Ambiguities in the interpretation of SUSY observables

Takanori Kono (University of Hamburg) Fittino collaboration

> Analysis Centre, SUSY/BSM Fit working group

Introduction

- SUSY parameter determination with LHC data
 - SUSY parameter determination with existing measurements
 - Low energy observables, Ω_{CDM} , $(g-2)_{\mu}$
 - Expect measurements on kinematic end-points (edges) of invariant mass distributions
- Ambiguities in the interpretation of SUSY observables
 - Ambiguities in the kinematic edge measurement
 - Formalism used in the fit
 - Impact on the fit

Ambiguities in particle assignment

- Measurements from the standard cascade decay
 - We don't detect the SUSY particle directly
 - $\circ~$ Separate observables for l=e,µ and τ
- Ambiguities in the SUSY particles in the decay chain
 - Neutralinos involved in the decay chain
 - Slepton (right- or left-handed)
- These ambiguities may lead to wrong interpretations of data
 - How do they affect the parameter determination?
 - Can we distinguish them by the fit and select the correct interpretation?

Fit incorporating several interpretations

- Kinematic edges
- Branching ratios

SUSY calculator

• Different assumptions on intermediate particles give different predictions of the observables

 $f(m_0, m_{1/2}, A_0, \tan \beta; s)$ s: Discrete parameter for various interpretations

- Find the best fit point including 's'
- How different are the predictions with different 's'?
- What are the effects on the fit parameters
- Note that predictions are not a smooth function of 's'
 - Technically, it is useful to quickly find out noninteresting cases

$$m_{l^{+}l^{-}}^{2} \left(m_{\tilde{\chi}_{2}^{0}}^{2}, m_{\tilde{l}_{1}}^{2}, m_{\tilde{\chi}_{1}^{0}}^{2} \right) m_{ql^{+}l^{-}}^{2} \left(m_{\tilde{q}}^{2}, m_{\tilde{\chi}_{2}^{0}}^{2}, m_{\tilde{l}_{1}}^{2}, m_{\tilde{\chi}_{1}^{0}}^{2} \right) m_{ql_{near}}^{2} \left(m_{\tilde{q}}^{2}, m_{\tilde{\chi}_{2}^{0}}^{2}, m_{\tilde{l}_{1}}^{2} \right) m_{ql_{far}}^{2} \left(m_{\tilde{q}}^{2}, m_{\tilde{\chi}_{2}^{0}}^{2}, m_{\tilde{l}_{1}}^{2}, m_{\tilde{\chi}_{1}^{0}}^{2} \right) m_{ql_{how}}^{2} = \min\{(m_{ql_{near}}^{2}), (m_{ql_{far}}^{2})\} m_{ql_{high}}^{2} = \max\{(m_{ql_{near}}^{2}), (m_{ql_{far}}^{2})\}$$

Fit incorporating several interpretations

Find the best fit point including 's'

- Since predictions are not smooth in terms of 's', we need to run the fit on usual parameters for each 's'
- Otherwise, Markov chain, Minuit or Simulated Annealing
- \rightarrow Best interpretation + parameter values
- What are the effects on the fit parameters?
 - Parameter values and uncertainties can be evaluated running toy fits
 - Toy fit also tells you how other interpretations are compatible with the best one

LHC with L=10 fb⁻¹ @14 TeV

Particle assignment	Fraction (%)
Correct interpretation	69
$\chi^2_0 \leftrightarrow \chi^3_0$ (e, μ -channel)	16
$l_R \leftrightarrow l_L (e,\mu\text{-channel})$	12
$\begin{array}{l} \chi^{2}_{0} \leftrightarrow \chi^{3}_{0}, l_{R} \leftrightarrow l_{L} \; (e,\mu\text{-channel}) \\ \chi^{2}_{0} \leftrightarrow \chi^{4}_{0}, l_{R} \leftrightarrow l_{L} \; (\tau\text{-channel}) \end{array}$	3
$\chi^{2}_{0} \leftrightarrow \chi^{3}_{0}$ (e, μ -channel) $\chi^{2}_{0} \leftrightarrow \chi^{3}_{0}$ (τ -channel)	<0.1

• Wrong interpretation is chosen when the calculated mass edges are accidentally close to the observed value

- Including the cross section for a particular final state would be useful
- Little effect on parameter uncertainties

