The MasterCode

Sven Heinemeyer, IFCA (CSIC, Santander)

DESY Hamburg, 07/2010

based on collaboration with O. Buchmüller, R. Cavanaugh, A. de Roeck, J. Ellis, T. Hahn, G. Isidori, K. Olive, P. Paradisi, S. Rogerson, F. Ronga, G. Weiglein

- 1. Introduction
- 2. Codes and predictions
- 3. Models & Methods
- 4. Predictions for the LHC and the ILC
- 5. Conclusions

1. Introduction

[LEPEWWG '10]

 $\Rightarrow M_H = 89^{+35}_{-26} \text{ GeV}$

$$M_H < 158$$
 GeV, 95% C.L.

Assumption for the fit:
SM incl. Higgs boson
⇒ no confirmation of Higgs mechanism

Global fit to all SM data incl. direct searches: [*GFitter '10*]

Sven Heinemeyer, ASFWG Inauguration workshop, 26.07.2010

Combine all existing precision data:

- Electroweak precision observables (EWPO)
- *B* physics observables (BPO)
- Cold dark matter (CDM)
- . . .

Predict:

- best-fit points
- ranges for Higgs masses
- ranges for SM parameters
- ranges for SUSY masses \Rightarrow LHC/ILC reach

Our tool:

The "MasterCode"

 \Rightarrow collaborative effort of theorists and experimentalists [Buchmüller, Cavanaugh, De Roeck, Ellis, Flächer, Hahn, SH, Isidori, Olive, Paradisi,

Rogerson, Ronga, Weiglein]

Über-code for the combination of different tools:

- Über-code original in Fortran, now re-written in C++
- tools are included as subroutines
- compatibility ensured by collaboration of authors of "MasterCode" and authors of "sub tools" /SLHA(2)
- sub-codes in Fortran or C++
- \Rightarrow evaluate observables of one parameter point consistently with various tools

cern.ch/mastercode

Status of the "MasterCode":

- one model: (MFV) MSSM (see next section)
- tools included:
 - B-physics observables [SuFla]
 - more *B*-physics observables [*SuperIso*]
 - Higgs related observables, $(g-2)_{\mu}$ [FeynHiggs]
 - Electroweak precision observables [FeynWZ (SUSYPope)]
 - Dark Matter observables [MicrOMEGAs, DarkSUSY]
 - for GUT scale models: RGE running [SoftSusy]
- \Rightarrow all most-up-to-date codes on the market!
- added: χ^2 analysis code [*Minuit*]
- currently being implemented:
 - Higgs constraints (for χ^2 contributions . . .) [HiggsBounds]
- planned: inclusion of more tools / more models

Status of the "MasterCode":

- one model: (MFV) MSSM (see next section)
- tools included:
 - B-physics observables [SuFla]
 - more *B*-physics observables [*SuperIso*]
 - Higgs related observables, $(g-2)_{\mu}$ [FeynHiggs]
 - Electroweak precision observables [FeynWZ (SUSYPope)]
 - Dark Matter observables [MicrOMEGAs, DarkSUSY]
 - for GUT scale models: RGE running [SoftSusy]
- \Rightarrow all most-up-to-date codes on the market!

 \Rightarrow crucial for precision!

- added: χ^2 analysis code [*Minuit*]
- currently being implemented:
 - Higgs constraints (for χ^2 contributions . . .) [HiggsBounds]
- planned: inclusion of more tools / more models

(Some) Electroweak precision observables in the MasterCode

- (\rightarrow as for blue band analysis, except ${\sf \Gamma}_W)$
- 1. M_W (LEP/Tevatron)
- 2. A^e_{LR} (SLD)
- 3. A^b_{FB} (LEP)
- 4. A_{FB}^c (LEP)
- 5. A_{FB}^l
- 6. A_b, A_c
- 7. R_b, R_c
- 8. σ_{had}^0

\Rightarrow largest impact: (1), (2), (3)

(Some) B/K physics observables in the MasterCode

- 1. $BR(b \rightarrow s\gamma)$ (MSSM/SM)
- 2. BR($B_s \rightarrow \mu^+ \mu^-$)
- **3**. Δ*M*_s
- 4. $R(\Delta M_s/\Delta M_d)$
- 5. $BR(B_u \rightarrow \tau \nu_{\tau})$ (MSSM/SM)
- 6. BR($B \rightarrow X_x \ell^+ \ell^-$)
- 7. $BR(K \rightarrow \ell \nu)$ (MSSM/SM)
- 8. BR(ΔM_K) (MSSM/SM)
- \Rightarrow largest impact: (1) and (2)

