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Outline
• Introductory Remarks 

• Collins-Soper-Sterman approach to low-pT resummation

• Soft-collinear effective theory approach

• Conclusions
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d2σ

dp2
T dY

∼ H ⊗ Gij ⊗ fi ⊗ fj (1)

130 GeV < mh < 180 GeV (2)

pp→ h + X (3)

αs

π
(4)

I. INTRODUCTION

LSCET = L(0)
SCET + L(1)

SCET + L(2)
SCET + · · · (5)

L(0)
SCET = L(0)

coll. + L(0)
soft (6)

-Factorization and resummation formula:

PDFsRG evolution Soft-collinear 
emissions
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Factorization

• How do we make sense of this environment?

Factorization!

• New physics at hard scale; MH for 
example

• Parton shower evolution from MH 
to ΛQCD

• Final state hadronization at ΛQCD

• Parton distribution functions at 
ΛQCD

• Multiple parton interactions, 
hadron decays, ...
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Factorization

Extracted from dataCalculable in
pQCD
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We study proton-(anti)proton collisions at the LHC or Tevatron in the presence of experimental
restrictions on the hadronic final state and for generic parton momentum fractions. At the scale Q
of the hard interaction, factorization does not yield standard parton distribution functions (PDFs)
for the initial state. The measurement restricting the hadronic final state introduces a new scale
µB ! Q and probes the proton prior to the hard collision. This corresponds to evaluating the PDFs
at the scale µB . After the proton is probed, the incoming hard parton is contained in an initial-
state jet, and the hard collision occurs between partons inside these jets rather than inside protons.
The proper description of such initial-state jets requires “beam functions”. At the scale µB , the
beam function factorizes into a convolution of calculable Wilson coefficients and PDFs. Below µB ,
the initial-state evolution is described by the usual PDF evolution which changes x, while above
µB it is governed by a different renormalization group evolution that sums double logarithms of
µB/Q and leaves x fixed. As an example, we prove a factorization theorem for “isolated Drell-Yan”,
pp → X!+!− where X is restricted to have no central jets. We comment on the extension to cases
where the hadronic final state contains a certain number of isolated central jets.

I. INTRODUCTION

Factorization is one of the most basic concepts for un-
derstanding data from the Tevatron at Fermilab and the
CERN Large Hadron Collider (LHC). For a review of fac-
torization see Ref. [1]. Typically, factorization is viewed
as the statement that the cross section can be computed
through a product of probability functions, namely par-
ton distribution functions (PDFs), describing the prob-
ability to extract a quark or gluon from the protons
in the initial state, a perturbative cross section for the
hard scattering, and a probabilistic description of the fi-
nal state by a parton shower Monte Carlo or otherwise.
This factorization is of key importance in the program
to search for new physics, as new physics is primarily a
short-distance modification of the hard scattering that
must be distinguished from the array of QCD interac-
tions in the initial and final states. Factorization is also
necessary for controlling QCD effects. For example, the
momentum distributions of the colliding partons in the
protons are nonperturbative, but factorization often im-
plies that these are described by universal distributions
which have been measured in earlier experiments.

As the primary goal of the experiments at the LHC or
Tevatron is to probe the physics of the hard interaction,
measurements often impose restrictions on the hadronic
final state, requiring a certain number of hard leptons
or jets in the final state [2, 3, 4, 5]. For example, a
typical new physics search looking for missing transverse
energy may also require a minimum number of jets with
pT above some threshold. To identify the new physics
and determine the masses of new-physics particles, one
has to reconstruct decay chains with a certain number of
jets and leptons in the final state.

Any theoretical prediction for pp or pp̄ collisions,
whether analytic or via Monte Carlo generators, depends
on factorization. However, for the majority of processes
of interest at hadron colliders so far no rigorous field-

theoretic derivation of a factorization theorem to all or-
ders in perturbation theory exists for the quantities mea-
sured experimentally. The most well-known factorization
theorem is

dσ =
∑

i,j

dσpart
ij ⊗ fi(ξa) ⊗ fj(ξb) , (1)

where fi and fj are the standard PDFs for partons
i, j = {g, u, ū, d, . . .} carrying momentum fractions ξa

and ξb (which we use as our PDF x-variables), and dσpart
ij

is the partonic cross section to scatter i and j calcu-
lated in fixed-order perturbation theory. In Eq. (1), the
hadronic final state is treated as fully inclusive. Hence,
in the presence of experimental restrictions that make a
process less inclusive, Eq. (1) is a priori not applicable.
At best, an additional resummation of large phase-space
logarithms in dσpart

ij must be carried out, while at worst,
additional nonperturbative information beyond that con-
tained in the PDFs is required or there is no factorization.

Factorization theorems for threshold resummation in
hadron-hadron collisions are a well-studied case where
Eq. (1) can be extended to sum large phase-space loga-
rithms [6, 7, 8, 9, 10, 11, 12, 13, 14]. The corresponding
formalism however requires the limit x → 1, and hence is
not directly relevant at the LHC, where the cross section
for most measurements is dominated by the region x far
from one [15].

Our goal is to study factorization for a situation where
the hard interaction occurs between partons with generic
momentum fractions, away from the limit x → 1, and
where the hadronic final state is measured and restricted
by constraints on certain kinematic variables. These re-
strictions allow one to probe more details about the final
state and may be used experimentally to isolate central
hard jets or leptons or to control backgrounds.

A typical event at the LHC with three high-pT jets is
illustrated in Fig. 1. There are several complications one

• Separates perturbative and non-perturbative scales
• Turns pQCD into a predictive framework in complicated 
hadron collider environments
•Factorization is not obvious, and is often difficult to 
prove
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lepton + A→ lepton
′
+ X

e+ + e− → A + X

A + B → V + X

A + B → jet + X

A + b→ heavy quark + X

Factorization 
“expected to hold” 

Collins-Soper-Sterman, 2004 review
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Factorization and Resummation
• Fully inclusive Drell-Yan, Higgs:

• Large logarithms of hard and non-perturbative scales 
   arise ➡ Resummation needed

• Resummation done by evaluating PDFs at the hard 
scale after renormalization group running (DGLAP)
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We study proton-(anti)proton collisions at the LHC or Tevatron in the presence of experimental
restrictions on the hadronic final state and for generic parton momentum fractions. At the scale Q
of the hard interaction, factorization does not yield standard parton distribution functions (PDFs)
for the initial state. The measurement restricting the hadronic final state introduces a new scale
µB ! Q and probes the proton prior to the hard collision. This corresponds to evaluating the PDFs
at the scale µB . After the proton is probed, the incoming hard parton is contained in an initial-
state jet, and the hard collision occurs between partons inside these jets rather than inside protons.
The proper description of such initial-state jets requires “beam functions”. At the scale µB , the
beam function factorizes into a convolution of calculable Wilson coefficients and PDFs. Below µB ,
the initial-state evolution is described by the usual PDF evolution which changes x, while above
µB it is governed by a different renormalization group evolution that sums double logarithms of
µB/Q and leaves x fixed. As an example, we prove a factorization theorem for “isolated Drell-Yan”,
pp → X!+!− where X is restricted to have no central jets. We comment on the extension to cases
where the hadronic final state contains a certain number of isolated central jets.

I. INTRODUCTION

Factorization is one of the most basic concepts for un-
derstanding data from the Tevatron at Fermilab and the
CERN Large Hadron Collider (LHC). For a review of fac-
torization see Ref. [1]. Typically, factorization is viewed
as the statement that the cross section can be computed
through a product of probability functions, namely par-
ton distribution functions (PDFs), describing the prob-
ability to extract a quark or gluon from the protons
in the initial state, a perturbative cross section for the
hard scattering, and a probabilistic description of the fi-
nal state by a parton shower Monte Carlo or otherwise.
This factorization is of key importance in the program
to search for new physics, as new physics is primarily a
short-distance modification of the hard scattering that
must be distinguished from the array of QCD interac-
tions in the initial and final states. Factorization is also
necessary for controlling QCD effects. For example, the
momentum distributions of the colliding partons in the
protons are nonperturbative, but factorization often im-
plies that these are described by universal distributions
which have been measured in earlier experiments.

As the primary goal of the experiments at the LHC or
Tevatron is to probe the physics of the hard interaction,
measurements often impose restrictions on the hadronic
final state, requiring a certain number of hard leptons
or jets in the final state [2, 3, 4, 5]. For example, a
typical new physics search looking for missing transverse
energy may also require a minimum number of jets with
pT above some threshold. To identify the new physics
and determine the masses of new-physics particles, one
has to reconstruct decay chains with a certain number of
jets and leptons in the final state.

Any theoretical prediction for pp or pp̄ collisions,
whether analytic or via Monte Carlo generators, depends
on factorization. However, for the majority of processes
of interest at hadron colliders so far no rigorous field-

theoretic derivation of a factorization theorem to all or-
ders in perturbation theory exists for the quantities mea-
sured experimentally. The most well-known factorization
theorem is

dσ =
∑

i,j

dσpart
ij ⊗ fi(ξa) ⊗ fj(ξb) , (1)

where fi and fj are the standard PDFs for partons
i, j = {g, u, ū, d, . . .} carrying momentum fractions ξa

and ξb (which we use as our PDF x-variables), and dσpart
ij

is the partonic cross section to scatter i and j calcu-
lated in fixed-order perturbation theory. In Eq. (1), the
hadronic final state is treated as fully inclusive. Hence,
in the presence of experimental restrictions that make a
process less inclusive, Eq. (1) is a priori not applicable.
At best, an additional resummation of large phase-space
logarithms in dσpart

ij must be carried out, while at worst,
additional nonperturbative information beyond that con-
tained in the PDFs is required or there is no factorization.

Factorization theorems for threshold resummation in
hadron-hadron collisions are a well-studied case where
Eq. (1) can be extended to sum large phase-space loga-
rithms [6, 7, 8, 9, 10, 11, 12, 13, 14]. The corresponding
formalism however requires the limit x → 1, and hence is
not directly relevant at the LHC, where the cross section
for most measurements is dominated by the region x far
from one [15].

Our goal is to study factorization for a situation where
the hard interaction occurs between partons with generic
momentum fractions, away from the limit x → 1, and
where the hadronic final state is measured and restricted
by constraints on certain kinematic variables. These re-
strictions allow one to probe more details about the final
state and may be used experimentally to isolate central
hard jets or leptons or to control backgrounds.

A typical event at the LHC with three high-pT jets is
illustrated in Fig. 1. There are several complications one

Lives at the 
hard scale; 
calculable in pQCD

Live at non-perturbative 
scale; extract from data 

RG evolve to hard scale
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Resummation
• In the presence of final state restrictions:

• Example: low transverse momentum distribution 
in Drell-Yan, Higgs production
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We study proton-(anti)proton collisions at the LHC or Tevatron in the presence of experimental
restrictions on the hadronic final state and for generic parton momentum fractions. At the scale Q
of the hard interaction, factorization does not yield standard parton distribution functions (PDFs)
for the initial state. The measurement restricting the hadronic final state introduces a new scale
µB ! Q and probes the proton prior to the hard collision. This corresponds to evaluating the PDFs
at the scale µB . After the proton is probed, the incoming hard parton is contained in an initial-
state jet, and the hard collision occurs between partons inside these jets rather than inside protons.
The proper description of such initial-state jets requires “beam functions”. At the scale µB , the
beam function factorizes into a convolution of calculable Wilson coefficients and PDFs. Below µB ,
the initial-state evolution is described by the usual PDF evolution which changes x, while above
µB it is governed by a different renormalization group evolution that sums double logarithms of
µB/Q and leaves x fixed. As an example, we prove a factorization theorem for “isolated Drell-Yan”,
pp → X!+!− where X is restricted to have no central jets. We comment on the extension to cases
where the hadronic final state contains a certain number of isolated central jets.

