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Can we invert the simulation chain?

What we
want to know

What we
measure or simulate

→ Get multidimensional probability distribution for each event
→ Need generative networks
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Neural network based generative networks

VAE

hybrid models

GAN

INN/NF
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Invertible networks
[1808.04730] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini, R. S. Klessen, L. Maier-Hein, C. Rother, U. Köthe

+ Arbitrary networks s and t
+ Fast evaluation in both directions

+ Simple Jacobian → Control over phase space density
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Applications

r ∼ N
Event generator:g→
←−−−−−−−−−−−→

← inversion:ḡ
x ∼M(r)

(
xparton

)Shower/Detector:g→
←−−−−−−−−−−−→

← inversion:ḡ

(
xdetector

)

(
xmodel param

) LHC simulation:g→
←−−−−−−−−−−−→

← inversion:ḡ

(
xdetector

)
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Inverting detector effects
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• pp → ZW → (ll)(jj)

• Train: parton → detector

• Evaluate: parton ← detector
W

Z

j

j

ℓ+

ℓ−



Including the probabilistic aspect

(
xpart

) Pythia,Delphes:g→
←−−−−−−−−−−−−−−−−→

← inversion:ḡ

(
xdet

)

with L = Lpart + Ldet

+ Lr

Arbitrary choice of Lpart ,Ldet ,Lr determines (un)supervised training
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Conditional INN

Rephrasing the problem

Given detector level information [→ condition c]
→ What is the probability density at parton level?
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How to train the network

→ Training: Maximize posterior over model parameters

L = −〈log p(θ|y)〉y∼data
= −〈log p(y |θ)〉y∼data − log p(θ) + const. ← Bayes

= −
〈

log p(gθ(y)) + log

∣∣∣∣
∂gθ(y)

∂y

∣∣∣∣
〉
− log p(θ)← change of var

=

〈
0.5||g(y)||22 − log

∣∣∣∂gθ(y)
∂y

∣∣∣
〉

y∼data
− log p(θ)

Jacobian
Gaussian latent variable
g(y)→ N

Regularization
||θ||2
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cINN result for calibration

xp
g(xp,f (xd ))→

←−−−−−−−−−−−−−−−−→
← unfolding: ḡ(r ,f (xd ))

r

Minimizing L =
〈
0.5||ḡ(xp , f (xd )))||22 − log |J|

〉
xp∼Pp ,xd∼Pd

− log p(θ)
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Inverting the full event

pp >WZ > qq̄l+l− + ISR

Train on inclusive dataset

Evaluate
exclusive 2/3/4 jet channels
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Going beyond unfolding

Infere splitting kernels

Pqq (z, y)

= CF

[
Dqq

2z(1 − y)

1 − z(1 − y)
+ Fqq (1 − z) + Cqqyz(1 − z)
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Figure 1: BayesFlow setup of the cINN for training and inference [47].

This loss guarantees that the networks recover the true posterior under perfect conver-
gence [47].

Inference BayesFlow [47] provides a cINN framework which we can use to measure
fundamental QCD parameters. From the inversion of a detector simulation and QCD
radiation [63] we know how, given a single detector-level event, the cINN generates samples
from a probability distribution over the phase space of the hard scattering. For the jet
inference presented in this paper, the BayesFlow setup corresponds to this unfolding setup,
in which we replace the parton-level phase space with the model parameter space and the
detector-level phase space with the simulated data. In Fig 1 we give a graphical illustration
of the inference setup, for the training and the inference phases.

To train the BayesFlow networks we use the fact that we can simulate an arbitrary
number of jets fast. This allows us to employ mini-batch gradient descent to approximate
the expectation in the above optimization criterion via its Monte-Carlo empirical mean.
Moreover, if we train the networks on jet samples of varying size, we can use them on
data samples with any size, as long as this size is within the domain of the pre-defined
distribution over sample sizes. The networks will approximate the correct push-forward
from a given prior P (m) in model space to a posterior P (m|x) contingent on a set of
measurements x. When the test sample size leaves the training domain the posterior
accuracy will degrade. In case we need to analyse larger data sets we can then follow the
Bayesian logic behind the BayesFlow framework [47] and use the posterior from an earlier
measurement as a prior.

3 Idealized jet measurements

Before applying BayesFlow to LHC jets including hadronization and detector simulation,
we define our theory assumptions and test the corresponding model on an idealized data
set using a toy shower [67]. That will give us an idea what kind of measurement we could
aim for and will also allow for some simple benchmarking. We have checked that this toy
shower agrees with the full Sherpa shower, except that we do not include the e↵ects from
the 2-loop cusp anomalous dimension.

Theory setup The physics goal in our paper is to understand the QCD splittings build-
ing up parton showers. In the leading collinear approximation these kernels relate the

5
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Invertible networks

• Fast evaluation and tractable Jacobian

• Trainable on samples as well as densities

• Invertible networks for deterministic mapping

• cINN guaranties correct calibration in probabilistic mapping

• Simultaneous unfolding of different exclusive channels
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