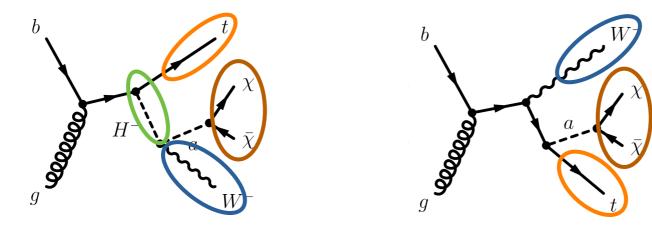
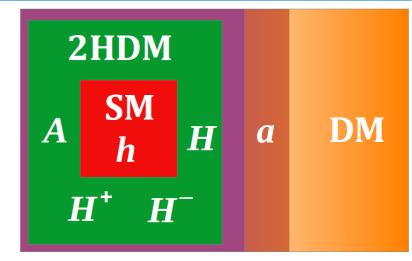


PhD Thesis – 30 Month Report

Paul Moder

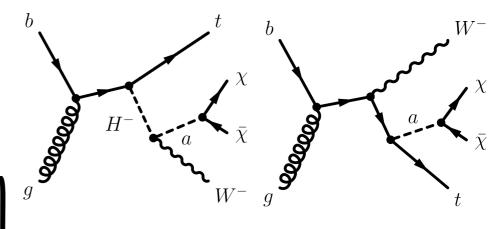
Introduction

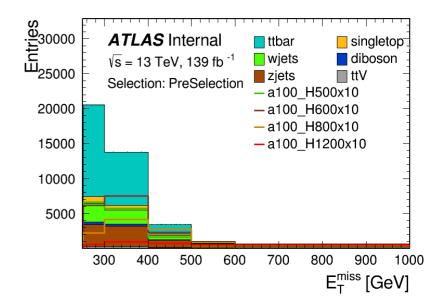

- Over the last year: Mostly focused on the 0L channel of the analysis
- 1) Introduction 2HDM + a
- 2) Overview over status of the analysis
 - Definition of the signal region
 - Control/Validation regions
 - Current status of the analysis
- 3) Milestones over the last year
- 4) Outlook


Introduction – 2HDM+a

- Basis of the analysis: 2 Higgs doublet model (2HDM)
 → Second Higgs doublet → Total of 5 Higgs bosons
- Add mediator $a \rightarrow$ Coupling to Dark Matter and 2HDM
- One new process recently explored: (https://arxiv.org/pdf/1712.03874.pdf):

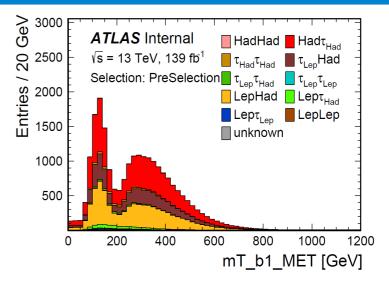
 \rightarrow DM (MET) + top quark + W-boson


- Contribution from two main diagrams:
 - \rightarrow With and without charged H-boson

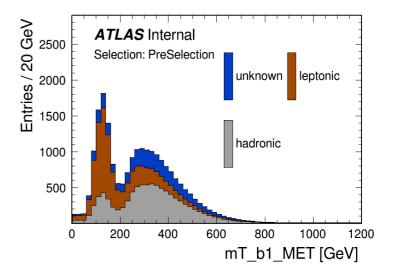


Preselection

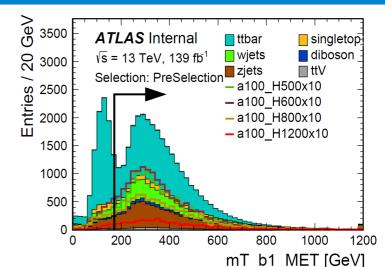
- Most important Preselection definitions:
 - MET>250 GeV → High missing transverse through Dark Matter
 - \rightarrow Also used to trigger events
 - $n_{lep(p_T > 4 \text{ GeV})} = 0$
 - $n_{jet(p_T > 20 \, GeV)} \ge 4$
 - $p_T^{jet1} \ge 100 \, \text{GeV}$, $p_T^{jet2, jet3} \ge 60 \, \text{GeV}$, $p_T^{jet4} \ge 40 \, \text{GeV}$
 - $n_{bjet(p_T > 20 \text{ GeV})} \ge 1$
 - $p_T^{bjet1} \ge 50 \, GeV$, $p_T^{bjet2} < 50 \, GeV \rightarrow Reduce \ ttbar \ bkg$
 - − $\Delta \phi_{\text{jet,MET}}^{\text{min,4}}$ >0.5 → Reduce QCD background
- Most dominant backgrounds:
 - ttbar
 - z+jets
 - w+jets



0L channel, high amount of jets


Observables in the SR – Transverse Mass

- Most dominant background: ttbar
 - → Major contribution is semi-leptonic ttbar with one lepton missed in the detector