I. INTRODUCTION

Factorization is one of the most basic concepts for un-
derstanding data from the Tevatron at Fermilab and the
CERN Large Hadron Collider (LHC). For a review of fac-
torization see Ref. [1]. Typically, factorization is viewed
as the statement that the cross section can be computed
through a product of probability functions, namely par-
ton distribution functions (PDFs), describing the prob-
ability to extract a quark or gluon from the protons
in the initial state, a perturbative cross section for the
hard scattering, and a probabilistic description of the fi-
nal state by a parton shower Monte Carlo or otherwise.
This factorization is of key importance in the program
to search for new physics, as new physics is primarily a
short-distance modification of the hard scattering that
must be distinguished from the array of QCD interac-
tions in the initial and final states. Factorization is also
necessary for controlling QCD effects. For example, the
momentum distributions of the colliding partons in the
protons are nonperturbative, but factorization often im-
plies that these are described by universal distributions
which have been measured in earlier experiments.

As the primary goal of the experiments at the LHC or
Tevatron is to probe the physics of the hard interaction,
measurements often impose restrictions on the hadronic
final state, requiring a certain number of hard leptons
or jets in the final state [2, 3, 4, 5]. For example, a
typical new physics search looking for missing transverse
energy may also require a minimum number of jets with
pT above some threshold. To identify the new physics
and determine the masses of new-physics particles, one
has to reconstruct decay chains with a certain number of
jets and leptons in the final state.

Any theoretical prediction for pp or pp̄ collisions,
whether analytic or via Monte Carlo generators, depends
on factorization. However, for the majority of processes
of interest at hadron colliders so far no rigorous field-

theoretic derivation of a factorization theorem to all or-
ders in perturbation theory exists for the quantities mea-
sured experimentally. The most well-known factorization
theorem is

dσ =
∑

i,j

dσpart
ij ⊗ fi(ξa) ⊗ fj(ξb) , (1)

where fi and fj are the standard PDFs for partons
i, j = {g, u, ū, d, . . .} carrying momentum fractions ξa

and ξb (which we use as our PDF x-variables), and dσpart
ij

is the partonic cross section to scatter i and j calcu-
lated in fixed-order perturbation theory. In Eq. (1), the
hadronic final state is treated as fully inclusive. Hence,
in the presence of experimental restrictions that make a
process less inclusive, Eq. (1) is a priori not applicable.
At best, an additional resummation of large phase-space
logarithms in dσpart

ij must be carried out, while at worst,
additional nonperturbative information beyond that con-
tained in the PDFs is required or there is no factorization.

Factorization theorems for threshold resummation in
hadron-hadron collisions are a well-studied case where
Eq. (1) can be extended to sum large phase-space loga-
rithms [6, 7, 8, 9, 10, 11, 12, 13, 14]. The corresponding
formalism however requires the limit x → 1, and hence is
not directly relevant at the LHC, where the cross section
for most measurements is dominated by the region x far
from one [15].

Our goal is to study factorization for a situation where
the hard interaction occurs between partons with generic
momentum fractions, away from the limit x → 1, and
where the hadronic final state is measured and restricted
by constraints on certain kinematic variables. These re-
strictions allow one to probe more details about the final
state and may be used experimentally to isolate central
hard jets or leptons or to control backgrounds.

A typical event at the LHC with three high-pT jets is
illustrated in Fig. 1. There are several complications one

Multiple disparate
scales involved.

Live at non-perturbative 
scale. 

Additional resummation
needed.
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Why do logs arise from final state restrictions?
• Fully inclusive electron-positron annihilation: 

• Incomplete cancellation of IR divergences in presence of
  final state restrictions gives rise to large logarithms of 
  restricted kinematic variable

Cancellation of infrared divergences
between virtual and real graphs. Infrared Safety!
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Low pT Region

• Resummation of large logarithms required

Large Logarithms spoil 
perturbative convergence

• Low pT resummation has been studied in great detail
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• The schematic perturbative series for the pT distribution 
for pp → (h,V)+X  

(Dokshitzer, Dyakonov, Troyan; Parisi, Petronzio; Curci et al.; Davies, Stirling; Collins, Soper, Sterman; Arnold, Kauffman; 
Berger, Qiu; Ellis, Ross,Veseli; Ladinsky, Yuan; Bozzi, Catani, de Florian, Grazzini,.... )

• Low pT region important for W mass, Higgs searches, ...
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I. INTRODUCTION

The Higgs boson is the last undiscovered particle of the Standard Model (SM), and

its discovery is a major goal of both the Tevatron and the Large Hadron Collider (LHC)

physics programs. If a scalar particle is discovered at either collider, the measurement of

its properties will be crucial to determine whether the particle found is the Standard Model

Higgs boson, or whether it hints at physics beyond the SM. The theoretical community has

devoted significant effort to understanding precisely the production cross section and decay

widths of the SM Higgs particle in order to facilitate such studies, as reviewed recently in

Ref. [1]. The dominant production mode at both the Tevatron and the LHC is the partonic

mechanism gg → H proceeding through a top-quark loop [2–6]. The perturbative QCD

corrections are known through next-to-leading order in full QCD [7, 8], while the corrections

in themt → ∞ limit are known through next-to-leading order [9] and next-to-next-to-leading

order [10–12]. Resummation of logarithmically-enhanced threshold corrections to the cross

section has been studied [13–16]. The inclusion of such theoretical calculations is crucial for

experimental searches for the Higgs boson, as they increase the predicted cross section in

the SM by a factor of two at the LHC and by more than a factor of three at the Tevatron.

The study of differential distributions of the Higgs boson is also needed in experimental

analyses. For example, for a SM Higgs in the mass range 130 GeV ≤ mh ≤ 160 GeV,

one of the most promising discovery modes is through the partonic process gg → h →
W+W− → !+ν!−ν̄. Since the final state contains two neutrinos, reconstruction of the Higgs

mass peak is not possible. An understanding of the kinematic distributions for both signal

and backgrounds is needed in this search channel. The NNLO differential distributions in

the mt → ∞ effective theory were obtained in Refs. [17–20], and detailed studies of the

effects of experimental cuts on Higgs boson cross sections have been performed [21–23].

However, a large reducible background comes from pp → tt̄ → bW+b̄W− → !+ν!−v̄ +

jets. Such backgrounds are brought under control with a series of cuts which include a

jet veto so that any process involving a jet with high transverse momentum, taken to be

roughly pT > 20 GeV [24–26], is rejected. Such a cut selects Higgs boson with primarily low

transverse momentum, and therefore a proper implementation of such jet vetoes requires

a good understanding of the Higgs differential distributions at low pT where resummation

of large pT/mh logarithms is necessary. The study of the low-transverse momentum region
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Ref. [1]. The dominant production mode at both the Tevatron and the LHC is the partonic

mechanism gg → H proceeding through a top-quark loop [2–6]. The perturbative QCD

corrections are known through next-to-leading order in full QCD [7, 8], while the corrections

in themt → ∞ limit are known through next-to-leading order [9] and next-to-next-to-leading

order [10–12]. Resummation of logarithmically-enhanced threshold corrections to the cross

section has been studied [13–16]. The inclusion of such theoretical calculations is crucial for

experimental searches for the Higgs boson, as they increase the predicted cross section in

the SM by a factor of two at the LHC and by more than a factor of three at the Tevatron.

The study of differential distributions of the Higgs boson is also needed in experimental

analyses. For example, for a SM Higgs in the mass range 130 GeV ≤ mh ≤ 160 GeV,

one of the most promising discovery modes is through the partonic process gg → h →
W+W− → !+ν!−ν̄. Since the final state contains two neutrinos, reconstruction of the Higgs

mass peak is not possible. An understanding of the kinematic distributions for both signal

and backgrounds is needed in this search channel. The NNLO differential distributions in

the mt → ∞ effective theory were obtained in Refs. [17–20], and detailed studies of the

effects of experimental cuts on Higgs boson cross sections have been performed [21–23].

However, a large reducible background comes from pp → tt̄ → bW+b̄W− → !+ν!−v̄ +

jets. Such backgrounds are brought under control with a series of cuts which include a

jet veto so that any process involving a jet with high transverse momentum, taken to be

roughly pT > 20 GeV [24–26], is rejected. Such a cut selects Higgs boson with primarily low

transverse momentum, and therefore a proper implementation of such jet vetoes requires

a good understanding of the Higgs differential distributions at low pT where resummation

of large pT/mh logarithms is necessary. The study of the low-transverse momentum region

• Large background from:
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its discovery is a major goal of both the Tevatron and the Large Hadron Collider (LHC)

physics programs. If a scalar particle is discovered at either collider, the measurement of

its properties will be crucial to determine whether the particle found is the Standard Model

Higgs boson, or whether it hints at physics beyond the SM. The theoretical community has

devoted significant effort to understanding precisely the production cross section and decay

widths of the SM Higgs particle in order to facilitate such studies, as reviewed recently in

Ref. [1]. The dominant production mode at both the Tevatron and the LHC is the partonic

mechanism gg → H proceeding through a top-quark loop [2–6]. The perturbative QCD

corrections are known through next-to-leading order in full QCD [7, 8], while the corrections

in themt → ∞ limit are known through next-to-leading order [9] and next-to-next-to-leading

order [10–12]. Resummation of logarithmically-enhanced threshold corrections to the cross

section has been studied [13–16]. The inclusion of such theoretical calculations is crucial for

experimental searches for the Higgs boson, as they increase the predicted cross section in

the SM by a factor of two at the LHC and by more than a factor of three at the Tevatron.

The study of differential distributions of the Higgs boson is also needed in experimental

analyses. For example, for a SM Higgs in the mass range 130 GeV ≤ mh ≤ 160 GeV,

one of the most promising discovery modes is through the partonic process gg → h →
W+W− → !+ν!−ν̄. Since the final state contains two neutrinos, reconstruction of the Higgs

mass peak is not possible. An understanding of the kinematic distributions for both signal

and backgrounds is needed in this search channel. The NNLO differential distributions in

the mt → ∞ effective theory were obtained in Refs. [17–20], and detailed studies of the

effects of experimental cuts on Higgs boson cross sections have been performed [21–23].

