

Jet substructure and SUSY

Are R. Raklev

Content

- Introduction to jets @ hadron colliders.
- Using «fat-jets» in SUSY.
- Three applications of jet substructure in SUSY:
 - Massive bosons in SUSY cascade decays.
 - [Butterworth, Ellis, ARR, hep-ph/0702150]
 - Neutralino decay to three quarks @ the LHC.
 - [Butterworth, Ellis, ARR, Salam, arXiv:0906.0728]
 - Gluino decay to three quarks @ the Tevatron.

[ARR, Salam, Wacker, arXiv:1005.1229]

Conclusions.

Stating the obvious...

- The LHC is a proton-proton collider.
- If light enough, dominant NP cross section comes from the production of color charged NP particles.
- It seems probable that the lightest NP particle is a (super?)WIMP.
- Decays should rid themselves of color charge multiple (high pT?) jets and missing energy as a minimum NP expectation @ the LHC.

What's in a jet?

What's in a jet?

- Which partons/particles/calorimetry towers (hereafter called objects) are joined into a jet?
 - Jet algorithm.
 - Parameters of algorithm (*e.g.* cone radius R).
- How are their four-momenta joined?
 - Four-vector sum / Snowmass (E_{τ} scheme).

hadron level

13/06/10 / Are R. Raklev / VTI Seminar

Jet algorithms

- «Cone»
 - Try to find geometric regions that maximise the energy (not always a cone!).
 - Sort of mimics the event-display + eye method.
- «Cluster»
 - Start from the elementary objects available, and perform an iterative pair-wise clustering to build larger objects (using either geometrical or kinematical properties for clustering rules).
 - Sort of inverts the QCD parton shower idea.

Jet algorithms - issues

- Cone
 - (historically) infrared and/or collinear unsafe.
 - Solved in **SiSCone** [Salam, Soyez, arXiv:0704.0292]
- Cluster
 - Was thought to be too slow for high mulitplicities (N^3) .
 - Solved in fastJet implementation (N In N).

[Cacciari, Salam, hep-ph/0512210]

• The pragmatic approach: different algorithms have different advantages, *e.g* wrt to ISR/FSR.

Jet algorithms - issues

- For every pair of objects (k,l) calculate the distance $d_{kl} = \min(p_{Tk}^2, p_{Tl}^2) \Delta R_{kl}^2 / R^2$ $d_{kB} = p_{kT}^2, \quad d_{lB} = p_{lT}^2$
- If a d_{kB} is smaller, object is labeled as jet and removed.
- If d_{kl} is smaller, k and l are merged (adding 4-vectors).
- Process repeated until all objects are gone.

Cluster example: kT-algorithm(s)

- For every pair of objects (k,l) calculate the distance $d_{kl} = \min(p_{Tk}^{2n}, p_{Tl}^{2n}) \Delta R_{kl}^{2}/R^{2}$ $d_{kB} = p_{kT}^{2n}, \quad d_{lB} = p_{lT}^{2n}$
- If a d_{kB} is smaller, object is labeled as jet and removed.
- If d_{kl} is smaller, k and l are merged (adding 4-vectors).
- Process repeated until all objects are gone.
- n=1: kT, n=0: Cambridge/Aachen, n=-1 anti-kT.

Subjet separation scale

Idea taken from WW scattering study. Undo the last clustering (1), and look at **subjet separation scale** for a **W candidate**: $\mathcal{Y}_1 \equiv \frac{d_{kl}^{(1)}}{p_T^2} \longleftarrow kT$ algorithm distance

where pT is the total jet momentum.

For collimated jets from the decay of a boosted particle the expectation is that $y_1 p_T^2 = O(M^2)$

while for QCD jets $y_1 \ll 1$.

[Butterworth et al., hep-ph/0201098]

Subjet separation scale

13/06/10 / Are R. Raklev / VTI Seminar

Detector resolution

[ATLAS, arXiv:0901.0512]

13/06/10 / Are R. Raklev / VTI Seminar

Using di-jets

[ATLAS, arXiv:0901.0512]

13/06/10 / Are R. Raklev / VTI Seminar

Sophisticated uses of jet substructure

- Identifying the hadronic decays of boosted massive SM particles:
 - WW scattering.
 - Discovery of Higgs in h b + bbar.
 - "Top tagging" (e.g. from heavy graviton resonances).
 - Cascade decay chains in NP.
- New Physics resonances with hadronic decays.
- Important aside: note that even our standard quark and gluon jets have "mass"! Beware of Snowmass!