Observables in the SR – Transverse Mass

- Most dominant background: ttbar
 - → Major contribution is semi-leptonic ttbar with one lepton missed in the detector
- One high pT bjet in the event
 - → Can come from the leptonically or hadronically decaying top-quark

Observables in the SR – Transverse Mass

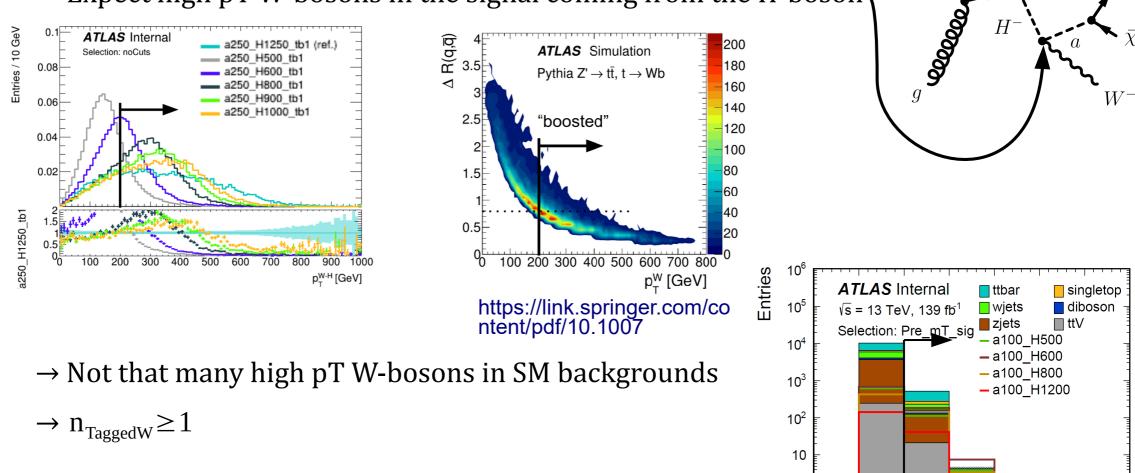
- Most dominant background: ttbar
 - → Major contribution is semi-leptonic ttbar with one lepton missed in the detector
- One high pT bjet in the event
 - → Can come from the leptonically or hadronically decaying top-quark


• Transverse mass between b-jet and missing transverse momentum to reduce this part of the ttbar background

$$\rightarrow m_T^{b1,MET} \ge 180 \, GeV$$

Observables in the SR – MET Significance

- For high MET events:
 - → Higher Fake MET (MET from interacting particles) in SM background
 - \rightarrow Possible Sources:
 - 1) Particles outside of detector acceptance
 - 2) Inaccurately reconstructed
- Definition of MET Significance: https://cds.cern.ch/record/2630948
 - → Using a log-likelihood ratio testing the hypothesis that there is zero real MET in the event
 - → High MET Significance ↔ High chance that MET comes from invisible particles


$$\rightarrow S_{\text{MET}} \ge 14$$

Observables in the SR – Tagged W-bosons

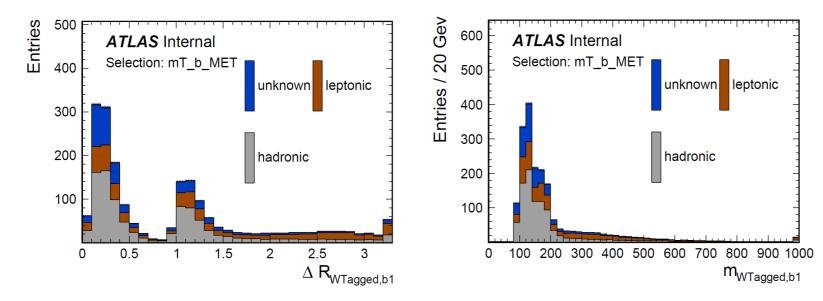
One new strategy in this analysis: Tagging W-bosons

 \rightarrow Expect high pT W-bosons in the signal coming from the H-boson

 $\bar{\chi}$

2

_1


0

3

n^{WTagged}

Observables in the SR – W-b-variables

- After $m_T^{b1,MET} \ge 180 \text{ GeV}$ cut: remaining ttbar background includes bjet coming from hadronically decaying top
 - \rightarrow Tagged W-boson from the same top-quark
 - \rightarrow Difference to signal
- Observables between tagged W-boson and b-jet to reduce ttbar background