However, a large reducible background comes from pp → tt̄ → bW+b̄W− → !+ν!−v̄ +

jets. Such backgrounds are brought under control with a series of cuts which include a

jet veto so that any process involving a jet with high transverse momentum, taken to be

roughly pT > 20 GeV [24–26], is rejected. Such a cut selects Higgs boson with primarily low

transverse momentum, and therefore a proper implementation of such jet vetoes requires

a good understanding of the Higgs differential distributions at low pT where resummation

of large pT/mh logarithms is necessary. The study of the low-transverse momentum region
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veto events with jets of

• For the Higgs mass range:

• Higgs search channel:

LHC 14 TeV Accepted event fraction
reaction pp → X σ × BR2 [pb] cut 1-3 cut 4-6 cut 7

pp → H → W+W− (mH = 170 GeV) 1.24 0.21 0.18 0.080
pp → W+W− 7.4 0.14 0.055 0.039

pp → tt̄ (mt = 175 GeV) 62.0 0.17 0.070 0.001
pp → Wtb (mt = 175 GeV) ≈6 0.17 0.092 0.013

pp → ZW → "+"−"ν 0.86 0.23 0.054 0.026
pp → ZZ → 4–leptons 1.05 0.13 0.016 0.007

pp → Z → τ+τ− 1400 0.007 0.0004 0.00009
pp → Z → e+e−, µ+µ− 2800 0.22 0.0004 0.00012

Table 1: The expected signal and background event rates using the cross section estimates
with the CTEQ2L structure functions and with the first set of selection criteria. In all cases
only the leptonic W branching ratios are simulated (W → "±ν with "± being electrons, muons
or τ). For the production of ZZ events, the cross section is obtained including the Z decays
into charged leptons and neutrinos. For the production of WZ and for the single Z production
only the Z decays to charged leptons including the subsequent τ decays are simulated.

energy carried by the two neutrinos is thus approximated with Eνν =
√

m2
"" + p2

t ("").
With this approximation a broad mass distribution, with a mean value in agreement
with the simulated Higgs mass and a large rms of about 55 GeV, is obtained.

11. The opening angle θ∗ between the lepton with the larger pt, boosted to the dilepton
rest frame and the momentum vector of the dilepton system should fulfill the condition
0. < cos θ∗"+"− < 0.3.

Condition eight exploits the smaller boost of the candidate events, originating from the
gluon–gluon fusion process. A large fraction of the continuum W+W− background originates
from valence–quark sea–antiquark scattering with a relatively large momentum imbalance,
resulting in a boosted W+W− system, as shown in figure 1.

Criterion nine makes use of the spin correlation between the W+W− pair. The potential
discriminating power of this correlation in the Higgs search has previously been pointed out
by C. A. Nelson [16]. W pairs originating from the decay of a scalar have to have opposite
spin orientation. Due the V–A structure in the W decay, the left handed e− (right handed e+)
is emitted along the W− (W+) spin. As a result, one of the two charged leptons is emitted
along the momentum direction of the two W ’s while the other one is emitted in the opposite
direction. For the considered Higgs mass range, a small opening angle between the two charged
leptons can be expected for signal events while the backgrounds will show an almost symmetric
distribution. The discriminating power of this criterion is shown in figure 2. As can be seen
the leptons originating from Higgs decays have a relatively small opening angle while the ones
coming from continuum W+W− and tt̄ events show essentially a symmetric distribution.

The estimated invariant mass of the "+"−νν system, shown in figure 3, is unfortunately
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pp→ h + X (2)

αs

π
(3)

I. INTRODUCTION

LSCET = L(0)
SCET + L(1)

SCET + L(2)
SCET + · · · (4)

L(0)
SCET = L(0)

coll. + L(0)
soft (5)

phc ∼ pc + ps ∼ Q(η2, 1, η) + Q(η, η, η) ∼ Q(η, 1, η) (6)

p2
hc ∼ Q2η # p2

c , p
2
s (7)

(Dittmar, Dreiner)
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CSS Formalism

In the CSS resummation formalism, the differential cross section is written as the sum

dσAB→CX

dQ2 dy dQ2
T

=
dσ(resum)

AB→CX

dQ2 dy dQ2
T

+
dσ(Y)

AB→CX

dQ2 dy dQ2
T

. (2)

The all-orders resummed term is a Fourier transform from b-space

dσ(resum)
AB→CX

dQ2 dy dQ2
T

=
1

(2π)2

∫

d2b ei !QT ·!b WAB→CX(b, Q, xA, xB)

=
∫ db

2π
J0(QT b) bWAB→CX(b, Q, xA, xB), (3)

where J0 is a Bessel function. The function WAB→CX(b, Q, xA, xB) resums to all orders in

QCD perturbation theory the singular terms that would otherwise behave as δ2(QT ) and

(1/Q2
T ) lnm(Q2/Q2

T ), for all m ≥ 0. The variables xA and xB are light-cone momentum

fractions carried by the incident partons from hadrons A and B:

xA =
Q√
S

ey and xB =
Q√
S

e−y, (4)

and y is the rapidity of the heavy boson. The variables xA and xB do not depend on QT .

Resummation treats only the parts of the fixed-order QCD expression that are at least

as singular as Q−2
T in the limit QT → 0. The remainder, including possible less singular

pieces of the fixed-order perturbative contribution, is defined as the difference of the cross

section computed at fixed order n in perturbation theory and its QT $ Q asymptote that

is at least as singular as Q−2
T .

dσ(Y)
AB→CX

dQ2 dy dQ2
T

=
dσ(pert)

AB→CX

dQ2 dy dQ2
T

−
dσ(asym)

AB→CX

dQ2 dy dQ2
T

. (5)

This remainder is not significant quantitatively at modest QT , since the dominant singu-

larities of the two terms on the right-hand-side cancel in the region QT → 0. However,

the difference becomes important when QT ∼ Q. Explicit expressions for the fixed-order

remainder terms are presented in Sec. IV.

We may factor out the lowest order partonic cross section and rewrite the function

WAB→CX(b, Q, xA, xB) that appears in the integrand of Eq. (3) as

WAB→CX(b, Q, xA, xB) =
∑

ij

Wij(b, Q, xA, xB) σ(0)
ij→CX(Q). (6)
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• The transverse momentum distribution is schematically 
given by:

boson production. We compare the predicted QT distributions for Higgs boson production

at different masses. The peak of the distribution shifts to greater QT as mh grows, in

approximately linear fashion, and the distribution broadens somewhat. The mean value

< QT > grows from about 35 GeV at mh = MZ to about 54 GeV at mh = 200 GeV, and

the root-mean-square grows from about 59 GeV to about 87 GeV. For Z production, we

find < QT >= 25 GeV and < Q2
T >1/2= 38 GeV. The harder QT spectrum suggests that

the signal to background ratio can be enhanced if Higgs bosons are selected with large QT .

Choices of variable parameters are made in obtaining our results, and we examine the

sensitivity of the results to these choices, including the renormalization/factorization scale

µ and the non-perturbative input. Scale dependence is the most important source of uncer-

tainty. It can shift the position of the peak by about 1 GeV, with corresponding changes in

the normalization of the distribution above and below the position of the peak. The value

of dσ/dydQT at the peak position is shifted by 4 to 5%. Changes in the parameters of the

non-perturbative input produce effects that at most 1 to 2% depending on the size of the

power corrections we introduce. In the formulation we use to describe the non-perturbative

region, there is essentially no effect on the behavior of differential cross section at large

QT . In comparison with prior work, we note that the locations of the maxima in the dis-

tributions dσ/dydQT occur at slightly larger values of QT in our case, and the distributions

themselves differ as a function of QT above the location of the maximum. The differences

arise from the different treatment of the non-perturbative input. In our approach, the as-

sumed parametrization of non-perturbative effects has the desirable property that it does

not affect the physics in the perturbative region b < 0.5 GeV.

Conclusions are summarized in Sec. VI.

II. ALL-ORDERS RESUMMED QT DISTRIBUTION

We consider the inclusive hadronic reaction in which a color neutral heavy boson of

invariant mass Q is produced:

A(PA) + B(PB) → C(Q) + X, (1)

with C = γ∗, W±, Z, or a Higgs boson in the limit in which the top quark mass mt " Q/2.

The square of the total center-of-mass energy of the collision is S. At the LHC,
√

S = 14 TeV.

6
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Contributions from hard jetsSoft or collinear 
gluon emissions

Most singular 
contribution; goes like 

1/QT2
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CSS Formalism
In the CSS resummation formalism, the differential cross section is written as the sum
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T

=
dσ(resum)
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+
dσ(Y)
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. (2)

The all-orders resummed term is a Fourier transform from b-space
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∫
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=
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J0(QT b) bWAB→CX(b, Q, xA, xB), (3)

where J0 is a Bessel function. The function WAB→CX(b, Q, xA, xB) resums to all orders in

QCD perturbation theory the singular terms that would otherwise behave as δ2(QT ) and

(1/Q2
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T ), for all m ≥ 0. The variables xA and xB are light-cone momentum

fractions carried by the incident partons from hadrons A and B:

xA =
Q√
S

ey and xB =
Q√
S

e−y, (4)

and y is the rapidity of the heavy boson. The variables xA and xB do not depend on QT .

Resummation treats only the parts of the fixed-order QCD expression that are at least

as singular as Q−2
T in the limit QT → 0. The remainder, including possible less singular

pieces of the fixed-order perturbative contribution, is defined as the difference of the cross

section computed at fixed order n in perturbation theory and its QT $ Q asymptote that

is at least as singular as Q−2
T .
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=
dσ(pert)
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−
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. (5)

This remainder is not significant quantitatively at modest QT , since the dominant singu-

larities of the two terms on the right-hand-side cancel in the region QT → 0. However,

the difference becomes important when QT ∼ Q. Explicit expressions for the fixed-order

remainder terms are presented in Sec. IV.

We may factor out the lowest order partonic cross section and rewrite the function

WAB→CX(b, Q, xA, xB) that appears in the integrand of Eq. (3) as

WAB→CX(b, Q, xA, xB) =
∑

ij
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7

• Treated with 
resummation

•Singular as at least 
QT-2 as QT→0

• Less singular terms 
(integrable without 
distributions)

• Important in 
region of large QT 

• Important in 
region of small QT 

Focus of this talk
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CSS Formalism
• The CSS resummation formula takes the form:

23

B. Comparison with CSS approach

The classic QCD analysis of resummation of low transverse momentum logarithms ex-

presses the cross section in the low pT region as [31]

d2σ

dpT dY
= σ0

∫
d2b⊥
(2π)2

e−i!pT ·!b⊥
∑

a,b

[
Ca ⊗ fa/P

]
(xA, b0/b⊥)

[
Cb ⊗ fb/P

]
(xB, b0/b⊥)

× exp

{∫ Q̂2

b20/b
2
⊥

dµ2

µ2

[
ln
Q̂2

µ2
A(αs(µ

2)) +B(αs(µ
2))

]}
. (55)

The sum is over parton species labeled by a, b, while xA,B denote the equivalent parton

fractions xA,B = e±Ymh/Q respectively. The functions A, B, and C have perturbative

expansions in αs, while b0 is an arbitrary constant chosen for computational convenience.