– anomalous magnetic moment of the muon: $(g-2)_{\mu}$

– anomalous magnetic moment of the muon: $(g-2)_{\mu}$

Higgs physics observables in the MasterCode

- lightest Higgs mass: M_h
- effective mixing angle: α_{eff} , especially for $\sin^2(\beta \alpha_{eff})$

– anomalous magnetic moment of the muon: $(g-2)_{\mu}$

Higgs physics observables in the MasterCode

- lightest Higgs mass: M_h
- effective mixing angle: $\alpha_{\rm eff}$, especially for $\sin^2(\beta \alpha_{\rm eff})$

Dark Matter observables in the MasterCode

- CDM density: $\Omega_{\chi}h^2$
- Direct detection cross section: σ_p^{SI}

– anomalous magnetic moment of the muon: $(g-2)_{\mu}$

Higgs physics observables in the MasterCode

- lightest Higgs mass: M_h
- effective mixing angle: $\alpha_{\rm eff}$, especially for $\sin^2(\beta \alpha_{\rm eff})$

Dark Matter observables in the MasterCode

- CDM density: $\Omega_{\chi}h^2$
- Direct detection cross section: σ_p^{SI}

SM parameters

- top mass: m_t
- -Z boson mass: M_Z
- hadronic contribution to fine structure constant: $\Delta \alpha_{had}$

 \Rightarrow Differences of up to \sim 1.2 GeV for "non-extreme" parameters

Comparison of $\sin^2 \alpha_{\rm eff}$: FH/CPsH

⇒ Sizable differences for "relevant" parameters

3. Models & methods

Indirect constraints on M_{SUSY} from existing data?

- Electroweak precision observables (EWPO) ?
- *B* physics observables (BPO) ?
- Cold dark matter (CDM) ?
 - \Rightarrow combination of EWPO, BPO, CDM ?

3. Models & methods

Indirect constraints on M_{SUSY} from existing data?

- Electroweak precision observables (EWPO) ?
- B physics observables (BPO) ?
- Cold dark matter (CDM) ?

 \Rightarrow combination of EWPO, BPO, CDM ?

EWPO M_W : information on $m_{\tilde{t}}$, $m_{\tilde{b}}$ or M_A , $\tan \beta$ or ... EWPO $(g-2)_{\mu}$: information on $\tan \beta$ and/or $m_{\tilde{\chi}^0}$, $m_{\tilde{\chi}^{\pm}}$ and/or $m_{\tilde{\mu}}$, $m_{\tilde{\nu}_{\mu}}$ BPO BR $(b \rightarrow s\gamma)$: information on $\tan \beta$ and/or $M_{H^{\pm}}$ and/or $m_{\tilde{t}}$, $m_{\tilde{\chi}^{\pm}}$ CDM (LSP gives CDM): information on $m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\tau}}$ or M_A or ...

3. Models & methods

Indirect constraints on M_{SUSY} from existing data?

- Electroweak precision observables (EWPO) ?
- B physics observables (BPO) ?
- Cold dark matter (CDM) ?

 \Rightarrow combination of EWPO, BPO, CDM ?

EWPO M_W : information on $m_{\tilde{t}}$, $m_{\tilde{b}}$ or M_A , $\tan \beta$ or ... EWPO $(g-2)_{\mu}$: information on $\tan \beta$ and/or $m_{\tilde{\chi}^0}$, $m_{\tilde{\chi}^{\pm}}$ and/or $m_{\tilde{\mu}}$, $m_{\tilde{\nu}_{\mu}}$ BPO BR $(b \rightarrow s\gamma)$: information on $\tan \beta$ and/or $M_{H^{\pm}}$ and/or $m_{\tilde{t}}$, $m_{\tilde{\chi}^{\pm}}$ CDM (LSP gives CDM): information on $m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\tau}}$ or M_A or ... \Rightarrow combination (so far) makes only sense if all parameters are connected! \Rightarrow GUT based models, ...

In general:

The MasterCode can perform fits in the (MFV) MSSM

(ready for NMFV MSSM: [FeynHiggs, SuFla])

However:

Concentrating on existing experimental data fits make sense only in GUT based models:

- CMSSM
- NUHM1, NUHM2
- mSUGRA
- VCMSSM

— . . .

