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What is an anomaly?
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Point anomaly / Outlier

• Outliers: Datapoints far away from regular distribution


• Examples:


• Signals that are very different from  
the background


• Detector malfunctions
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And now?
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Group anomaly

Color (Mass/Time/…)5



Color (Mass/Time/…)

Co
un

t
Group anomaly

• Individual examples not anomalous, 
but interesting collective behaviour


• Examples:


• Resonant signals over flat backgrounds (mass)


• Short-time signals over stationary background 
(time)
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• For discoveries: 
Gain sensitivity to wide range of potential signals 
without explicitly specifying 

• For monitoring: 
Detect malfunctions without known them in 
advance


• Added bonus: 
Training from data often possible, reduces need for 
simulation and corresponding uncertainties


• How can we do this?

Motivation
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• Anomaly score a should be high for  
anomalous (signal-like) 
and low for background-like events


• Some options:


• a(x) = Supervised 

• a(x) = 1 / p(x|Background) 

• a(x) = p(x|Signal) / p(x|Background)

How to build anomaly score?
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• Anomaly score a should be high for  
anomalous (signal-like) 
and low for background-like events


• Some options:


• a(x) = Supervised 

• a(x) = 1 / p(x|Background) 

• a(x) = p(x|Signal) / p(x|Background)

How to build anomaly score?

Supervised training:

Train a classifier to distinguish a mixture 
(cocktail) of hypothetical (simulated) signals from 
(simulated) background
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• Anomaly score a should be high for  
anomalous (signal-like) 
and low for background-like events


• Some options:


• a(x) = (Semi-) Supervised 

• a(x) = 1 / p(x|Background) 

• a(x) = p(x|Signal) / p(x|Background)

How to build anomaly score?

Find regions of low phase-space density for 
background:


Use simulation to estimate background 
distribution (e.g. MUSIC, 2010.02984)

Use data to estimate background distribution 
(e.g. sidebands)



Popular Example: Autoencoder
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X X’ X’’
Encoder 
fɸ(x)

Decoder 
gθ(x’)

Input data 
e.g. images, high level 
observables, four 
vectors

Compressed 
representation 
Latent space Output data


(sane format as 
input)

Heimel, GK, Plehn, Thompson, QCD or 
What?, 1808.08979 (also Shih et al 
1808.08992); See Krämer et al 
(2104.09051) and Plehn et al (2104.08291) 
for recent studies of bias; Additional 
potential difficulty if data space has a non-
trivial global topology (2102.08380)

• Core idea:


• Train lossy compression algorithm on 
anomaly-free data


• Apply to data containing potential anomalies


• Expect quality to decrease for atypical 
examples:  
anomaly score

Train on one process (QCD), 
identify other, unseen, process 
(top) as anomaly
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• Anomaly score a should be high for  
anomalous (signal-like) 
and low for background-like events


• Some options:


• a(x) = (Semi-) Supervised 

• a(x) = 1 / p(x|Background) 

•a(x) = p(x|Signal) / p(x|Background)

How to build anomaly score?
Construct a likelihood-ratio: 


Mixed sample training
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

Metodiev, Nachman, Thaler, Classification without labels: Learning 
from mixed samples in high energy physics, 1708.02949

Collins, Howe, Nachman, Anomaly Detection for Resonant New 
Physics with Machine Learning,1805.02664



13

• Anomaly score a should be high for  
anomalous (signal-like) 
and low for background-like events


• Some options:


• a(x) = (Semi-) Supervised 

• a(x) = 1 / p(x|Background) 

•a(x) = p(x|Signal) / p(x|Background)

How to build anomaly score?
Construct a likelihood-ratio: 


Density estimation 
using flow-based 
models 

Compare learned 
density of data in signal 
region and sidebands

Nachman, Shih,  Anomaly Detection with 
Density Estimation 2001.04990

+/- 10% of
mass peak

train "inner model"
on SR

evaluate on
signal region

mjj

SB SB

SR

train "outer model"
on SB

evaluate on
signal region

Thanks to T. Loesche



14

• Anomaly score a should be high for  
anomalous (signal-like) 
and low for background-like events


• Some options:


• a(x) = (Semi-) Supervised 

• a(x) = 1 / p(x|Background) 

•a(x) = p(x|Signal) / p(x|Background)

How to build anomaly score?
Construct a likelihood-ratio: Both


Classifier-based Anomaly detection THrough 
Outer Density Estimation (CATHODE) 


Use flow to transport sideband into signal 
region, mixed sample training for anomaly 
detection

Will show results first at ML4Jets in Heidelberg next week, 
paper coming soon 
https://indico.cern.ch/event/980214/

6

FIG. 2. Background rejection (left) and significance improvement (right) of the various anomaly classifiers as a function of the
signal e�ciency. The lines corresponding to the four classifier-based methods, Sample-ANODE, CWoLa, the idealized anomaly
detector and supervised, are deduced from a median value of 10 independent classifier trainings on the same training set.
Idealized AD is not yet done on maximal statistics.