One significant difference between this result and our approach outlined in the previous

section is the appearance of the Landau pole of the strong coupling constant when µ2 = 0

in the exponent. To deal with this singularity, several modifications of this formula are

employed, including a deformation of the b⊥ integration contour [36, 75, 76] and the intro-

duction of a phenomenological model to cut off the b⊥ → ∞ region [77]. In our approach

the most natural choice for the scale which controls the lower limit of the RG evolution

is µL = pT . This can also be understood by noting that the perturbative function Gij is

independent of the impact parameter, in both the impact-parameter and momentum-space

formulations of the factorization theorem, and depends on pT and µ and no other dimen-

sionful scales. Furthermore from the structure of the factorization theorem, we see that the

logarithms of mh/pT are summed by the RG evolution of the hard coefficient H(x1, x2Q2, µ)

which multiplies the function Gij and also has no reference to an impact parameter. In

the effective theory, non-perturbative effects such as those indicated by the appearance of

the Landau pole are encoded in operators suppressed by ΛQCD/pT . When pT ∼ ΛQCD,

the expansion in this parameter breaks down, and a model of Gij fit to data can be used

analogous to the standard approach. However, no reference to a non-pertubative function

is needed above ΛQCD. Previous comparisons of b-space and momentums-space resumma-

tion formalisms have indicated numerical agreement between the obtained results down to

pT ∼ few GeV [78]. At this stage, power-suppressed operators presumably give important

contributions. The use of SCET allows such effects to be studied in a systematic way. The

avoidance of the Landau singularity also simplifies the matching of the resummed result to

the fixed-order expression. In the usual approach, a large cancellation between the resummed

component and the fixed-order QCD contribution occurs, leading to potential instabilities

in the matched distribution. This cancellation typically occurs numerically because of the

introduction of a non-perturbative model for the large b⊥ region. Since it can be arranged

analytically if the b⊥ integrals can be done, avoidance of the Landau pole is useful for this

purpose also (we note that the matching to fixed-order QCD results can be made smoother

Coefficients with well defined 
perturbative expansions

Perturbatively 
calculablePDF
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Why b-space?
• Both matrix elements and phase space simplify in soft-

emission limit

• Would be independent except for phase-space constraint; 
Fourier transform to b-space accomplishes this

Mn ∝ gnM0

{
p1 · ε1 . . . p1 · εn

p1 · k1 . . . p1 · kn
+ (−1)n p2 · ε1 . . . p2 · εn

p2 · k1 . . . p2 · kn

}

dΠn ∝ ν(kT1) d2kT1 . . . ν(kTn) d2kTn

sum to Higgs pT︷ ︸︸ ︷

δ(2)

(
#pT −

∑

i

#kTi

)

ν(kT ) = k−2ε
T ln

(
s

k2
T

)

Eikonal approximation 
(soft photons):

Phase space:

∫
d2b

(2π)2
e−i!b·!pT

∫
d2kT1 f(kT1) . . . d2kTn f(kTn) δ(2)

(
#pT −

∑

i

#kTi

)

=
∫

d2b

(2π)2
e−i!b·!pT

[
f̃(b)

]n
, f̃(b) =

∫
d2kT ei!b·!kT f(kT )

14



CSS Formalism

• The integration over the impact parameter introduces a 
Landau pole

23

B. Comparison with CSS approach

The classic QCD analysis of resummation of low transverse momentum logarithms ex-

presses the cross section in the low pT region as [31]
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The sum is over parton species labeled by a, b, while xA,B denote the equivalent parton

fractions xA,B = e±Ymh/Q respectively. The functions A, B, and C have perturbative

expansions in αs, while b0 is an arbitrary constant chosen for computational convenience.
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which multiplies the function Gij and also has no reference to an impact parameter. In

the effective theory, non-perturbative effects such as those indicated by the appearance of

the Landau pole are encoded in operators suppressed by ΛQCD/pT . When pT ∼ ΛQCD,

the expansion in this parameter breaks down, and a model of Gij fit to data can be used

analogous to the standard approach. However, no reference to a non-pertubative function

is needed above ΛQCD. Previous comparisons of b-space and momentums-space resumma-

tion formalisms have indicated numerical agreement between the obtained results down to

pT ∼ few GeV [78]. At this stage, power-suppressed operators presumably give important

contributions. The use of SCET allows such effects to be studied in a systematic way. The

avoidance of the Landau singularity also simplifies the matching of the resummed result to

the fixed-order expression. In the usual approach, a large cancellation between the resummed

component and the fixed-order QCD contribution occurs, leading to potential instabilities

in the matched distribution. This cancellation typically occurs numerically because of the

introduction of a non-perturbative model for the large b⊥ region. Since it can be arranged

analytically if the b⊥ integrals can be done, avoidance of the Landau pole is useful for this

purpose also (we note that the matching to fixed-order QCD results can be made smoother

Landau Pole

• Must specify a treatment of the Landau pole for any value of pT
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Landau-pole prescriptions

• Introduce cutoff for the large b region by 
evaluating at the point (Collins, Soper 1982)

• “Minimal prescription:” deform b-contour to avoid 
singularities (Catani, Mangano, Nason, Trentadue 1996; Laenen, Sterman, Vogelsang 2000)

b∗ =
b√

1 + (b/bmax)2

b = [cos φ± i sinφ] t
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Matching to fixed-order

• Resummed exponent in b-
space, fixed-order in pT 
space ⇒ leads to difficulties 
in matching

Bozzi, Catani, de 
Florian, Grazzini 200517



EFT Approach
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Effective Field Theory (EFT)
• Low transverse momentum distribution has the scales

5

theorem in SCETpT takes the form

d2σ

dp2T dY
=

π

4(N2
c − 1)2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
d2b⊥
(2π)2

e−i!k⊥h ·!b⊥

× δ

[
p−h − eY

√
p2T +m2

h

]
δ

[
p+h − e−Y

√
p2T +m2

h

]
δ
[
p+h p

−
h − $k2

h⊥ −m2
h

]

×
∫ 1

0

dx1

∫ 1

0

dx2

∫
dt+n

∫
dt−n̄H(x1x2Q

2, µQ;µT ) B̃
αβ
n (x1, t

+
n , b⊥, µT ) B̃n̄αβ(x2, t

−
n̄ , b⊥, µT )

× S−1(x1Q− p−h − t−n̄
Q
, x2Q− p+h − t+n

Q
, b⊥, µT ),

(4)

where the collinear functions B̃αβ
n,n̄ are the Impact-parameter Beam Functions(iBFs). The

iBFs B̃αβ
n,n̄ are extensions of the beam functions that appear in [40, 41] and reduce to them for

b⊥ = 0 after contraction of the transverse indices α and β. The beam functions of Ref. [41]

were shown to have wide applicability to the analysis of observables at the LHC. The iBFs

are proton matrix elements evaluated at the scale µT ∼ pT . The iBFs are matched onto the

standard QCD PDFs by performing an OPE in ΛQCD/pT and the logarithms of ΛQCD/pT
are summed via the standard DGLAP equations used to evaluate the PDFs at the scale

µT ∼ pT . This is shown schematically in Fig. 1 and gives the final form of the factorization

theorem shown in Eqs.(1) and (2) where the collinear functions Iαβ
n,n̄;g,i are just the iBF to

PDF matching coefficients.

While the factorization and resummation of transverse-momentum distributions has been

studied extensively in the QCD literature, and SCET analyses [42, 43] have been performed

in the past, our analysis contains several interesting differences that we believe are worth

further investigating. A summary of the main points of this paper is given below:

1. We derive a factorization theorem for the Higgs transverse momentum and rapidity

distributions using effective field theory methods. A clear separation of the dynamics

associated with the scales Q̂ ∼ mh $ pT $ ΛQCD into perturbative Wilson coefficients

and standard QCD PDFs is achieved. Large logarithms of ratios of the relevant scales

are summed using RG equations in the effective theories. Power corrections in pT/mh

and ΛQCD/pT can be systematically derived by going to higher orders in the power

counting of the effective theories.

2. In addition to the factorization of the scales mh $ pT $ ΛQCD, the perturbative

physics of the pT scale is further factorized into an iSF S−1 and two distinct collinear

functions Iαβ
n;gi and Iαβ

n̄;gi. This additional factorization simplifies the structure of higher

order perturbative corrections at the pT scale. They can now be obtained through

higher order computations of the simpler perturbative functions S−1, Iαβ
n;gi and Iαβ

n̄;gi.

3. The factorization in SCET naturally occurs in terms of purely collinear PDFs and

soft functions. The purely collinear PDFs differ from the standard QCD PDFs by

• The most singular pT emissions are soft and collinear 
emissions ⇒Soft-Collinear Effective Theory (SCET) (Bauer, 
Fleming, Luke, Pirjol, Stewart)

• Study of SCET at the LHC, particularly for differential 
quantities, is still in its infancy

• Gain knowledge of how to apply SCET to hadronic 
collisions from this study

- threshold resummation for inclusive Drell-Yan, Higgs, ttbar (Becher, Neubert et al.)
- Factorization at the LHC for jet cross sections (Stewart, Tackmann, Waalewijn)
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EFT framework

10

parton distribution functions and partonic cross sections:

σPP→h =

∫
dx1dx2fg/P (x1, µ)fg/P (x1, µ)σ̂gg→h(ŝ, t̂, û, µ), (11)

where ŝ, t̂, and û are the usual partonic Mandelstam variables. For production of the Higgs

with non-zero pT , the differential partonic cross section is given by [68]

dσ̂

dt̂
=

π

384v2

(αs

π

)3
{
m8

h + ŝ4 + t̂4 + û4

ŝt̂û

}
. (12)

The total partonic cross section for gg → h through next-to-leading order in QCD pertur-

bation theory is [7, 9]

σ̂ =
π

576v2

(αs

π

)2
{
δ(1− z) +

αs

π

[
δ(1− z)

(
π2 +

11

2

)
− 11

2
(1− z)3

+ 6
(
1 + z4 + (1− z)4

)( ln(1− z)

1− z

)

+

}
, (13)

where z = m2
h/ŝ. This result assumes the scale choice µ2 = ŝ. The dependence of the

partonic cross section on the renormalization and factorization scales can be restored by

using the known renormalization group running of the cross section. The result is presented

in Ref. [9].

III. EFT FRAMEWORK

We derive a factorization theorem via a sequence of effective theories

QCD(nf = 6) → QCD(nf = 5) → SCETpT → SCETΛQCD , (14)

which factorize the physics associated with the different scales Q ∼ mh $ pT $ ΛQCD into

calculable perturbative functions and standard QCD PDFs. As we are assuming that the

mass of the Higgs is sufficiently small (mh < 2mt), we can integrate out the top quark in the

matching step QCD(nf = 6) → QCD(nf = 5) to obtain an effective coupling of the Higgs

boson to gluons. The cross sections obtained using this effective theory were described in

Sec. II. To derive a renormalization group equation allowing resummation of large logarithms

ln (mh/pT ) that appear at low transverse momenta, the matching to SCETpT is required.

The soft-collinear decoupling property of the leading order SCETpT Lagrangian also leads

to a factorization of the soft and collinear sectors, which simplifies calculations of the cross

section in the low pT region. Finally, the matching to SCETΛQCD expresses the cross section

in terms of the standard parton distribution functions. We describe in this section the details

of each stage in the matching in QCD(nf = 5) → SCETpT → SCETΛQCD .

6

SCETpT

PDF

iBF

d

h

n

ms PDF

e uae

QCD (nf = 5)

et

iBF l fo

r T

iSF

a

FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

Matched onto 
SCET.
Soft-collinear 
factorization.

Matching 
onto PDFs.

Show derivation for Higgs, but identical 
for V=W, Z, γ*
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EFT framework
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

Matched onto 
SCET.
Soft-collinear 
factorization.

Matching 
onto PDFs.

Newly defined objects describing 
soft and collinear pT emissions

iBF = impact-parameter Beam Function
iSF = inverse Soft Function
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• Factorization formula derived in SCET in schematic form:

2
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d2σ

dp2
T dY

∼ H ⊗ Gij ⊗ fi ⊗ fj (1)

130 GeV < mh < 180 GeV (2)

pp→ h + X (3)

αs

π
(4)

I. INTRODUCTION

LSCET = L(0)
SCET + L(1)

SCET + L(2)
SCET + · · · (5)

L(0)
SCET = L(0)

coll. + L(0)
soft (6)

Hard 
function.

Transverse momentum 
function.

PDFs.