 $m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sign}\mu$

 m_0 : universal scalar mass parameter $m_{1/2}$: universal gaugino mass parameter A_0 : universal trilinear coupling $\tan \beta$: ratio of Higgs vacuum expectation values $sign(\mu)$: sign of supersymmetric Higgs parameter

 \Rightarrow particle spectra from renormalization group running to weak scale

The models: 2.) NUHM1: (Non-universal Higgs mass model)

Assumption: no unification of scalar fermion and scalar Higgs parameter at the GUT scale

 \Rightarrow effectively M_A or μ as free parameters at the EW scale

\Rightarrow besides the CMSSM parameters	
M_A or μ	

Further extension: NUHM2:

Assumption: no unification of the Higgs parameters at the GUT scale

 \Rightarrow effectively M_A and μ as free parameters at the EW scale

\Rightarrow besides	the CMSSM parameters	
	M_A and μ	

The models: 3.) VCMSSM: (Very Constrained MSSM)

 \Rightarrow In addition to CMSSM: assume relation between A_0 and m_0 : $A_0 = m_0 + B_0$

 $\tan\beta$ fixed (e.g. via CDM constraint)

Free parameters: $m_{1/2}$, A_0 , m_0

Lightest SUSY particle (LSP) is the lightest neutralino

The models: 4.) mSUGRA: (Gravitino DM in mSUGRA)

 \Rightarrow In addition to CMSSM: assume relation between A_0 and m_0 : $A_0 = m_0 + B_0$

mSUGRA: $m_{\text{gravitino}} = m_0 \Rightarrow$ gravitino can be the LSP

Free parameters: $m_{1/2}$, A_0 , m_0 Lightest SUSY particle (LSP) is the gravitino

Different methods:

1.) Scanning:

- 3-dim scans (possibly with CDM fixing one dimension)
- multi-dim scans
- multi-dim scans (with Markov Chain Monte Carlo technique)
- \Rightarrow MasterCode: multi-dim scans with MCMC technique

2.) Fitting:

- Frequentist
- Bayesian
- \Rightarrow MasterCode: Frequentist
- $\Rightarrow \chi^2$ function to include all experimental results

3.) Priors ... (none)

χ^2 calculation:

 \rightarrow global χ^2 likelihood function

combines all theoretical predictions with experimental constraints:

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}} + \sum_{i}^{M} \frac{(f_{\mathsf{SM}_{i}}^{\mathsf{obs}} - f_{\mathsf{SM}_{i}}^{\mathsf{fit}})^{2}}{\sigma(f_{\mathsf{SM}_{i}})^{2}}$$

- N: number of observables studied
- M: SM parameters: $\mathbf{\Delta}\alpha_{\mathsf{had}}, m_t, M_Z$
- C_i : experimentally measured value (constraint)
- P_i : MSSM parameter-dependent prediction for the corresponding constraint

χ^2 calculation:

 \rightarrow global χ^2 likelihood function

combines all theoretical predictions with experimental constraints:

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}} + \sum_{i}^{M} \frac{(f_{\mathsf{SM}_{i}}^{\mathsf{obs}} - f_{\mathsf{SM}_{i}}^{\mathsf{fit}})^{2}}{\sigma(f_{\mathsf{SM}_{i}})^{2}}$$

- N: number of observables studied
- M: SM parameters: $\mathbf{\Delta}\alpha_{\mathsf{had}}, m_t, M_Z$
- C_i : experimentally measured value (constraint)
- P_i : MSSM parameter-dependent prediction for the corresponding constraint

What to do if only a lower/upper bound exists?

 \rightarrow especially important: M_h

SM Higgs search at LEP:

Dominant SM production process: $e^+e^- \rightarrow ZH$:

Dominant decay process: $H \rightarrow b\overline{b}$:

Bounds valid in the CMSSM? NUHM1? MSSM?

Search for neutral SUSY Higgs bosons:

 $e^+e^- \to Zh, ZH$

 $e^+e^- \to Ah, AH$

$$\sigma_{hA} \propto \cos^2(\beta - \alpha_{eff})\sigma_{hZ}^{SM}$$

 $\sigma_{HA} \propto \sin^2(\beta - \alpha_{eff})\sigma_{hZ}^{SM}$

$\sin^2(\beta - \alpha_{\text{eff}})$ in the CMSSM, NUHM1:

NUHM1

In CMSSM:

SM bound of M_H search can be used [LEP Higgs Working Group '03]

 CL_s can be used/transformed into χ^2 values

 \Rightarrow can be included into χ^2 evaluation

 $\delta M_h^{\text{intr.}} \approx 3 \text{ GeV}$

We use *FeynHiggs*

In the NUHM1: SM bound on M_H is reduced: $S_{95} \sim \sin^2(\beta - \alpha_{eff})$

 \Rightarrow take into account the LEP SM Higgs bound but shifted according to the reduced coupling

