### **Invertible Networks**

ErUM-Data Community Meeting 1.7.21

#### Anja Butter

ITP, Universität Heidelberg

arXiv:2006.06685 with M. Bellagente, G. Kasieczka, T. Plehn, A. Rousselot, R. Winterhalder, L. Ardizzone, U. Köthe



## Can we invert the simulation chain?



## Can we invert the simulation chain?



 $\rightarrow$  Get multidimensional probability distribution for each event  $\rightarrow$  Need generative networks

# Neural network based generative networks





#### Invertible networks

[1808.04730] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini, R. S. Klessen, L. Maier-Hein, C. Rother, U. Köthe



 $\begin{array}{l} + \mbox{ Arbitrary networks $s$ and $t$} \\ + \mbox{ Fast evaluation in both directions} \\ + \mbox{ Simple Jacobian} \rightarrow \mbox{ Control over phase space density} \end{array}$ 

# Applications

$$r \sim \mathcal{N} \xleftarrow{\text{EVENT GENERATOR:} g 
ightarrow} x \sim \mathcal{M}(r)$$

$$\begin{pmatrix} x_{parton} \end{pmatrix} \xrightarrow{\text{SHOWER/DETECTOR}: g \to} \begin{pmatrix} x_{detector} \end{pmatrix} \\ \xleftarrow{} \text{ inversion}: \overline{g} \end{pmatrix} \begin{pmatrix} x_{detector} \end{pmatrix} \\ \begin{pmatrix} x_{model \ param} \end{pmatrix} \xleftarrow{} \text{LHC \ SIMULATION}: g \to \\ \xleftarrow{} \text{ inversion}: \overline{g} \end{pmatrix} \begin{pmatrix} x_{detector} \end{pmatrix}$$

#### Inverting detector effects



multi-dimensional  $\checkmark~$  bin independent  $\checkmark~$  only for deterministic process

## Including the probabilistic aspect

$$(x_{part}) \xleftarrow{\text{Pythia,Delphes}:g \rightarrow}{\leftarrow \text{inversion}:\tilde{g}} (x_{det})$$

$$\text{with } \mathcal{L} = \mathcal{L}_{part} + \mathcal{L}_{det}$$

#### Including the probabilistic aspect

$$\begin{pmatrix} x_{part} \\ r_{part} \end{pmatrix} \xleftarrow{} \overset{\text{Pythia,Delphes:}g \to}{\leftarrow} \begin{pmatrix} x_{det} \\ r_{det} \end{pmatrix}$$
with  $\mathcal{L} = \mathcal{L}_{part} + \mathcal{L}_{det} + \mathcal{L}_r$ 

Arbitrary choice of  $\mathcal{L}_{part}, \mathcal{L}_{det}, \mathcal{L}_r$  determines (un)supervised training

# Conditional INN

Rephrasing the problem

Given detector level information [ $\rightarrow$  condition c]  $\rightarrow$  What is the probability density at parton level?



### How to train the network

 $\rightarrow$  Training: Maximize posterior over model parameters

#### cINN result for calibration

$$x_p \xleftarrow{g(x_p, f(x_d))}{\longleftarrow \text{ unfolding: } \bar{g}(r, f(x_d))} r$$

 $\text{Minimizing } L = \left< 0.5 ||\bar{g}(x_p, f(x_d)))||_2^2 - \log |J| \right>_{x_p \sim P_p, x_d \sim P_d} - \log p(\theta)$ 



multi-dimensional  $\checkmark~$  bin independent  $\checkmark~$  statistically well defined  $\checkmark~$ 

Simulating and unfolding LHC events with generative networks

# Inverting the full event



Simulating and unfolding LHC events with generative networks

# Going beyond unfolding



#### Infere splitting kernels





## Invertible networks

- Fast evaluation and tractable Jacobian
- Trainable on samples as well as densities
- Invertible networks for deterministic mapping
- cINN guaranties correct calibration in probabilistic mapping
- Simultaneous unfolding of different exclusive channels