Evaluated at pT scale. RG evolved to pT scale

SCET Factorization Formula

Sums logs of mh/pT 

• All objects are field theoretically defined

• Large logarithms are summed via RG equations in EFTs

• Formulation avoids Landau pole
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SCET in a NutShell
• Effective theory with soft and collinear degrees of 
freedom:

11

A. QCD to SCETpT

As already mentioned, the perturbative expansion in QCD for the transverse momentum

spectrum of the Higgs contains logarithms of mh/pT . In the low transverse momentum

region ΛQCD ! pT ! mh, these logarithms become large and must be resummed to all

orders in perturbation theory. In the effective theory formulation, this is done by matching

QCD onto the effective theory SCETpT , which describes the dynamics of the degrees of

freedom recoiling against the Higgs, and solving the RG equations of the effective theory

operators. The effective theory SCETpT is formulated in terms of collinear and soft modes

with momentum scalings

pn ∼ mh(η
2, 1, η), pn̄ ∼ mh(1, η

2, η), ps ∼ mh(η, η, η), η ∼ pT
mh

,

(15)

where pn, pn̄, and ps denote typical momenta for the n-collinear, n̄-collinear and soft modes

respectively. The effective theory has a well defined power counting in the parameter η

and has distinct quark and gluon fields for each of these modes. The gluon fields Aµ
n,p̃n(x),

Aµ
n̄,p̃n̄(x), and Aµ

s,q̃(x) destroy n-collinear, n̄-collinear, and soft gluons respectively. The pres-

ence of distinct collinear and soft gluons requires the theory to be invariant under collinear

and soft gauge transformations [38, 69]. The momenta of the effective theory modes are

separated into label p̃ and residual k parts

pµ = p̃µ + kµ, p̃µ ∼ mh(1, η), kµ ∼ mhη
2. (16)

Derivative operators are similarly separated into label and residual operators so that, for

example, a derivative acting on the n-collinear field takes the form

i∂µ → nµ

2
P̄ + Pµ

⊥ + i∂µ, (17)

such that the label operators act on the label momentum subscripts

P̄nA
µ
n,p̃n(x) = n̄ · p̃Aµ

n,p̃n(x), Pν
⊥A

µ
n,p̃n(x) = p̃ν⊥A

µ
n,p̃n(x), (18)

and the residual derivative operator acts on the residual co-ordinate dependence xµ. We note

that such a field with label momenta can be written explicitly as a Fourier transform of a

standard quantum field. As an example, a field with no dependence on residual coordinates

can be expressed as

Xp̃n(0) =

∫
dy

4π
e−iyp̃n/2 X(y). (19)

As already discussed, after integrating out the top quark, the gg → h process is mediated

by the effective QCD operator

OQCD = g2 h Tr
[
GµνG

µν
]
= −4v

c
Lmt , (20)
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As already discussed, after integrating out the top quark, the gg → h process is mediated

by the effective QCD operator

OQCD = g2 h Tr
[
GµνG

µν
]
= −4v

c
Lmt , (20)

• Soft and Collinear gauge invariance restricts the form of 
   SCET operators that can appear

• Soft and collinear fields are distinguished and are 
decoupled at leading order in η

• Well defined power counting:
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sums logs of mh/pT

d2σ

dp2
T dY

∼ H ⊗ Gij ⊗ fi ⊗ fj (7)

Corresponds to soft and collinear modes 
with transverse momentum of order pT
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I. INTRODUCTION

LSCET = L(0)
SCET + L(1)

SCET + L(2)
SCET + · · · (1)

L(0)
SCET = L(0)

coll. + L(0)
soft (2)

In the 1970s Parity-Violating Deep Inelastic Scattering (PVDIS) of an electron off a

deuteron played an important role in confirming the Standard Model (SM) of particle

physics [1–3]. The asymmetry

ARL =
σR − σL

σR + σL
, (3)

with σR,L corresponding to the scattering cross-section with right-handed and left-handed po-

larized electron beams respectively, is an excellent probe of the parity-violating electroweak

interactions in the SM. The results of measuring this asymmetry in the early experiments at

SLAC, led to the correct description of neutral weak interactions well before the discovery

of the Z boson at CERN and provided a measurement of the Weinberg angle sin2 θw. Since

then parity-violating electron scattering studied from various targets has been studied at

JLAB [4], MIT/Bates [5, 6], Mainz [7], and LAMPF [8] as a tool for probing physics be-

yond the SM and hadronic structure. Currently, an active program is underway at JLAB
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physics [1–3]. The asymmetry
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σR + σL
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with σR,L corresponding to the scattering cross-section with right-handed and left-handed po-

larized electron beams respectively, is an excellent probe of the parity-violating electroweak

• The SCET Lagrangian with a power counting scheme as:

• At leading order the soft and collinear modes are decoupled:

• Soft and collinear interactions produce off-shell modes that 
must be integrated out:

(Bauer, Fleming, Stewart, Pirjol)
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Matching onto SCET

12

where Lmt is given in Eq. (5). In SCETpT , the leading order operator that mediates this

process is [15, 42]

O(ω1,ω2) = gµνh T{Tr
[
Sn(gB

µ
n⊥)ω1S

†
nSn̄(gB

ν
n̄⊥)ω2S

†
n̄

]
}, (21)

where we have suppressed the perp labels on the soft and collinear fields, the sum of which are

constrained to be the negative of the Higgs transverse momentum, and we use the standard

notation

(X)ω ≡ Xδ(ω − P̄†), (22)

and the big brackets in Eq. (21) denote the fact that any label operators appearing inside

do not act outside the brackets. The B field is defined as [70]

Bµ
n⊥ ≡

[
1

P̄n
[i n̄ · Dn, iD⊥µ

n ]

]
, (23)

and the soft Wilson line Sn in position space is given by

Sn(x
µ) = P exp

(
igs

∫ 0

∞
ds n · Aa

s(x
µ + snµ)

)
, (24)

with an analogous expression for Sn̄. The covariant derivatives are dressed with momentum

space Wilson lines so that

Dµ
n ≡ W †

n D
µ
n Wn, Wn(x) =

[ ∑

perms

Exp
(−g

P̄
n̄ · An,q

)]
, (25)

and Dµ
n are the usual covariant derivatives

in̄ ·Dn = P̄n + gn̄ · An,p̃, iD⊥µ
n = Pµ

n⊥ + gA⊥µ
n,p̃, in ·Dn = in · ∂ + gn · An,p. (26)

We match the QCD operator onto the the effective SCETpT operator via

OQCD =

∫
dω1

∫
dω2 C(ω1,ω2)O(ω1,ω2), (27)

and determine the Wilson coefficient by computing the gg → h process on the LHS in QCD

and on the right side in SCETpT . At tree level the Wilson coefficient is

C(0)(ω1,ω2) =
c ω1ω2

v
. (28)

The process gg → gh where the transverse momentum of the Higgs is of order mhη ∼ pT is

mediated through an extra soft or collinear emission from the Wilson lines in O(ω1,ω2).

For convenience, in deriving the factorization theorem, we will work with soft fields that

are in position space and collinear fields that are in position space conjugate to the transverse

label momentum so that no label momenta of the transverse momentum appear in the soft

and collinear fields. This amounts to not separating from momentum components of order

mhη a residual part of order mhη2. The separation into label and residual components is

employed only for the hard light cone collinear momentum components of order mh.
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and collinear fields. This amounts to not separating from momentum components of order
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• Matching equation:

• Effective SCET 
operator:

Tree level matching (EFT graphs 
scale-less in dim-reg ⇒ finite part 

of virtual corrections)Matching real 
emission graphs

Soft and collinear emissions 
build into Wilson lines 
determined by soft and 
collinear gauge invariance

QCD

SCET

QCD SCET

QCD

SCET
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SCET Cross-Section
• SCET differential cross-section:
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here

13

B. Factorization in SCETpT : iBFs and the soft function

It is easier to work in terms of the hadronic Mandelstam variables u and t Mandelstam

instead of pT and Y , which correspond to the Higgs transverse momentum and rapidity

respectively. These two sets of variables are related by

u = (p2 − ph)
2 = m2 −Q

√
p2T +m2 eY ,

t = (p1 − ph)
2 = m2 −Q

√
p2T +m2 e−Y . (29)

The transformation between these sets of variables has a rather simple Jacobian given by

dudt = Q2 dp2TdY. (30)

Thus, a restriction on the u and t Mandelstam variables is equivalent to a restriction on the

pT and Y of the Higgs. The double differential cross-section in the Mandelstam variables

can be written in SCET as

d2σ

du dt
=

1

2Q2

[1
4

] ∫ d2ph⊥

(2π)2

∫
dn · phdn̄ · ph

2(2π)2
(2π)θ(n · ph + n̄ · ph)δ(n · phn̄ · ph − %p 2

h⊥
−m2

h)

× δ(u− (p2 − ph)
2)δ(t− (p1 − ph)

2)
∑

initial pols.

∑

X

∣∣C(ω1,ω2)⊗ 〈hXnXn̄Xs|O(ω1,ω2)|pp〉
∣∣2

× (2π)4δ(4)(p1 + p2 − PXn − PXn̄ − PXs − ph),

(31)

where O and C denote the SCETpT operator and the matching coefficient respectively. The

⊗ symbol denotes a convolution in the label momenta ω1,2 as in Eq. (27). Note that the

constraint delta functions δ(u − (p2 − ph)2) and δ(t − (p1 − ph)2) restrict the final states

to those that satisfy u = (p2 − ph)2 and t = (p1 − ph)2, or equivalently pick out the states

with the corresponding values of pT and Y . The states Xn, Xn̄, Xs correspond to final state

particles with the n-collinear, n̄-collinear and soft momentum scaling respectively. It is only

the states with such momentum scalings that will have a non-zero overlap with the SCETpT

operator O(ω1,ω2). The overall factor of 1/4 in square brackets in Eq. (31) is from the

average over the initial proton spins.

Using the fact that the soft and collinear modes are decoupled in the leading orderHard 
matching 
coefficient.

