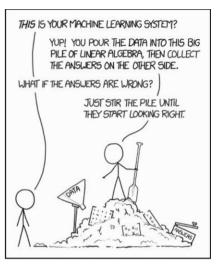


Interpretability and Deep Learning

Martin Erdmann, Jonas Glombitza

RWTH Aachen

Interpretability



Deep models have thousands of parameters \rightarrow open black box

- "What is the model learning?"
 - Learn from trained model
- "Can we trust the model? Does the model work as expected?"
 - Model verification
 - Systematic studies (strongly application dependent)
 - → Interpretability

Deep Learning

Interpretability

Interpretability includes

- Understanding data
 - "Which part of the data is most useful?"
- Understanding predictions
 - "Why is my model predicting a certain class / value?"
 - → Feature attribution
- Understanding the **model**
 - "How is the model working / are features formed?"
 - "How do DNNs see the world?
 - → Feature visualization
- Possible bias: we (humans) try to interpret the model

Deep Learning

Glombitza | RWTH Aachen | 07/01/21 | 2nd Action Plan ErUM-Data Community Meeting

ArXiv/1602.04938

(a) Husky classified as wolf

(b) Explanation

Feature Visualization

Model interpretability

Construct pattern which maximizes the activation of a specific feature map

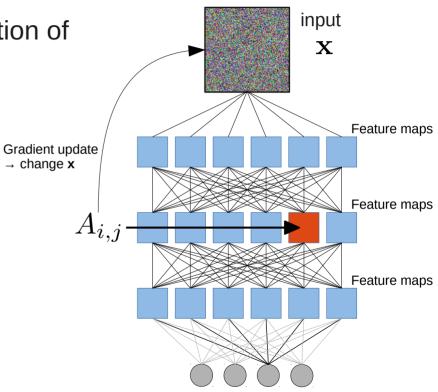
• Model f_{θ} pre-trained, weights θ fixed

• Find
$$\tilde{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmax}} h(\mathbf{x}, \theta)$$

•
$$h(\mathbf{x}, \theta) = \sum_{i,j} A_{i,j}(\mathbf{x}, \theta) + b$$

• Gradient ascent
$$\mathbf{x}' \to \mathbf{x} + \alpha \frac{dh(\mathbf{x}, \theta)}{d\mathbf{x}}$$

https://doi.org/10.1142/12294

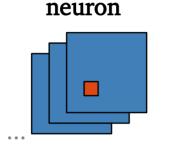

Deep Learning

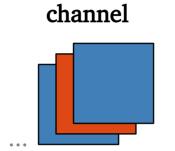
5

Idea:

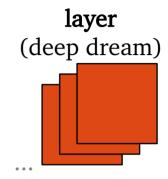
Glombitza | RWTH Aachen | 07/01/21 | 2nd Action Plan ErUM-Data Community Meeting

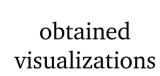
Activation Maximization - CNN


start with random noise



Activation Maximization


• Visualization of neurons, channels, layers


objective

https://doi.org/10.1142/12294

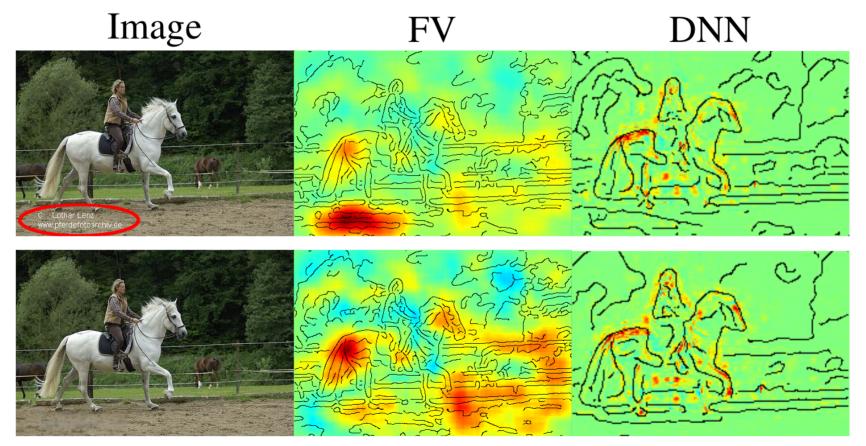
6 De

Deep Learning

Analysis of predictions

Sensitivity Analyses (Feature) Attribution

(a) Husky classified as wolf


(b) Explanation ArXiv/1602.04938

Deep Learning

Semantic Misinterpretation

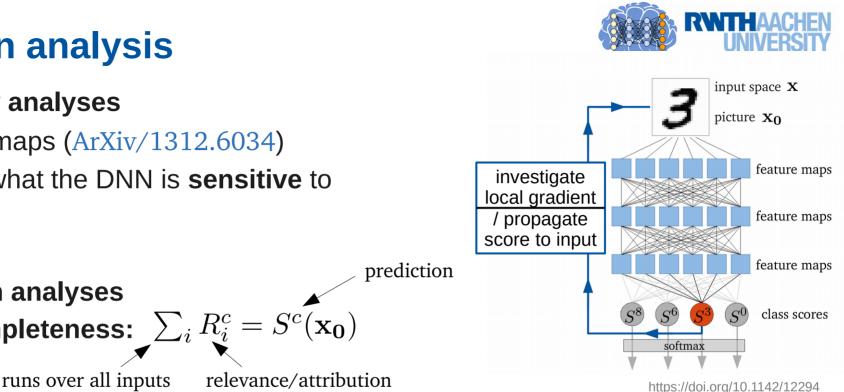
Bach et. Al. - Analyzing Classifiers: Fisher Vectors and Deep Neural Networks, arXiv:1512.00172

B Deep Learning
 Glombitza | RWTH Aachen | 07/01/21 | 2nd Action Plan ErUM-Data Community Meeting

Prediction analysis

- Sensitivity analyses
 - saliency maps (ArXiv/1312.6034)
 - study to what the DNN is sensitive to

 Attribution analyses • fulfill completeness: $\sum_{i} R_{i}^{c} = S^{c}(\mathbf{x_{0}})$


sum runs over all inputs

sum over all input relevances = prediction

- common methods:
 - layer-wise relevance propagation, IntegratedGradients, DeepLIFT

Deep Learning

9

DEMO - Handwriting

🗾 LRP Demos		MNIST Digits
 Handwriting Classification Image Classification Text Classification 	The digit was classified as 8 with a classification score of 23.85	2
		1
	The heatmap was rendered for the class 0	0
		Draw a Digit
	Heatmap Color Map	\mathbf{Q}^{-}
⊕ ⊠ Ф Publishing Notes Data Protection Policy		

https://lrpserver.hhi.fraunhofer.de/handwriting-classification

Deep Learning

10

Summary: understanding deep networks

Feature visualization

• understanding the model – "What is learned by the network?"

Prediction analysis

• interpret a prediction – Why a specific pattern caused certain reconstruction

Fast growing field of research \rightarrow many methods 'on the market'

- \rightarrow study your network using a collection of techniques
- understand your model, debug your architectures
- perform other tasks (segmentation), learn about the data
- Software libraries: iNNvestigate, DeepExplain, Captum

Deep Learning