Today

Case I: all-hadronic cascade decays

• We know how to do long cascade decays with «clean» leptons at the LHC, *e.g.*

$$\tilde{q}_{L} \to q \, \tilde{\chi}_{2}^{0} \to q \, l^{\pm} \, \tilde{l}^{\mp} \to q \, l^{\pm} \, l^{\mp} \, \tilde{\chi}_{1}^{0}$$

• What about gaugino decays to SM bosons in SUSY?

$$\tilde{\chi}_{1}^{\pm} \rightarrow W^{\pm} \tilde{\chi}_{1}^{0}, \quad \tilde{\chi}_{2}^{0} \rightarrow Z \tilde{\chi}_{1}^{0}, \quad \tilde{\chi}_{2}^{0} \rightarrow h \tilde{\chi}_{1}^{0}$$

The only decay that works well with leptons is $Z \rightarrow l^+ l^-$ What about $W \rightarrow q q'$ or $h \rightarrow b \overline{b}$?

Case I: all-hadronic cascade decays

Case I: but why do we care?

Illustration of CMSSM/mSUGRA for generic values of

 A_0 , tan β , sgn μ

Very limited production of massive SM bosons (W,Z,h) in DM allowed regions.

Small relaxation of unification assumptions can give larger BRs.

[Battaglia et al., hep-ph/0106204]

Case I: but why do we care?

Non-Universal Higgs Mass (NUHM) and Gravitino Dark Matter (GDM) scenarios change DM allowed regions.

Point/BR	$\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 Z$	$\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 h$	$\tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 W^{\pm}$
α	98.6	0.0	99.6
eta	7.5	64.5	79.0
γ	0.0	0.0	99.9
δ	5.4	92.0	97.5

[De Roeck *et al.*, hep-ph/0508198]

20/365

Case I: a whole lotta hadrons

MC study using ALPGEN/Herwig6.510/JIMMY for multiple jet backgrounds.

Looking for Ws in $\tilde{q}_L \rightarrow q' \tilde{\chi}_1^{\pm} \rightarrow q' W^{\pm} \tilde{\chi}_1^0$

with di-jet invariant mass after 300 GeV cut on ETmiss.

[Butterworth, Ellis, ARR, hep-ph/0702150]

Case I: with di-jet substructure cuts

SM rejection cuts: $p_T^{\text{jet}} \ge 200, 200, 150 \text{ GeV}$ $E_T^{\text{miss}} \ge 300 \text{ GeV}$

W candidate jet cuts: $75 \text{ GeV} < m_j < 105 \text{ GeV}$ $1.5 < \log_{10}(p_T^{\text{jet}}\sqrt{y_1}) < 1.9$

[Butterworth, Ellis, ARR, hep-ph/0702150] / Are R. Raklev / VTI Seminar 21/365

Case I: results

Using both decay chains

$$\begin{split} \tilde{q}_{L} &\to q' \tilde{\chi}_{1}^{\pm} \to q' W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{q}_{L} &\to q \tilde{\chi}_{2}^{0} \to q Z \tilde{\chi}_{1}^{0} \end{split}$$

we get strong correlations between masses from measuring edges.

Error bands from 1σ statistical errors on edge determination.

Nominal LSP mass [Butterworth, Ellis, ARR, hep-ph/0702150] 13/06/10 / Are R. Raklev / VTI Seminar 22/365

Case II: hadronic RPV LSP decays

- Can we also use the hadronic W identification techniques for new particle searches?
- With R-parity violation a neutralino (N)LSP can decay promptly into three quarks ($10^{-6} < \lambda < 10^{-2}$).
- The decay $\tilde{\chi}_1^0 \rightarrow qqqq$ is notoriously difficult to reconstruct unless there are heavy flavours present.
- Marginally doable if additonal leptons are present in the decay chain, but this is model dependent!

Case II: the classic literature

[Allanach et al., hep-ph/0102173]

Case II: an attempt with the k₊ algorithm

[Butterworth, Ellis, ARR, Salam, arXiv:0906.0728]

Case II: an attempt with the k_{T} algorithm

Problem: y₁-cut suppresses background, but shapes it to look like signal.

$$y_1 = \min(p_{Tk}^2, p_{Tl}^2)/p_T^2 \times \Delta R_{kl}^2/R^2$$

Redefine y-cut to something not so mass-scale dependent:

$$y'_{1} = \min(p^{2}_{Tk}, p^{2}_{Tl})/m^{2}_{j} \times \Delta R^{2}_{kl}$$

[Butterworth, Ellis, ARR, Salam, arXiv:0906.0728]

Case II: an attempt with the k_{\tau} algorithm

Some help also in lowering R. However, you start to loose signal when

$$R < \frac{2\mathrm{m}_j}{p_T}$$

Exclusive analysis requiring two **neutralino candidate** jets gives clear mass peak on exponentially falling background.