SCET matrix 
element.
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∼
∫

PS |C ⊗ 〈O〉|2 (1)

sums logs of mh/pT

d2σ

dp2
T dY

∼ H ⊗ Gij ⊗ fi ⊗ fj (2)

130 GeV < mh < 180 GeV (3)

pp → h + X (4)

αs

π
(5)

I. INTRODUCTION
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• Schematic form of SCET cross-
section:
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Factorization in SCET
6

SCETpT

PDF

iBF

d

h

n

ms PDF

e uae

QCD (nf = 5)

et

iBF l fo

r T

iSF

a

FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.
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n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in
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SCETpT Lagrangian we arrive at the factorization formula
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where the jet and soft functions are defined as
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T is the time-ordering symbol, and T̄ denotes anti-time ordering. Details of the derivation

of this formula are given in appendix A. The above factorization theorem can be brought

into a more concise form involving a simpler convolution structure so that
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We recast this factorization theorem in terms of jet and soft functions that have momentum

space light cone coordinates as
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• iBFs and soft functions field theoretically defined as the 
fourier transform of:
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.
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• After matching the iBFs to the PDFs we get:

• Group the perturbative pT scale functions into transverse 
   momentum dependent function:

Hard function PDFs
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Factorization Formula
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In terms of the pT and Y variables, related to the Mandelstam u and t variables as in

Eq. (29), we have

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1x2Q
2, µQ;µT )Gij(x1, x

′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ),

(50)

where we have defined the pT and Y dependent perturbative function
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1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(|#b⊥|pT )

× Iβα
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iβα
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT )

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT )

(51)

E. Momentum space vs impact-parameter space

As seen in the last section, the factorization formula for the pT , Y and u, t dis-

tributions involved the functions Gij(x1, x′
1, x2, x′

2, pT , Y, µT ), defined in Eq. (51), and

Gij(x1, x′
1, x2, x′

2, u, t, µT ), defined in Eq. (49), respectively. These functions are defined

in terms of impact-parameter space Wilson coefficients Iβα
n,n̄;g,i(z, t, b⊥) and the impact-

parameter space iSF S−1(k−, k+, b⊥). We can now introduce momentum space Wilson

coefficients and a momentum-space iSF via

Iβα
n,n̄;g,i(z, t, k⊥) =

∫
d2b⊥
4π2

e−i#k⊥·#b⊥Iβα
n,n̄;g,i(z, t, b⊥),

S−1(k−, k+, k⊥) =

∫
d2b⊥
4π2

e−i#k⊥·#b⊥S−1(k−, k+, b⊥), (52)

so that the function Gij(x1, x′
1, x2, x′

2, pT , Y, µT ) can be written as

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

1

2π

∫
dt+n

∫
dt−n̄

∫
d2k⊥

n

∫
d2k⊥

n̄

∫
d2k⊥

s

δ(pT − |#k⊥
n + #k⊥

n̄ + #k⊥
s |)

pT

× Iβα
n;g,i(

x1

x′
1

, t+n , k
⊥
n , µT ) Iβα

n̄;g,j(
x2

x′
2

, t−n̄ , k
⊥
n̄ , µT )

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, k⊥

s , µT )

(53)

with no reference to b⊥. The expression for Gij(x1, x′
1, x2, x′

2, u, t, µT ) can be trivially obtained

from Eq. (53) by rewriting the pT and Y variables in terms of the u and t variables by

4

in hadronic collisions has been under investigation since the early days of QCD [27–29]. It

has been studied for the Higgs boson following the seminal analysis of Collins, Soper, and

Sterman (CSS) [30, 31] in several works [32–36].

The purpose of this paper is to derive a factorization theorem for the Higgs transverse

momentum pT and rapidity Y distribution, in the region Q̂ ∼ mh " pT " ΛQCD, using the

Soft Collinear Effective Theory(SCET) [37–39]. Here Q̂ and mh denote the partonic center

of mass energy and the Higgs mass respectively. Although we focus on Higgs production,

our methods and results can be immediately generalized to the differential distributions of

any one or more color neutral particles. The factorization theorem we derive has the form

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1, x2, µQ;µT )Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ), (1)

where Q is the hadronic center of mass energy, H is the hard Wilson coefficient arising

matching QCD onto SCET, and fi/P is the standard parton distribution function (PDF) for

taking a parton of species i from the proton. Gij is a perturbative coefficient at the pT scale

that has the form

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(b⊥ pT ) g
⊥
ασg

⊥
βω

× Iαβ
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iσω
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT ) (2)

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT ),

which is a convolution over the collinear functions Iαβ
n,n̄;g,i and the Inverse Soft Function (iSF)

S−1. Logarithms of mh/pT are summed by the Renormalization Group (RG) equations in

SCET and are encoded in H(x1, x2, µQ;µT ) which is the hard coefficient evolved from the

renormalization scale µQ ∼ mh down to µT ∼ pT . The logarithms of ΛQCD/pT are summed

via the standard DGLAP evolution of the PDFs and are encoded in the PDFs evaluated at

µT ∼ pT . The factorization formula in Eq.(1) is derived by matching QCD onto a sequence

of effective field theories EFT:

QCD(nf = 6) → QCD(nf = 5) → SCETpT → SCETΛQCD , (3)

which is shown graphically in Fig. 1. The first step QCD(nf = 6) → QCD(nf = 5) denotes

the usual procedure of integrating out the top quark to get an effective coupling of the Higgs

to gluons. The Higgs production mechanism then proceeds via this effective coupling. The

hard scale Q̂ ∼ mh is then integrated out by matching onto SCETpT , which describes the

dynamics of soft and collinear modes with transverse momenta of order pT . The factorization

Hard function Transverse momentum 
function

PDFs

• The transverse momentum function is a convolution of the 
iBF matching coefficients and the soft function:

• Factorization formula in full detail:
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in hadronic collisions has been under investigation since the early days of QCD [27–29]. It

has been studied for the Higgs boson following the seminal analysis of Collins, Soper, and

Sterman (CSS) [30, 31] in several works [32–36].

The purpose of this paper is to derive a factorization theorem for the Higgs transverse

momentum pT and rapidity Y distribution, in the region Q̂ ∼ mh " pT " ΛQCD, using the

Soft Collinear Effective Theory(SCET) [37–39]. Here Q̂ and mh denote the partonic center

of mass energy and the Higgs mass respectively. Although we focus on Higgs production,

our methods and results can be immediately generalized to the differential distributions of

any one or more color neutral particles. The factorization theorem we derive has the form

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2
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x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1, x2, µQ;µT )Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ), (1)

where Q is the hadronic center of mass energy, H is the hard Wilson coefficient arising

matching QCD onto SCET, and fi/P is the standard parton distribution function (PDF) for

taking a parton of species i from the proton. Gij is a perturbative coefficient at the pT scale

that has the form

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(b⊥ pT ) g
⊥
ασg

⊥
βω

× Iαβ
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iσω
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT ) (2)

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT ),

which is a convolution over the collinear functions Iαβ
n,n̄;g,i and the Inverse Soft Function (iSF)

S−1. Logarithms of mh/pT are summed by the Renormalization Group (RG) equations in

SCET and are encoded in H(x1, x2, µQ;µT ) which is the hard coefficient evolved from the

renormalization scale µQ ∼ mh down to µT ∼ pT . The logarithms of ΛQCD/pT are summed

via the standard DGLAP evolution of the PDFs and are encoded in the PDFs evaluated at

µT ∼ pT . The factorization formula in Eq.(1) is derived by matching QCD onto a sequence

of effective field theories EFT:

QCD(nf = 6) → QCD(nf = 5) → SCETpT → SCETΛQCD , (3)

which is shown graphically in Fig. 1. The first step QCD(nf = 6) → QCD(nf = 5) denotes

the usual procedure of integrating out the top quark to get an effective coupling of the Higgs

to gluons. The Higgs production mechanism then proceeds via this effective coupling. The

hard scale Q̂ ∼ mh is then integrated out by matching onto SCETpT , which describes the

dynamics of soft and collinear modes with transverse momenta of order pT . The factorization

• Factorization formula in full detail:

RG evolution cut off at μT∼pT, the matching scale 
from QCD → SCETpT, not 1/b⊥ 
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In terms of the pT and Y variables, related to the Mandelstam u and t variables as in

Eq. (29), we have

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1x2Q
2, µQ;µT )Gij(x1, x

′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ),

(50)

where we have defined the pT and Y dependent perturbative function

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(|#b⊥|pT )

× Iβα
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iβα
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT )

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT )

(51)

E. Momentum space vs impact-parameter space

As seen in the last section, the factorization formula for the pT , Y and u, t dis-

tributions involved the functions Gij(x1, x′
1, x2, x′

2, pT , Y, µT ), defined in Eq. (51), and

Gij(x1, x′
1, x2, x′

2, u, t, µT ), defined in Eq. (49), respectively. These functions are defined

in terms of impact-parameter space Wilson coefficients Iβα
n,n̄;g,i(z, t, b⊥) and the impact-

parameter space iSF S−1(k−, k+, b⊥). We can now introduce momentum space Wilson

coefficients and a momentum-space iSF via

Iβα
n,n̄;g,i(z, t, k⊥) =

∫
d2b⊥
4π2

e−i#k⊥·#b⊥Iβα
n,n̄;g,i(z, t, b⊥),

S−1(k−, k+, k⊥) =

∫
d2b⊥
4π2

e−i#k⊥·#b⊥S−1(k−, k+, b⊥), (52)

so that the function Gij(x1, x′
1, x2, x′

2, pT , Y, µT ) can be written as

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

1

2π

∫
dt+n

∫
dt−n̄

∫
d2k⊥

n

∫
d2k⊥

n̄

∫
d2k⊥

s

δ(pT − |#k⊥
n + #k⊥

n̄ + #k⊥
s |)

pT

× Iβα
n;g,i(

x1

x′
1

, t+n , k
⊥
n , µT ) Iβα

n̄;g,j(
x2

x′
2

, t−n̄ , k
⊥
n̄ , µT )

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, k⊥

s , µT )

(53)

with no reference to b⊥. The expression for Gij(x1, x′
1, x2, x′

2, u, t, µT ) can be trivially obtained

from Eq. (53) by rewriting the pT and Y variables in terms of the u and t variables by

Impact parameter appears, but only to simplify 
iBF→PDF matching; can transform this formula 

to be completely in momentum space
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Impact parameter appears, but only to simplify 
iBF→PDF matching; can transform this formula 

to be completely in momentum space

35



Fixed order and Matching 
Calculations

36



One loop Matching onto SCET
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here 26

FIG. 4: The diagrams contributing to the next-to-leading order jet function. The purple cross
denotes the collinear Wilson lines associated with the B⊥ field. We note that the momentum p1 is
incoming on the left-hand side of the cut and outgoing on the right.

scaleless and vanish in dimensional regularization. The Wilson coefficient can therefore be

extracted directly from the finite part of the full QCD result in dimensional regularization

and is well known in the literature [15, 79]. Through next-to-leading order, it is given by

C(n̄ · p̂1n · p̂2, µ) =
c n̄ · p̂1n · p̂2

v

{
1 +

αs

4π
CA

[
11

2
+

π2

6
− ln2

(
− n̄ · p̂1n · p̂2

µ2

)]}
, (58)

where the first term is just the result of tree level matching quoted earlier in Eq. (28) and

we have used the property C(ω1,ω2, µ) = C(ω1ω2, µ) to write the LHS above. We note that

the 11/2 in the next-to-leading order expression arises from integrating out the top quark

loop to produce an effective Higgs-glue vertex. The hard Wilson coefficient H(x1x2Q2, µ) =

|C(x1x2Q2, µ)|2 appearing in the factorization theorem can be obtained from the above

equation at next-to-leading order.

B. Calculation of the iBF

In this section we present results for the calculation of the iBFs as defined in Eqs. (36),

(33), and (42). We compute the n-collinear iBF by inserting a complete set of states as

B̃αβ
n (x1, t

+
n , b⊥, µ) =

∫
db−

4π
e

i
2

t+n b−
Q

∑

initial pols.

∑

Xn

〈p1|
[
gBA

1n⊥β(b
−, b⊥)|Xn〉

× 〈Xn|δ(P̄ − x1n̄ · p1)gBA
1n⊥α(0)

]
|p1〉,

(59)

and then computing the product of matrix elements. Recall that B̃αβ
n denotes the iBF

without a zero-bin subtraction as opposed to Bαβ
n which is defined with a zero-bin subtrac-

tion. An analogous expression exists for the n̄-collinear iBF. In this section we focus on the

n-collinear iBF, since the n̄-collinear iBF can be calculated in an analogous fashion. The

lowest order result for the iBF is obtained by choosing |Xn〉 = |0〉 and computing the tree

25

FIG. 3: The SCET diagrams contributing to the calculation of the Wilson coefficient C(ω1,ω2, µ).
The purple cross denotes the n and n̄ collinear Wilson lines and the soft Wilson lines, while gluons
with lines drawn through them are collinear gluons as the n and n̄ labels indicate. The S label
denotes a soft gluon in the first diagram.