LHC with L=1 fb⁻¹ @14 TeV

Particle assignment	Fraction (%)	
Correct interpretation	48	40-40-
$\chi^2_0 \leftrightarrow \chi^3_0$ (e, μ -channel) $\chi^2_0 \leftrightarrow \chi^3_0$ (τ -channel)	21	20 20
$\chi_{0}^{1} \leftrightarrow \chi_{0}^{2}$, $l_{R} \leftrightarrow l_{L}$ (e, μ -channel) $\chi_{0}^{1} \leftrightarrow \chi_{0}^{3}$ (τ -channel)	19	$0 \frac{1}{20} \frac{1}{20} \frac{1}{40} \frac{1}{60} \frac{1}{20} \frac{1}{20} \frac{1}{40} \frac{1}{60} \frac{1}{20} \frac{1}{20} \frac{1}{10} \frac{1}{10}$
$\chi_0^1 \leftrightarrow \chi_0^2$ (e, μ -channel) $\chi_0^1 \leftrightarrow \chi_0^3$ (τ -channel)	3.6	00 cother
$\begin{array}{l} \chi^{1}_{0} \leftrightarrow \chi^{3}_{0}, \ l_{R} \leftrightarrow l_{L} \ (e,\mu\text{-channel}) \\ \chi^{1}_{0} \leftrightarrow \chi^{2}_{0}, \ \chi^{2}_{0} \leftrightarrow \chi^{3}_{0}, \ l_{R} \leftrightarrow l_{L} \ (\tau\text{-channel}) \end{array}$	2.5	40- 20- : : : : : : : : : : : : : : : : : : :
$\begin{array}{l} \chi^{1}_{0} \leftrightarrow \chi^{2}_{0} \ (e,\mu\text{-channel}) \\ \chi^{1}_{0} \leftrightarrow \chi^{2}_{0}, \ l_{R} \leftrightarrow l_{L} \ (\tau\text{-channel}) \end{array}$	1.8	
		$\chi^2_{correct}$ $\chi^2_{correct}$

• Experimental uncertainties are increased for estimating the fit performance with L=1 fb⁻¹

- Fewer observables used in the fit
- The probability of selecting a wrong interpretation increases as expected

Parameter uncertainties

Parameter determination

L=10 fb⁻¹

Parameter	Nominal fit	with particle assignment ambiguities	The effect
M ₀ (GeV)	100.0 ± 2.0	100.2 ± 2.1	parameter
M _{1/2} (GeV)	250.2 ± 1.4	249.9 ± 1.4	is small w
A ₀ (GeV)	-98 ± 54	-118 ± 264	precise me
tanβ	10.1 ± 0.85	9.8 ± 0.92	

The effect on the parameter uncertainty is small when we have precise measurements

L=1 fb⁻¹

Parameter	Nominal fit	with particle assignment ambiguities	•
M ₀ (GeV)	100.6 ± 4.1	100.7 ± 4.3	ä
M _{1/2} (GeV)	249.9 ± 6.4	249.9 ± 7.1	۱
A ₀ (GeV)	-138 ± 430	-118 ± 3060	
tanβ	8.7±3.7	9.8 ± 9.2	

Difficult to fit tanβ and A₀ in this case
Effect on M₀ and M_{1/2} are small

Summary

mSUGRA fit with LHC observables

- Ambiguities of the particle assignment in the decay chain can be treated in the fit to discriminate those interpretations
 - The effect in the mSUGRA model seems to be small when the fit works
 - Moderate increase of uncertainties and the shift is within the uncertainty

Outlook

- Extend the study to a more general SUSY models, e.g. MSSM18
- Constraints from cross section measurements would help the interpretation of observables

Backup slides

SPS1a benchmark point

LHC observables for SUSY fit

• Also include some measurements on branching ratios $\frac{Br(\tilde{\chi}_{2}^{0} \to \tilde{l}_{R}l) \cdot Br(\tilde{l}_{R} \to \tilde{\chi}_{1}^{0}l)}{Br(\tilde{\chi}_{2}^{0} \to \tilde{\tau}_{1}\tau) \cdot Br(\tilde{\tau}_{1} \to \tilde{\chi}_{1}^{0}\tau)}$

• A list of possible measurements and uncertainties are taken from hep-ph/0410364

- SUSY particles are not directly measured
- Kinematic edges of various combinations of invariant mass distributions are related to SUSY particle masses
- Ambiguities in the particle assignment in the cascade decay

 $m_{l^{+}l^{-}}^{2} \left(m_{\tilde{\chi}_{2}^{0}}^{2}, m_{\tilde{l}_{1}}^{2}, m_{\tilde{\chi}_{1}^{0}}^{2} \right)$ $m_{ql^{+}l^{-}}^{2} \left(m_{\tilde{q}}^{2}, m_{\tilde{\chi}_{2}^{0}}^{2}, m_{\tilde{l}_{1}}^{2}, m_{\tilde{\chi}_{1}^{0}}^{2} \right)$ $m_{ql_{near}}^{2} \left(m_{\tilde{q}}^{2}, m_{\tilde{\chi}_{2}^{0}}^{2}, m_{\tilde{l}_{1}}^{2} \right)$ $m_{ql_{far}}^{2} \left(m_{\tilde{q}}^{2}, m_{\tilde{\chi}_{2}^{0}}^{2}, m_{\tilde{l}_{1}}^{2}, m_{\tilde{\chi}_{1}^{0}}^{2} \right)$ $m_{ql_{low}}^{2} = \min\{(m_{ql_{near}}^{2}), (m_{ql_{far}}^{2})\}$ $m_{ql_{high}}^{2} = \max\{(m_{ql_{near}}^{2}), (m_{ql_{far}}^{2})\}$