4. Predictions for the LHC and the ILC

- combine all electroweak precision data as in the SM
- combine with B physics observables
- combine with CDM and $(g-2)_{\mu}$
- include SM parameters with their errors: m_t , M_Z , $\Delta \alpha_{had}$

$\Rightarrow \chi^2$ function

- → scan over the full CMSSM/NUHM1 parameter space ~ 2.5 10^7 points samples with MCMC statistical measure: χ^2 function (Frequentist, no priors)
- \rightarrow final minimum: Minuit

 $\Delta\chi^2$: 68, 95% C.L. contours

⇒ preferred CMSSM/NUHM1 parameters ⇒ LHC/ILC reach

CMSSM:

 $m_{1/2} = 310 \text{ GeV}, m_0 = 60 \text{ GeV}, A_0 = 130 \text{ GeV},$ $\tan \beta = 11, \mu = 400 \text{ GeV}, M_A = 450 \text{ GeV}$ $\chi^2/N_{\text{dof}} = 20.6/19 \text{ (36 \% probability)}$ $\Rightarrow \text{ very similar to SPS 1a :-)}$

NUHM1:

$$m_{1/2} = 270 \text{ GeV}, \ m_0 = 150 \text{ GeV}, \ A_0 = -1300 \text{ GeV}, \ \tan\beta = 11, \ \mu = 1140 \text{ GeV}, \ M_A = 310 \text{ GeV}$$

(similar probability)

LHC (CMS) \oplus CMSSM analysis:

 \Rightarrow best-fit point and part of 68% C.L. are can be tested in 2011

 \Rightarrow best-fit point and part of 68% C.L. are can be tested in 2011

[2008]

[CMS '07]

MasteRcone

[2008]

[CMS '07]

 \Rightarrow largely accessible spectrum for LHC and ILC

Masses for best-fit points: CMSSM

Sven Heinemeyer, ASFWG Inauguration workshop, 26.07.2010

[2009]

LHC (CMS) reach with 1 fb⁻¹:

[2008]

CMSSM analysis incl. leptonic edge measurements

Impact of various constraints (CMSSM):

Impact of various constraints (CMSSM):

 $M_h = 108 \pm 6 \text{ (exp)} \pm 1.5 \text{(theo) GeV}$

 $M_h = 121^{+1}_{-14} (\exp) \pm 1.5 (\text{theo}) \text{ GeV}$

 \Rightarrow naturally above LEP limit

 \Rightarrow CMSSM and NUHM1 fit amazingly well m_t and M_W \Rightarrow better than the SM: smaller errors, better best-fit points

Some more predictions: $m_{\tilde{q}} - m_{\tilde{q}_L}$

CMSSM

NUHM1

 $\Rightarrow m_{\tilde{q}}$ often largest mass, but exceptions are possible

 \Rightarrow best-fit similar to SM, larger value would favor NUHM1

Some more predictions: $BR(B_s \rightarrow \mu^+ \mu^-)$

Mas TeRcope

Some more predictions:preferred M_A —tan β parameter spaceCMSSMNUHM1

red dotted: discovery with 1 fb⁻¹ @ 7 TeV blue solid: 95% C.L. exclusion with 1 fb⁻¹ @ 7 TeV \Rightarrow preferred regions missed in 2010-2011 run

Some more predictions: preferred M_A -tan β parameter space

NUHM1

[2009]

CMSSM

CMS analysis for 30 fb⁻¹ @ 14 TeV \Rightarrow still best-fit regions missed by LHC, better for ILC(1000)

Some more predictions: direct search for dark matter

NUHM1

[2009]

CMSSM

\Rightarrow only partially covered by future experiments

5. Conclusinos for the MasterCode

- Models: (MFV) MSSM
 Analyses: CMSSM, NUHM1 (, mSUGRA, VCMSSM)
- Codes included: SuFla, SuperIso, FeynHiggs, FeynWZ, MicrOMEGAs, DarkSUSY, SoftSUSY, Minuit (HiggsBounds)

⇒ all most-up-to-date codes on the market! ⇒ predictions for: EWPO, BPO, CDM, ... (EWPO: (nearly) as for the blue band plot)

- Inclusion of "early LHC" data partially possible
- Statistical measure: χ^2 function (Frequentist, no priors) ~ 2.5 10⁷ points samples with MCMC / $\Delta\chi^2$: 68, 95% C.L. contours
- Results exist for:
 - best-fit points, 68, 95% C.L. areas
 - predictions for SUSY masses \Rightarrow LHC/ILC reach
 - predictions for M_h (red band plot)
 - predictions for SM parameters: M_W , blue m_t
 - predictions for flavor observables
 - predictions for astro-physical observables

44

 \Rightarrow crucial for precision!