FIG. 3. [This is for the shifted case, need to re-run as non-shifted] The e↵ect of using a larger number of samples. The
total number of “data” events is 120,000 and the number of sample events is varied. Events are split evenly between training
set and validation set.

3. The density estimation becomes more di�cult once
the auxiliary variables are smeared with another
random variable.

While the di↵erence between Fig. 2 and Fig. 5 yields an
upper boundary on how the aforementioned e↵ects prop-
agate in combination to the performance of CATHODE,
one can isolate these e↵ects further by adding mjj itself
to the set of input features of the classifier. Since this
gives the classifier full information on the conditional,
this test can be viewed as an upper limit on how the first
outlined e↵ect impacts the method. The corresponding
performance measures are shown in Fig. 6 as dashed lines.
Contrary to the supervised benchmark, CATHODE in-
deed su↵ers from a reduction of the significance improve-
ment by an approximately constant shift of 3 units. The
exact mechanism for this is not yet fully understood. One
potential candidate is that overall small mismodelings of
the likelihood as a function of mjj are more exposed once

this dependence is shown more explicitly to the classifier.
However, this performance decrease is relatively small
compared to the maximum significance improvement and
does not result in a complete breakdown as in CWoLa.
Exposing mjj to the classifier as input feature also

gives the classifier the necessary information to undo the
smearing outlined as e↵ect number two. This is seen in
the fully supervised benchmark shown in Fig. 6 below,
which fully recovers the performance lost due to the shift
once the mjj input is given. CATHODE, on the other
hand, does not fully recover the lost performance in this
case but an increase in significance improvement is ob-
served. Notably, the di↵erence in performance between
the runs with and without shift becomes smaller when
mjj is given to the classifier.
Another cross-check to isolate the outlined e↵ect num-

ber one from the two smearing-related ones is to apply
a smearing without introducing actual correlations. This
is tested in the light-colored lines of Fig. 6 by conduct-

https://indico.cern.ch/event/980214/


Closing
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• Unsupervised anomaly and outlier detection


• Find new signals without specifying what to 
look for


• Trade-off between specific sensitivity and 
coverage 

• Also interesting for data quality monitoring, 
detector control, computing monitoring, online 
event selection, stellar structures (2104.12789), …


• Vibrant field, active development of new ideas and 
first applications in data 

Thank you!

Just scratching the surface. For much more see 
https://lhco2020.github.io/homepage/ and our 
community paper (2101.08320):

http://www.apple.com/uk


Backup
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Supervised Learning
Attempt to infer some target (truth label):  
classification or regression 


Use training data with known labels 
(often from simulation)

Unsupervised
No target, learn the probability 
distribution (directly from data)


X

observable features 
in data (detector 
readouts)

y  

truth label  
(e.g. signal or  
background)

Learn to  
predict


y’ = fθ(X)

X

Learn to  
predict:


p(X) = fθ(X) p(X)
probability  

density

Two* types of problem:

Signal probability

y’  
Maximize likelihood p(X)

(minimize -log p(x))

*and many more in between
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Sideband approach
Key assumptions:


• There exists one feature (e.g. mass) 
so that:


• Background distribution is smooth


• Signal distribution is localised 
(and very small wrt/ background)

#
- Background

Events in ( known physics)
data

- signal
( new physics)-

-

Mass for other smooth observable)
sidebands

signal
Region"÷¥ "

Mass ( or other smooth observable)

• Use sidebands to train anomaly score.


• Test signal region for new physics.


• Scan over different signal regions (trial factor)


• (Other ways to define anomaly-free regions in data 
possible as well. Not thoroughly explored yet)



Normalising Flows
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Generate new samples

Evaluate probability/likelihood, train �ow

Simple
Distribution

u0

... Complex
Distribution...

• Goal: assign probability density to each datapoint


• Learn bijective transformation between data and a 
latent space with tractable probability


• Build from simple invertible transformations, 
tractable Jacobian

Thanks to T. Loesche

p(x) = p(f�1(x))
Y

i

����det
✓
@f�1

i

@x

◆���� =

p(u)
Y

i

����det
✓
@f i

@u

◆����
�1



MADE/MAF
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• Masked Autoregressive flow 
(1502.03509/1705.07057)


• Start with fully connected network, but drop 
connections so output a_j / mu_j are only 
connected to input x_1,..,x_j-1


• Autoregressive: no dependence of early features on 
late features


• -> Jacobian is upper triangular matrix and easily 
invertible


• Combine multiple such blocks

...x1 x2 xi-1 xi ... xN

...u1 u2 ui-1 ui ... uN

αi μi

complex
distribution

base
distribution
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CMS Collaboration, MUSiC: a model unspecific search for 
new physics in proton-proton collisions at sqrt(s)=13 TeV, 
2010.02984

•Systematically look for differences between 
background simulation and data


•MUSIC / General search

• Anomaly score a should be high for 
anomalous (signal-like) 
and low for background-like events


• Some options:


• a(x) = (Semi-) Supervised 

• a(x) = 1 / p(x|Background) 
(from simulation) 
 

How to build anomaly score?