A. Calculation of the QCD → SCETpT Wilson coefficient

We begin by discussing the matching of QCD onto SCETpT in order to extract the Wilson

coefficient C(ω1,ω2, µ). The Wilson coefficient can be extracted from the relation presented

in Eq. (27) by computing radiative corrections to the matrix elements of both the QCD and

SCET operators and encode their difference in C(ω1,ω2). For the tree level and one loop

matching one can compute the matrix elements 〈h|OQCD|p̂1, p̂2〉 and 〈h|O|p̂1, p̂2〉 in QCD

and SCETpT respectively where p̂1
µ = n̄ · p̂1 n

µ

2 and p̂µ2 = n · p̂2 n̄
µ

2 denote the momenta of the

initial state n-collinear and n̄-collinear gluons. The diagrams contributing at next-to-leading

order in αs in SCETpT are shown in Fig. 3. Labeling these graphs from left to right they

take the form

Fig. 3a = Va(p̂1, p̂2)O(n̄ · p̂1, n · p̂2),
Fig. 3b = [Vb(p̂1)− Vb0(p̂1)]O(n̄ · p̂1, n · p̂2),
Fig. 3c = [Vb(p̂2)− Vb0(p̂2)]O(n̄ · p̂1, n · p̂2), (56)

so that the SCETpT operator is multiplicatively renormalized. With on-shell external gluons

and using Feynman gauge, the quantities Va,b,b0 take the form

Va(p̂1, p̂2) = (−ig2CA)

∫
dd#

(2π)d
2

#2 n · # n̄ · # ,

Vb(p̂1) = (−ig2CA)

∫
dd#

(2π)d
(n̄ · #)2 + (n̄ · p̂1)2 + n̄ · # n̄ · p̂1

#2(#+ p̂1)2n̄ · (#+ p̂1)n̄ · # ,

Vb0(p̂1) = (−ig2CA)

∫
dd#

(2π)d
2

#2 n · # n̄ · # . (57)

We note that the collinear graphs in Figs. 3b and 3c require a zero-bin [71] subtraction

given by the Vb0 term in order to avoid over-counting the soft region. These integrals are all

One loop SCET graphs

• Wilson Coefficient obtained from finite part in 
dimensional regularization of the QCD result for gg→h.  At 
one loop we have:

12

where Lmt is given in Eq. (5). In SCETpT , the leading order operator that mediates this

process is [15, 42]

O(ω1,ω2) = gµνh T{Tr
[
Sn(gB

µ
n⊥)ω1S

†
nSn̄(gB

ν
n̄⊥)ω2S

†
n̄

]
}, (21)

where we have suppressed the perp labels on the soft and collinear fields, the sum of which are

constrained to be the negative of the Higgs transverse momentum, and we use the standard

notation

(X)ω ≡ Xδ(ω − P̄†), (22)

and the big brackets in Eq. (21) denote the fact that any label operators appearing inside

do not act outside the brackets. The B field is defined as [70]

Bµ
n⊥ ≡

[
1

P̄n
[i n̄ · Dn, iD⊥µ

n ]

]
, (23)

and the soft Wilson line Sn in position space is given by

Sn(x
µ) = P exp

(
igs

∫ 0

∞
ds n · Aa

s(x
µ + snµ)

)
, (24)

with an analogous expression for Sn̄. The covariant derivatives are dressed with momentum

space Wilson lines so that

Dµ
n ≡ W †

n D
µ
n Wn, Wn(x) =

[ ∑

perms

Exp
(−g

P̄
n̄ · An,q

)]
, (25)

and Dµ
n are the usual covariant derivatives

in̄ ·Dn = P̄n + gn̄ · An,p̃, iD⊥µ
n = Pµ

n⊥ + gA⊥µ
n,p̃, in ·Dn = in · ∂ + gn · An,p. (26)

We match the QCD operator onto the the effective SCETpT operator via

OQCD =

∫
dω1

∫
dω2 C(ω1,ω2)O(ω1,ω2), (27)

and determine the Wilson coefficient by computing the gg → h process on the LHS in QCD

and on the right side in SCETpT . At tree level the Wilson coefficient is

C(0)(ω1,ω2) =
c ω1ω2

v
. (28)

The process gg → gh where the transverse momentum of the Higgs is of order mhη ∼ pT is

mediated through an extra soft or collinear emission from the Wilson lines in O(ω1,ω2).

For convenience, in deriving the factorization theorem, we will work with soft fields that

are in position space and collinear fields that are in position space conjugate to the transverse

label momentum so that no label momenta of the transverse momentum appear in the soft

and collinear fields. This amounts to not separating from momentum components of order

mhη a residual part of order mhη2. The separation into label and residual components is

employed only for the hard light cone collinear momentum components of order mh.

All graphs scaleless and 
vanish in dimensional  
regularization.
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here
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FIG. 4: The diagrams contributing to the next-to-leading order jet function. The purple cross
denotes the collinear Wilson lines associated with the B⊥ field. We note that the momentum p1 is
incoming on the left-hand side of the cut and outgoing on the right.

scaleless and vanish in dimensional regularization. The Wilson coefficient can therefore be

extracted directly from the finite part of the full QCD result in dimensional regularization

and is well known in the literature [15, 79]. Through next-to-leading order, it is given by

C(n̄ · p̂1n · p̂2, µ) =
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where the first term is just the result of tree level matching quoted earlier in Eq. (28) and

we have used the property C(ω1,ω2, µ) = C(ω1ω2, µ) to write the LHS above. We note that

the 11/2 in the next-to-leading order expression arises from integrating out the top quark

loop to produce an effective Higgs-glue vertex. The hard Wilson coefficient H(x1x2Q2, µ) =

|C(x1x2Q2, µ)|2 appearing in the factorization theorem can be obtained from the above

equation at next-to-leading order.

B. Calculation of the iBF

In this section we present results for the calculation of the iBFs as defined in Eqs. (36),

(33), and (42). We compute the n-collinear iBF by inserting a complete set of states as

B̃αβ
n (x1, t

+
n , b⊥, µ) =

∫
db−

4π
e

i
2

t+n b−
Q

∑

initial pols.
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1n⊥α(0)

]
|p1〉,

(59)

and then computing the product of matrix elements. Recall that B̃αβ
n denotes the iBF

without a zero-bin subtraction as opposed to Bαβ
n which is defined with a zero-bin subtrac-

tion. An analogous expression exists for the n̄-collinear iBF. In this section we focus on the

n-collinear iBF, since the n̄-collinear iBF can be calculated in an analogous fashion. The

lowest order result for the iBF is obtained by choosing |Xn〉 = |0〉 and computing the tree
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• Definition of the iBF:

One loop graphs
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zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.
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n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in
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31

FIG. 5: Example diagrams contributing to the next-to-leading order iSF. The four lines at each
vertex schematically denote the soft Wilson lines associated appearing in the definition of the iSF
S−1. The diagram on the left corresponds to a virtual correction to the iSF and the diagram on
the right corresponds to a real emission as seen by the cut through the gluon.

where Is is the scaleless integral

Is = 2

∫
dd!

(2π)d
1

(!2 + i0) (n̄ · !− i0) (n · !+ i0)
, (81)

and vanishes in pure dimensional regularization.

Next we compute the contribution to the iSF from the real emission of an soft gluon

corresponding to choosing |Xs〉 = |k〉 for a gluon of momentum k, as shown in the second

diagram of Fig. 5. Explicit computation gives

S−1R(1)(ω̃1, ω̃2, b⊥, µ) = −SR(1)(ω̃1, ω̃2, b⊥, µ)

= −N2
c − 1

4

g2µ2εCA

(2π)d−1

∫
db+db−

16π2
eib

+ω̃1/2eib
−ω̃2/2

∫
ddk δ(k2)

4

k+k− e
−ib·k.

(82)

Switching to an MS definition of µ and performing integrals as before, we can derive the

following expression:

S−1R(1)(ω̃1, ω̃2, b⊥, µ) = −N2
c − 1

4

αsCA

π

eεγ

Γ(1− ε)
µ2εω̃−1−ε

1 ω̃−1−ε
2 0F1

(
1− ε;−b2⊥ω̃1ω̃2

4

)
.

(83)

The expansion in ε proceeds identically to that for the iBF. Defining the expansion

S−1R(1)(tmax
n − t+n , t

max
n̄ − t−n̄ , b⊥, µ) =

S2

ε2
+

S1

ε
+ S0, (84)

• Soft function definition:

One loop graphs
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=
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4ks

×
∫

dx−d2x⊥

(2π)3
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(2π)4
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2(2π)2
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(2π)2
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n (ω1, x
−, x⊥)J

αβ
n̄ (ω2, y

+, y⊥)S(z)

(A20)

where we have defined the jet and soft functions

Jαβ
n (ω1, x

−, x⊥) =
∑

initial pols.

〈p1|
[
gBA

1n⊥β(x
−, x⊥)δ(P̄ − ω1)gB
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1n⊥α(0)

]
|p1〉

Jαβ
n̄ (ω1, y
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)
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)
(0)|0〉.

(A21)

After performing the integrals over the residual momenta k+
n , k

⊥
n , k

−
n̄ , k

⊥
n̄ , k

µ
s and the x, y, z

coordinates we arrive at the simpler form

d2σ

dudt
=

2π

8Q2(N2
c − 1)2

∫
dp+h dp

−
h

∫
d2kh⊥

∫
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i
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+
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h⊥
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+, b⊥)S(b
+, b−, b⊥),

(A22)

which appears in Eq. (34).

Appendix B: Equivalence of zero-bin and soft subtractions

In this section we demonstrate the validity of Eq. (38), which we write here again for

convenience

E ≡
∫

dω1dω2|C(ω1,ω2, µ)|2
∫

dk+
n dk

−
n̄B

αβ
n (ω1, k

+
n , b⊥, µ) Bn̄αβ(ω2, k

−
n̄ , b⊥, µ)

× S(ω1 − p−h − k−
n̄ ,ω2 − p+h − k+

n , b⊥, µ)

=

∫
dω1dω2|C(ω1,ω2, µ)|2

∫
dk+

n dk
−
n̄ B̃

αβ
n (ω1, k

+
n , b⊥, µ) B̃n̄αβ(ω2, k

−
n̄ , b⊥, µ)

× S−1(ω1 − p−h − k−
n̄ ,ω2 − p+h − k+

n , b⊥, µ).

(B1)
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Running
• Factorization formula:

• Schematic picture of running:

4

in hadronic collisions has been under investigation since the early days of QCD [27–29]. It

has been studied for the Higgs boson following the seminal analysis of Collins, Soper, and

Sterman (CSS) [30, 31] in several works [32–36].

