[Detector of TrackML challenge]

@SaltyBurger

A. Salzburger (CERN)

Standard Model Total Production Cross Section Measurements Status: November 2019

*collider centric view

Particle Tracking Trajectory and vertex finding in tracking detectors

Particle Tracking Machine Learning Challenge [<u>Phase 1</u>][<u>Phase 2</u>]

5m 7m 3m 4m

• Aim to find trajectories of charged particles (and thus their kinematic properties) as efficiently as possible

• Cluster trajectories from common vertices (and find those)

• If possible, first particle identification Avoid: fake/ghost trajectories, duplicates, ...

Pattern recognition for particle detectors

- Typical pattern recognition problem
 - Effectively a <u>clustering problem</u>
- Classical approaches include
 - Global/conformal mapping
 - Track seeding & following
 - Combinatorial filtering

4

Particle Tracking Pattern recognition for particle detectors

- Typical pattern recognition problem
 - Effectively a clustering problem
- Classical approaches include
 - Global/conformal mapping
 - Track seeding & following
 - Combinatorial filtering

Pattern recognition for particle detectors

Pattern recognition for particle detectors

~ 10 000 particles

~ 100 000 measurements

Particle Tracking Classical algorithms

- Pattern recognition problem
 - Highly non-linear scaling
- HL-LHC era will put pressure on experiments
 - CPU ressources at current will not be sufficent
 - R&D needed
 - computing/software
 - new algorithms

Year

Graph Neural Networks for particle tracking - **principles**

graph representation

track building

track fitting/cleaning

Graph Neural Networks for particle tracking - **examples**

- Example performance on TrackML dataset
 - Clear separation, high efficiency & purity

https://indico.cern.ch/event/948465/contributions/4323573 Particle Tracking Machine Learning Challenge [<u>Phase 1</u>][<u>Phase 2</u>]

Graph Neural Networks for particle tracking - challenges & opportunities

Graph Neural Networks for particle tracking - friends, family & opportunity

• Pioneering work by Exa.TrkX project and some other R&D groups

- Potential combination with
 - Metric learning (GNN in learned space)
 - Data hashing

https://indico.cern.ch/event/948465/contributions/4323753 https://indico.cern.ch/event/948465/contributions/4323573

[S. Amrouche, N. Calace, T. Golling, M. Kiehm. AS : Hashing & similarity learning]

V

https://arxiv.org/abs/2106.13593

Graph Neural Networks for particle tracking - embedding

- Detector/framework agnostic track reconstruction toolkit
 - track fitting/cleaning
- Fast/full simulation capabilities
- Used for TrackML dataset creation
- Dedicated ML R&D line:
 - GNNs tracking & vertexing
 - Hashing
 - Classifications

ATLAS ITk

Graph Neural Networks for particle tracking - embedding

- Dedicated ML R&D line:

 - Hashing
 - Classifications

https://arxiv.org/abs/2106.13593

ATLAS ITk

Detector/framework agnostic track

•test transferability of approach • direct usage in some experiments (ACTS is part of e.g. ATLAS, sPHENIX Use production software stack) creation

• GNNs tracking & vertexing

Belle-II

https://arxiv.org/abs/2106.13593

Graph Neural Networks for particle tracking - embedding

- Detector/framework agnostic track reconstruction toolkit
 - track fitting/cleaning
- Fast/full simulation capabilities
 Non ML components available Used+ downstream algorithms creation (e.g. vertex reconstruction) • Dedicated ML R&D line:
 - GNNs tracking & vertexing
 - Hashing
 - Classifications

ATLAS ITk

Belle-II

https://arxiv.org/abs/2106.13593

- Detector/framework agnostic track reconstruction toolkit
 - track fitting/cleaning
- Fast/full simulation capabilities
- Used for TrackML dataset creation
- Dedicated ML R&D line:
 - GNNs tracking & vertexing
 - Hashing
 - Classifications

Fits into ACTS R&D projects + exchange with other R&D groups

Graph Neural Networks for particle tracking - embedding

ATLAS ITk

Belle-II

Conclusions & Food

- Graph Neural Networks offer a great possibility for track reconstruction
 - Pioneered already by Exa.TrkX and other groups
 - Can build upon their ground work & profit from CERNs unique involvement into track reconstruction @ (HL-)LHC

- Potential for usage in Event filter
 - Maximise throughput on GPUs/heterogenous hardware

COLLIDER

e.g. LHC $\sqrt{s} = 14 \text{ TeV}$ $f_{coll} = 40 \text{ MHz}$

*collider centric view

19

START-UP OF LHC (2009) 1 single P-P collision

EARLY RUN-1 OF LHC (2010) 5 instantaneous P-P collision

*collider centric view

HL-LHC (exp. 2027) ~200 instantaneous P-P collision

*collider centric view

HEP landscape in a nutshell - data path

RECONSTRUCTION

0 Ο

ANALYSIS

22

HEP landscape in a nutshell - MC path

DETECTOR SIMULATION

EVENT GENERATION

TRIGGER & DATA ACQUISITON

RECONSTRUCTION

O

ANALYSIS

SIGNAL SIMULATION

***collider centric view** 23

End-to-end Tracking attempts The "my job is done by a machine" scenario

- Exa.TrkX project applies a Graph Neural Network (GNN) approach • Build nodes and edges, classify edges [0, 1] and eventually drop them

Attention Message Passing with Residuals

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).

Particle Tracking Machine Learning Challenge [<u>Phase 1</u>][<u>Phase 2</u>]