χ

W

Lala

H

Observables in the SR – W-b-variables

Entries

10³

10²

10

0

0.5

ATLAS Internal

√s = 13 TeV. 139 fb²

Selection: Pre mT sig

1

1.5

sinaletop

diboson

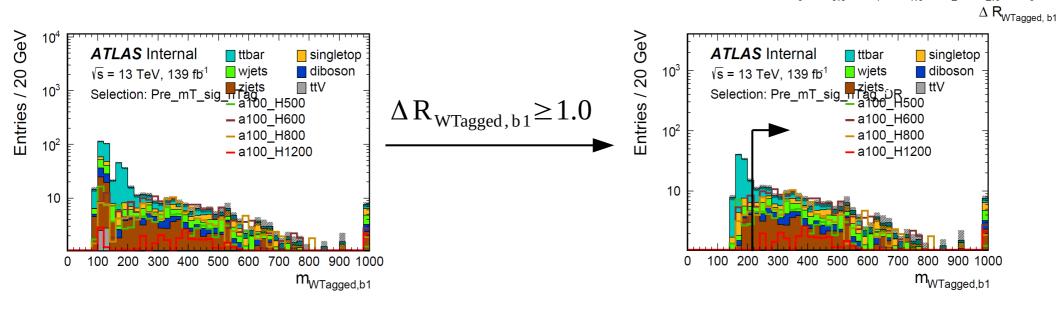
■ ttV

wjets

2

2.5

zjets ∎ Tag a100_H500


-a100 H600 -a100 H800

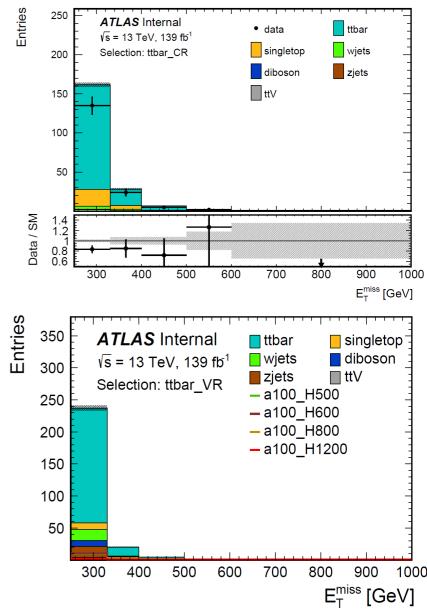
-a100 H1200

Strategy: First reduce events where the b-jet is part of the tagged W-boson

 $\rightarrow \Delta R_{WTagged, b1} \ge 1.0$

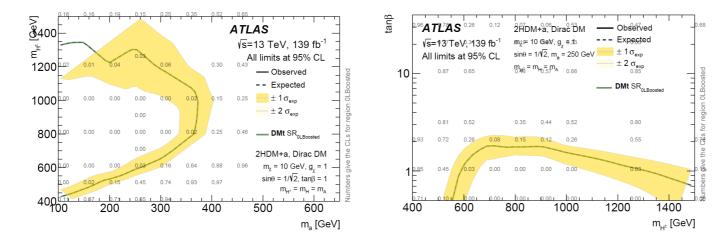
Remaining ttbar events peak around the top mass: •

 $\rightarrow m_{WTagged,b1} \ge 220 \, GeV$

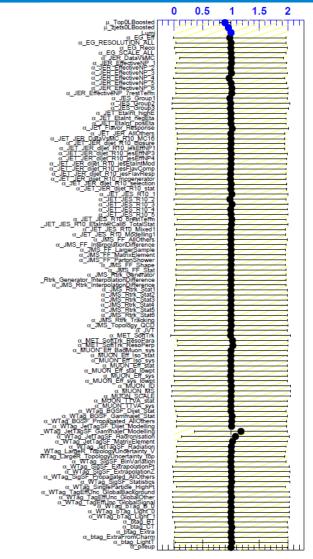

Control/Validation regions

1) ttbar CR and VR

- High semileptonic ttbar background in the SR
 - \rightarrow Control region semileptonic
- Staying orthogonal to 1L SR through $m_T^{lep,MET} < 130 \text{ GeV}$ \rightarrow CR unblined
- Validation region in 0L channel


 \rightarrow Invert MET significance and W-b selection cuts

- CR purity: 82%
- VR purity: 73%
- 2) z+jets CR in 2L channel
 - \rightarrow Done by Alvaro Lopez Solis



Current status of the analysis

- Currently working on the HistFitter setup
 - \rightarrow Included all regions for 1L and 0L channel
 - \rightarrow Included over 100 systematics (some still missing)
 - \rightarrow First exclusion fits done

- EB request on Tuesday, 22nd
- Internal note sent to ATLAS Publication Committee

^{-1 -0.5 0 0.5 1}

Milestones over the last year

- Previous analysis: Converting results into HEPData format
 - \rightarrow Efficiency and acceptance studies: <u>https://www.hepdata.net/record/99906</u>
 - → Analysis made public in November 2020: <u>https://arxiv.org/abs/2011.09308</u>
- Expression of interest talk in the HQT meeting in January, 12th

 \rightarrow <u>https://indico.cern.ch/event/984625/</u>

• Overview over the state of the analysis in HQT meeting in May, 18th

 \rightarrow <u>https://indico.cern.ch/event/1027549/</u>

Outlook

- Finish the HistFitter setup
 - \rightarrow Include the Validation regions
 - \rightarrow Include the missing systematics
 - \rightarrow Get exclusion fits with combined 0L and 1L channel
 - \rightarrow Time frame: A few weeks
- Work on comments from the Editorial Board
- Start writing the PhD thesis in July
 - \rightarrow Focus on single chapters
 - \rightarrow Time frame: Finish at the end of the year