The purpose of this paper is to derive a factorization theorem for the Higgs transverse

momentum pT and rapidity Y distribution, in the region Q̂ ∼ mh " pT " ΛQCD, using the

Soft Collinear Effective Theory(SCET) [37–39]. Here Q̂ and mh denote the partonic center

of mass energy and the Higgs mass respectively. Although we focus on Higgs production,

our methods and results can be immediately generalized to the differential distributions of

any one or more color neutral particles. The factorization theorem we derive has the form

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1, x2, µQ;µT )Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ), (1)

where Q is the hadronic center of mass energy, H is the hard Wilson coefficient arising

matching QCD onto SCET, and fi/P is the standard parton distribution function (PDF) for

taking a parton of species i from the proton. Gij is a perturbative coefficient at the pT scale

that has the form

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(b⊥ pT ) g
⊥
ασg

⊥
βω

× Iαβ
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iσω
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT ) (2)

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT ),

which is a convolution over the collinear functions Iαβ
n,n̄;g,i and the Inverse Soft Function (iSF)

S−1. Logarithms of mh/pT are summed by the Renormalization Group (RG) equations in

SCET and are encoded in H(x1, x2, µQ;µT ) which is the hard coefficient evolved from the

renormalization scale µQ ∼ mh down to µT ∼ pT . The logarithms of ΛQCD/pT are summed

via the standard DGLAP evolution of the PDFs and are encoded in the PDFs evaluated at

µT ∼ pT . The factorization formula in Eq.(1) is derived by matching QCD onto a sequence

of effective field theories EFT:

QCD(nf = 6) → QCD(nf = 5) → SCETpT → SCETΛQCD , (3)

which is shown graphically in Fig. 1. The first step QCD(nf = 6) → QCD(nf = 5) denotes

the usual procedure of integrating out the top quark to get an effective coupling of the Higgs

to gluons. The Higgs production mechanism then proceeds via this effective coupling. The

hard scale Q̂ ∼ mh is then integrated out by matching onto SCETpT , which describes the

dynamics of soft and collinear modes with transverse momenta of order pT . The factorization

4

in hadronic collisions has been under investigation since the early days of QCD [27–29]. It

has been studied for the Higgs boson following the seminal analysis of Collins, Soper, and

Sterman (CSS) [30, 31] in several works [32–36].

The purpose of this paper is to derive a factorization theorem for the Higgs transverse

momentum pT and rapidity Y distribution, in the region Q̂ ∼ mh " pT " ΛQCD, using the

Soft Collinear Effective Theory(SCET) [37–39]. Here Q̂ and mh denote the partonic center

of mass energy and the Higgs mass respectively. Although we focus on Higgs production,

our methods and results can be immediately generalized to the differential distributions of

any one or more color neutral particles. The factorization theorem we derive has the form

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1, x2, µQ;µT )Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ), (1)

where Q is the hadronic center of mass energy, H is the hard Wilson coefficient arising

matching QCD onto SCET, and fi/P is the standard parton distribution function (PDF) for

taking a parton of species i from the proton. Gij is a perturbative coefficient at the pT scale

that has the form

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(b⊥ pT ) g
⊥
ασg

⊥
βω

× Iαβ
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iσω
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT ) (2)

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT ),

which is a convolution over the collinear functions Iαβ
n,n̄;g,i and the Inverse Soft Function (iSF)

S−1. Logarithms of mh/pT are summed by the Renormalization Group (RG) equations in

SCET and are encoded in H(x1, x2, µQ;µT ) which is the hard coefficient evolved from the

renormalization scale µQ ∼ mh down to µT ∼ pT . The logarithms of ΛQCD/pT are summed

via the standard DGLAP evolution of the PDFs and are encoded in the PDFs evaluated at

µT ∼ pT . The factorization formula in Eq.(1) is derived by matching QCD onto a sequence

of effective field theories EFT:

QCD(nf = 6) → QCD(nf = 5) → SCETpT → SCETΛQCD , (3)

which is shown graphically in Fig. 1. The first step QCD(nf = 6) → QCD(nf = 5) denotes

the usual procedure of integrating out the top quark to get an effective coupling of the Higgs

to gluons. The Higgs production mechanism then proceeds via this effective coupling. The

hard scale Q̂ ∼ mh is then integrated out by matching onto SCETpT , which describes the

dynamics of soft and collinear modes with transverse momenta of order pT . The factorization

5

theorem in SCETpT takes the form

d2σ

dp2T dY
=

π

4(N2
c − 1)2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
d2b⊥
(2π)2

e−i!k⊥h ·!b⊥

× δ

[
p−h − eY

√
p2T +m2

h

]
δ

[
p+h − e−Y

√
p2T +m2

h

]
δ
[
p+h p

−
h − $k2

h⊥ −m2
h

]

×
∫ 1

0

dx1

∫ 1

0

dx2

∫
dt+n

∫
dt−n̄H(x1x2Q

2, µQ;µT ) B̃
αβ
n (x1, t

+
n , b⊥, µT ) B̃n̄αβ(x2, t

−
n̄ , b⊥, µT )

× S−1(x1Q− p−h − t−n̄
Q
, x2Q− p+h − t+n

Q
, b⊥, µT ),

(4)

where the collinear functions B̃αβ
n,n̄ are the Impact-parameter Beam Functions(iBFs). The

iBFs B̃αβ
n,n̄ are extensions of the beam functions that appear in [40, 41] and reduce to them for

b⊥ = 0 after contraction of the transverse indices α and β. The beam functions of Ref. [41]

were shown to have wide applicability to the analysis of observables at the LHC. The iBFs

are proton matrix elements evaluated at the scale µT ∼ pT . The iBFs are matched onto the

standard QCD PDFs by performing an OPE in ΛQCD/pT and the logarithms of ΛQCD/pT
are summed via the standard DGLAP equations used to evaluate the PDFs at the scale

µT ∼ pT . This is shown schematically in Fig. 1 and gives the final form of the factorization

theorem shown in Eqs.(1) and (2) where the collinear functions Iαβ
n,n̄;g,i are just the iBF to

PDF matching coefficients.

While the factorization and resummation of transverse-momentum distributions has been

studied extensively in the QCD literature, and SCET analyses [42, 43] have been performed

in the past, our analysis contains several interesting differences that we believe are worth

further investigating. A summary of the main points of this paper is given below:

1. We derive a factorization theorem for the Higgs transverse momentum and rapidity

distributions using effective field theory methods. A clear separation of the dynamics

associated with the scales Q̂ ∼ mh $ pT $ ΛQCD into perturbative Wilson coefficients

and standard QCD PDFs is achieved. Large logarithms of ratios of the relevant scales

are summed using RG equations in the effective theories. Power corrections in pT/mh

and ΛQCD/pT can be systematically derived by going to higher orders in the power

counting of the effective theories.

2. In addition to the factorization of the scales mh $ pT $ ΛQCD, the perturbative

physics of the pT scale is further factorized into an iSF S−1 and two distinct collinear

functions Iαβ
n;gi and Iαβ

n̄;gi. This additional factorization simplifies the structure of higher

order perturbative corrections at the pT scale. They can now be obtained through

higher order computations of the simpler perturbative functions S−1, Iαβ
n;gi and Iαβ

n̄;gi.

3. The factorization in SCET naturally occurs in terms of purely collinear PDFs and

soft functions. The purely collinear PDFs differ from the standard QCD PDFs by
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Running
• Factorization formula:
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d2σ

dp2
T dY

∼ H ⊗ Gij ⊗ fi ⊗ fj (1)

130 GeV < mh < 180 GeV (2)

pp→ h + X (3)

αs

π
(4)

I. INTRODUCTION

LSCET = L(0)
SCET + L(1)

SCET + L(2)
SCET + · · · (5)

L(0)
SCET = L(0)

coll. + L(0)
soft (6)

H = |C(µQ, Q)|2exp
{∫ µQ

µT

dµ

µ
Γc [αs(µ)] ln

(
Q2

µ2

)
+ γ [αs(µ)]

}

Γc [αs] = ACSS ,

γ(1) = B(1)
CSS ,

γ(2) = B(2)
CSS + pieces from C, G
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Limit of very small pT 
• We derived a factorization formula in the limit:

5

theorem in SCETpT takes the form

d2σ

dp2T dY
=

π

4(N2
c − 1)2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
d2b⊥
(2π)2

e−i!k⊥h ·!b⊥

× δ

[
p−h − eY

√
p2T +m2

h

]
δ

[
p+h − e−Y

√
p2T +m2

h

]
δ
[
p+h p

−
h − $k2

h⊥ −m2
h

]

×
∫ 1

0

dx1

∫ 1

0

dx2

∫
dt+n

∫
dt−n̄H(x1x2Q

2, µQ;µT ) B̃
αβ
n (x1, t

+
n , b⊥, µT ) B̃n̄αβ(x2, t

−
n̄ , b⊥, µT )

× S−1(x1Q− p−h − t−n̄
Q
, x2Q− p+h − t+n

Q
, b⊥, µT ),

(4)

where the collinear functions B̃αβ
n,n̄ are the Impact-parameter Beam Functions(iBFs). The

iBFs B̃αβ
n,n̄ are extensions of the beam functions that appear in [40, 41] and reduce to them for

b⊥ = 0 after contraction of the transverse indices α and β. The beam functions of Ref. [41]

were shown to have wide applicability to the analysis of observables at the LHC. The iBFs

are proton matrix elements evaluated at the scale µT ∼ pT . The iBFs are matched onto the

standard QCD PDFs by performing an OPE in ΛQCD/pT and the logarithms of ΛQCD/pT
are summed via the standard DGLAP equations used to evaluate the PDFs at the scale

µT ∼ pT . This is shown schematically in Fig. 1 and gives the final form of the factorization

theorem shown in Eqs.(1) and (2) where the collinear functions Iαβ
n,n̄;g,i are just the iBF to

PDF matching coefficients.

While the factorization and resummation of transverse-momentum distributions has been

studied extensively in the QCD literature, and SCET analyses [42, 43] have been performed

in the past, our analysis contains several interesting differences that we believe are worth

further investigating. A summary of the main points of this paper is given below:

1. We derive a factorization theorem for the Higgs transverse momentum and rapidity

distributions using effective field theory methods. A clear separation of the dynamics

associated with the scales Q̂ ∼ mh $ pT $ ΛQCD into perturbative Wilson coefficients

and standard QCD PDFs is achieved. Large logarithms of ratios of the relevant scales

are summed using RG equations in the effective theories. Power corrections in pT/mh

and ΛQCD/pT can be systematically derived by going to higher orders in the power

counting of the effective theories.

2. In addition to the factorization of the scales mh $ pT $ ΛQCD, the perturbative

physics of the pT scale is further factorized into an iSF S−1 and two distinct collinear

functions Iαβ
n;gi and Iαβ

n̄;gi. This additional factorization simplifies the structure of higher

order perturbative corrections at the pT scale. They can now be obtained through

higher order computations of the simpler perturbative functions S−1, Iαβ
n;gi and Iαβ

n̄;gi.

3. The factorization in SCET naturally occurs in terms of purely collinear PDFs and

soft functions. The purely collinear PDFs differ from the standard QCD PDFs by

• For smaller values of pT, one can introduce a non-
perturbative model for the transverse momentum function: 
field theoretically defined, running known

• In the limit pT=0, mh→∞, dσ/dpT2→constant Parisi, Petronzio

• Dominated by back-to-back hard jets⇒in SCET, this is a 
power-suppressed operator
• Leading term Sudakov suppressed in this limit
• Working to understand this in SCET...
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Higgs at the LHC
• Matching accomplished just by subtracting 

expanded exponent from fixed order

stable at high pT

Preliminary
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Tevatron Z production

Missing 2-loop iBF, soft functions needed 
for full NNLL+NLO

Preliminary
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Conclusions
• Derived factorization formula for the Higgs transverse 
   momentum distribution in an EFT approach:

• Formulation is free of Landau poles; easy matching 
to fixed-order
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SCET + L(1)

SCET + L(2)
SCET + · · · (5)

L(0)
SCET = L(0)

coll. + L(0)
soft (6)

• Resummation via RG equations in EFTs

• Next steps: higher-order calculations of iBF, iSF to enable 
NNLL+NLO result, modeling of low pT
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