- Nice complement to Fluorescence detector

Includes data augmentation of simulated data to account for detector imperfections -

EXAMPLE ASTROPARTICLE PHYSICS

- makes networks more robust
- ► Almost bias-free determination of X_{max}
- Nice complement to Fluorescence detector

Includes data augmentation of simulated data to account for detector imperfections -

EXAMPLE ASTROPARTICLE PHYSICS

- ► 4-dimensional input
- Significantly improve energy reconstruction and energy threshold

Hünnefeld et al., ICRC 2017

https://inspirehep.net/files/dd8753996e23f32f65ebce73fa22f61d

- 2020 or Wu et al., 2018
 - Use physics laws as a guideline for constructing NNs (e.g. <u>Hamiltonian NN</u>)
 - Letting ML find optimal observables (e.g. <u>Datta et al. 2019</u>)
- Improve computational efficiency of CNNs, real-time processing
- CNNs on FPGAs (e.g. for L1T at LHC, <u>HLS4ML</u> open source, multi backend)
- ► Network causality how are decisions taken? (e.g. <u>Kindermans et al. 2017</u>)
- Uncertainty quantification (typically with GANs)
- Refinement of MC simulations to match data (also with GANs)

- <u>2020</u> or <u>Wu et al., 2018</u>
 - ► Use physics laws as a g
 - ► Letting ML find optime
- \blacktriangleright Improve computational ϵ
- ► CNNs on FPGAs (e.g. for
- Network causality how
- Uncertainty quantification
- Refinement of MC simula

- 2020 or Wu et al., 2018
 - Use physics laws as a guideline for constructing NNs (e.g. <u>Hamiltonian NN</u>)
 - Letting ML find optimal observables (e.g. <u>Datta et al. 2019</u>)
- Improve computational efficiency of CNNs, real-time processing
- CNNs on FPGAs (e.g. for L1T at LHC, <u>HLS4ML</u> open source, multi backend)
- ► Network causality how are decisions taken? (e.g. <u>Kindermans et al. 2017</u>)
- Uncertainty quantification (typically with GANs)
- Refinement of MC simulations to match data (also with GANs)

- Physics-guided CNNs 2020 or Wu et al., 201
 - ► Use physics laws as :
 - ► Letting ML find opti
- ► Improve computationa

- ➤ CNNs on FPGAs (e.g. for L1T at LHC, <u>HLS4ML</u> open source, multi backend)
- ► Network causality how are decisions taken? (e.g. <u>Kindermans et al. 2017</u>)
- Uncertainty quantification (typically with GANs)
- Refinement of MC simulations to match data (also with GANs)

- 2020 or Wu et al., 2018
 - Use physics laws as a guideline for constructing NNs (e.g. <u>Hamiltonian NN</u>)
 - Letting ML find optimal observables (e.g. <u>Datta et al. 2019</u>)
- Improve computational efficiency of CNNs, real-time processing
- CNNs on FPGAs (e.g. for L1T at LHC, <u>HLS4ML</u> open source, multi backend)
- ► Network causality how are decisions taken? (e.g. <u>Kindermans et al. 2017</u>)
- Uncertainty quantification (typically with GANs)
- Refinement of MC simulations to match data (also with GANs)

- > Physics-guided CNNs (previde physics constraints on the naturally output) of Thene et al <u>2020</u> or <u>Wu et al., 2018</u>
 - ► Use physics laws as a gu
 - Letting ML find optimal
- Improve computational eff
- CNNs on FPGAs (e.g. for
- Network causality how a

- VGG-16 classification Uncertainty quantification (typically with GAINS)
- Refinement of MC simulations to match data (also with GANs)

- 2020 or Wu et al., 2018
 - Use physics laws as a guideline for constructing NNs (e.g. <u>Hamiltonian NN</u>)
 - Letting ML find optimal observables (e.g. <u>Datta et al. 2019</u>)
- Improve computational efficiency of CNNs, real-time processing
- CNNs on FPGAs (e.g. for L1T at LHC, <u>HLS4ML</u> open source, multi backend)
- ► Network causality how are decisions taken? (e.g. <u>Kindermans et al. 2017</u>)
- Uncertainty quantification (typically with GANs)
- Refinement of MC simulations to match data (also with GANs)

CNNS IN ERUM

- Active research to improve CNNs in (astro) particle physics
- In the context of reconstruction of shower geometry for CTA:
 - Physics-motivated CNNs
 - Evaluation of optimal encoding of data
 - Estimation of network uncertainties

photon hadron

particle physics cometry for

SUMMARY

Machines exploit physics contained in data deeper than before

investigations of causality, stability, uncertainties

CNNs are the workhorse for many of the more advanced applications, as example in