[Butterworth, Ellis, ARR, Salam, arXiv:0906.0728]

Case II: now with the C/A algorithm

With Cambridge/Aachen there is no p_{τ} ordering of clusters. We pick significant clusterings by requiring:

$$z_{kl} = \frac{\min(p_{Tk}, p_{Tl})}{p_{Tk} + p_{Tl}} > z_{cut}$$

One can then show that for QCD jets

$$m_j \frac{dn}{dm_j} \propto \frac{2C_F}{\pi} \left(\ln \frac{1}{z_{cut}} - \frac{3}{4} \right)$$

when $\varepsilon < m_j < Rp_T z_{cut}^{1/2}$.

[Butterworth, Ellis, ARR, Salam, arXiv:0906.0728]

Case II: now with the C/A algorithm

Inclusive analysis picking one very hard jet with two mergers that have $z_{cut} > 0.15$ and the largest JADE distance: $d_{kl} = p_{Tk} p_{Tl} \Delta R_{kl}^2$

Require one merger to be a subset of the other and to have a significant mass ratio.

[Butterworth, Ellis, ARR, Salam, arXiv:0906.0728]

Case II: overall performance

LHC potential with 1 fb⁻¹.

Mass determination seems limited by ATLAS/CMS jet mass resolution (~8 GeV).

Combining neutralino candidate with extra hard jet gives squark mass estimate.

[Butterworth, Ellis, ARR, Salam, arXiv:0906.0728]

13/06/10 / Are R. Raklev / VTI Seminar

Case II: full simulation in ATLAS

Full detector simulation on identical benchmark points with k_{τ} algorithm encouraging.

Large error bars on QCD background, but this will not be a problem with data (see small error bars for indication).

[French et al., ATL-COM-PHYS-2009-272]

Case III: finding gluinos with k_{T} **algorithm**

[ARR, Salam, Wacker, arXiv:1005.1229]

Conclusions

- Jets ubiquitous for NP searches @ hadron colliders.
- Wide choice of algorithms, suitable for different purposes.
- Jet structure is effective in isolating collimated jets from the decays of boosted massive particles.
- Large potential for discovering New Physics, however:
 - Watch out for inducing signal shapes in backgrounds.
 - Clever use of algorithms & cuts gives predictable background behaviour.

Back-ups

13/06/10 / Are R. Raklev / Oscar Klein Center

Case I: finding edges

Subtract backgrounds using sidebands. Fit to Gaussian smeared edge.

/ Are R. Raklev / Oscar Klein Center

Case I: SM backgrounds

Sample	$N_{\text{generated}}$	\mathcal{L} [fb ⁻¹]	$N_{ m pass}(lpha-\gamma)$	$N_{\rm pass}(\delta)$					
tī			256.7	1287.0	W_{jj}	157,800	114.5	49.2	450.5
50-150	26,500,000	93.0			Z_{jj}	112,000	99.9	43.9	417.7
150-250	10,000,000	95.6			W_{jjj}	50,300	227.9	127.8	1109.4
250-400	3,500,000	120.0			Z_{jjj}	27,300	156.6	194.4	1782.9
400-600	500,000	129.6			WW/WZ/ZZ			9.6	95.3
600-	500,000	902.4			50-150	100,000	1.8		
W_j			5.2	34.5	150-250	100,000	29.2		
50-150	1,100,000	0.1			250-400	100,000	158.2		
150-250	1,100,000	2.9			400-600	100,000	945.2		
250-400	1,100,000	20.2			600-	10,000	437.0		
400-600	1,100,000	154.3			WWj	201,200	100.7	9.8	98.3
600-	600,000	507.2			WZj	162,400	90.2	0.0	0.0
Z_j			3.2	3.0	ZZj	69,500	426.5	2.3	17.6
50-150	100,000	0.0			WWjj	107,300	98.7	23.4	215.8
150-250	100,000	0.6			WZjj	179,000	248.4	55.2	455.5
250-400	100,000	4.3			ZZjj	18,900	167.0	5.9	59.3
400-600	100,000	32.7							
600-	100,000	199.7							