Low energy observables

Observable	Experimental	Uncertainty		Exp.
	value	stat	syst	reference
$\mathcal{B}(B \to s\gamma)/\mathcal{B}(B \to s\gamma)_{\rm SM}$	1.117	0.076	0.096	[48]
$\mathcal{B}(B_s \to \mu \mu)$	$< 4.7 \times 10^{-8}$		0.02×10^{-8}	[48]
$\mathcal{B}(B_d \to \ell \ell)$	$<\!2.3 \times 10^{-8}$		$0.001 imes 10^{-8}$	[48]
$\mathcal{B}(B \to \tau \nu) / \mathcal{B}(B \to \tau \nu)_{\rm SM}$	1.15	0.40		[49-52]
$\mathcal{B}(B_s \to X_s \ell \ell) / \mathcal{B}(B_s \to X_s \ell \ell)_{\mathrm{SM}}$	0.99	0.32		[48]
$\Delta m_{B_s} / \Delta m_{B_s}^{\rm SM}$	1.11	0.01	0.32	[53]
$\frac{\Delta m_{B_s} / \Delta m_{B_s}^{\rm SM}}{\Delta m_{B_d} / \Delta m_{B_d}^{\rm SM}}$	1.09	0.01	0.16	[48, 53]
$\Delta \epsilon_K / \Delta \epsilon_K^{SM}$	0.92	0.14		[53]
$\mathcal{B}(K \to \mu \nu) / \mathcal{B}(K \to \mu \nu)_{\rm SM}$	1.008	0.014		[54]
$\mathcal{B}(K \to \pi \nu \bar{\nu}) / \mathcal{B}(K \to \pi \nu \bar{\nu})_{\text{SM}}$	<4.5			[55]
$a_{\mu}^{\exp} - a_{\mu}^{SM}$	30.2×10^{-10}	8.8×10^{-10}	2.0×10^{-10}	[56-60]
$\sin^2 \theta_{\rm eff}$	0.2324	0.0012		[47]
Γ_Z	2.4952 GeV	0.0023 GeV	0.001 GeV	[47]
R_l	20.767	0.025		[47]
R_b	0.21629	0.00066		[47]
R_c	0.1721	0.003		[47]
$A_{\rm fb}(b)$	0.0992	0.0016		[47]
$A_{\rm fb}(c)$	0.0707	0.0035		[47]
A_b	0.923	0.020		[47]
A_c	0.670	0.027		[47]
A_l	0.1513	0.0021		[47]
A_{τ}	0.1465	0.0032		[47]
$A_{ m fb}(l)$	0.01714	0.00095		[47]
$\sigma_{ m had}$	41.540 nb	0.037 nb		[47]
m_h	>114.4 GeV		3.0 GeV	[61-63]
$\Omega_{\rm CDM} h^2$	0.1099	0.0062	0.012	[64]
$1/\alpha_{\rm em}$	127.925	0.016		[65]
G_F	$1.16637 \times 10^{-5} \text{ GeV}^{-2}$	$0.00001 \times 10^{-5} \text{ GeV}^{-2}$		[65]
α_s	0.1176	0.0020		[65]
mz	91.1875 GeV	0.0021 GeV		[47]
m _W	80.399 GeV	0.025 GeV	0.010 GeV	[65]
m_b	4.20 GeV	0.17 GeV		[65]
m_t	172.4 GeV	1.2 GeV		[66]
m_{τ}	1.77684 GeV	0.00017 GeV		[65]
m_c	1.27 GeV	0.11 GeV		[47]

Analysis Centre, SUSY/BSM Fit working group

2010/7/27

LHC observables

Pair production of slepton and squarks

$$\begin{split} \widetilde{g} \to bb_{1} \to bb\widetilde{\chi}_{2}^{0} \\ \to bbl^{\pm}\widetilde{l}_{R}^{\mp} \to bbl^{\pm}l^{\mp}\widetilde{\chi}_{2}^{0} \\ \widetilde{q}_{L} \to q\widetilde{\chi}_{2}^{0} \to ql^{\pm}\widetilde{l}_{1}^{\mp} \to ql^{\pm}l^{\mp}\widetilde{\chi}_{1}^{0} \\ \widetilde{q}_{L} \to q\widetilde{\chi}_{2}^{0} \to q\tau^{\pm}\widetilde{\tau}_{1}^{\mp} \to q\tau^{\pm}\tau^{\mp}\widetilde{\chi}_{1}^{0} \\ b_{1} \to b\widetilde{\chi}_{2}^{0} \to bl^{\pm}\widetilde{l}_{1}^{\mp} \to bl^{\pm}l^{\mp}\widetilde{\chi}_{1}^{0} \\ \widetilde{q} \to t\widetilde{t} \to tb\widetilde{\chi}^{\pm} \end{split}$$

$$\widetilde{g} \to b\widetilde{b}_{1} \to bW\widetilde{t}_{1} \to bbW\widetilde{\chi}_{1}^{\pm}$$
$$\widetilde{g} \to b\widetilde{b}_{1} \to tb\widetilde{\chi}_{1}^{\pm}$$

Observable	Nominal			
	Value	1 fb^{-1}	$10 \ {\rm fb}^{-1}$	$300 \ {\rm fb}^{-1}$
m_h	109.6		1.4	0.1
m_t	172.4	1.1	0.05	0.01
$m_{\tilde{\chi}_1^{\pm}}$	180.2			11.4
$\sqrt{m^2_{ ilde{\ell}_L}-2m^2_{ ilde{\chi}^0_1}}$	148.8			1.7
$m_{ ilde{g}}-m_{ ilde{\chi}_1^0}$	507.7		13.7	2.5
$\sqrt{m_{ ilde q_R}^2-2m_{ ilde \chi_1^0}^2}$	531.0	19.6	6.2	1.1
$m_{ ilde{g}}-m_{ ilde{b}_1}$	88.7			1.5
$m_{ ilde{g}}-m_{ ilde{b}_2}$	56.8			2.5
$m_{\ell\ell}^{\max}(m_{\tilde{\chi}_1^0}^{-}, m_{\tilde{\chi}_2^0}^{-}, m_{\tilde{\ell}_B})$	80.4	1.7	0.5	0.03
$m_{\ell\ell}^{\max}(m_{\tilde{\chi}_{1}^{0}},m_{\tilde{\chi}_{4}^{0}},m_{\tilde{\ell}_{L}})$	280.6		12.6	2.3
$m_{ au au}^{\max}(m_{ ilde{\chi}_{1}^{0}}^{1},m_{ ilde{\chi}_{2}^{0}}^{2},m_{ ilde{ au}_{1}}^{2})$	83.4	12.6	4.0	0.73
$m_{\ell\ell q}^{\max}(m_{ ilde{\chi}_1^0}^{-1},m_{ ilde{q}_L}^{-2},m_{ ilde{\chi}_2^0}^{-2})$	452.1	13.9	4.2	1.4
$m_{\ell q}^{ m low}(m_{ ilde{\ell}_R},m_{ ilde{q}_L},m_{ ilde{\chi}_2^0})$	318.6	7.6	3.5	0.9
$m_{\ell q}^{ ext{high}}(m_{ ilde{\chi}_1^0}, m_{ ilde{\chi}_2^0}, m_{ ilde{\ell}_B}, m_{ ilde{q}_L})$	396.0	5.2	4.5	1.0
$m_{\ell\ell q}^{\mathrm{thres}}(m_{\tilde{\chi}_1^0},m_{\tilde{\chi}_2^0},m_{\tilde{\ell}_B},m_{\tilde{q}_L})$	215.6	26.5	4.8	1.6
$m_{\ell\ell b}^{ m thres}(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\ell}_B}, m_{\tilde{b}_1})$	195.9		19.7	3.6
$m_{tb}^{\rm w}(m_t, m_{\tilde{t}_1}, m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{g}}, m_{\tilde{b}_1})$	359.5	43.0	13.6	2.5
$\frac{\mathcal{B}(\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{R}\ell) \times \mathcal{B}(\tilde{\ell}_{R} \rightarrow \tilde{\chi}_{1}^{0}\ell)}{\mathcal{B}(\tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}_{1}\tau) \times \mathcal{B}(\tilde{\tau}_{1} \rightarrow \tilde{\chi}_{1}^{0}\tau)}$	0.076	0.009	0.003	0.001
$\frac{\mathcal{B}(\tilde{g} \rightarrow b_2 b) \times \mathcal{B}(\tilde{b}_2 \rightarrow \tilde{\chi}_2^0 b)}{\mathcal{B}(\tilde{g} \rightarrow \tilde{b}_1 b) \times \mathcal{B}(\tilde{b}_1 \rightarrow \tilde{\chi}_2^0 b)}$	0.168			0.078

Toy fit

• Smear observables around the central value according the uncertainties and correlation

• Perform a fit for each smeared point. Resulting distribution on fit parameters gives the uncertainty and correlation on the parameters

observables

Analysis Centre, SUSY/BSM Fit working group

2010/7/27