Max Baak (CERN) on behalf of the Gfitter group (*) SUSY/BSM Fit Workshop, DESY 26th-28th July 2010

http://cern.ch/Gfitter

Gfitter paper published in Eur. Phys. J. C 60, 543 (2009)

The global electroweak fit and constraints on new physics with Gfitter

(*) M.B. (CERN), H. Flächer (CERN), M. Goebel (Univ. Hamburg, DESY), J. Haller (Univ. Hamburg), A. Höcker (CERN), D. Ludwig (Univ. Hamburg, DESY), K. Mönig (DESY), M. Schott (CERN), J. Stelzer (DESY)

Outline

A Generic Fitter Project for HEP Model Testing

- Introduction to the Gfitter program
- Global electroweak fit of the Standard Model
- Oblique parameters
- Constraints on various BSM models
- Two-Higgs-Doublet Model
- Conclusion / Prospects

The Gfitter Project – Introduction

A Generic Fitter Project for HEP Model Testing

- Gfitter = state-of-the-art model testing tool for LHC era
- Gfitter software
 - Modular, object-oriented C++, relying on ROOT, XML, python
 - Core package with data-handling, fitting, and statistics tools
 - Independent "plug-in" physics libraries: SM, 2HDM, oblique parameters, SUSY, ...

Gfitter features

- Various fitting tools: Minuit (1/2), Genetic Algorithms, Simulated Annealing, etc.
- Full statistics analysis: goodness-of-fit, p-values, parameter scans, MC analyses.
- Consistent treatment of statistical, systematic, theoretical uncertainties (Rfit prescription), correlations, and inter-parameter dependencies.
 - Theoretical uncertainties included in χ^2 with flat likelihood in allowed ranges
- Main publication: EPJ C60, 543-583,2009 [arXiv:0811.0009]
 - Also available at: <u>www.cern.ch/Gfitter</u>
 - Today: updates and new results

E,

The global electroweak fit of the SM

Global Fit of electroweak SM and beyond

Max Baak

Global Fit of electroweak SM and beyond

A Gfitter package for the global EW fit of the SM Complete reimplementation of SM predictions of EW precision observables

- Based on huge amount of preparatory work by many people
- Radiative corrections are important

ላለለለሉ

γ.Z/W

-

γ.Z/W

- Logarithmic dependence on M_H through virtual corrections

- Radiator functions: N³LO of the massless QCD Adler function, used for Z and W hadronic decay widths [P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022]
- M_W and sin²θ^f_{eff}: full two-loop + leading beyond-two-loop correction
 [M. Awramik et al., Phys. Rev D69, 053006 (2004) and ref.][M. Awramik et al., Nucl.Phys.B813:174-187 (2009) and refs.]

-

Z/W

- theoretical uncertainties: $M_W (\delta M_W = 4-6 MeV)$, $\sin^2\theta_{eff}^I (\delta \sin^2\theta_{eff}^I = 4.7 \cdot 10^{-5})$

Wherever possible, calculations cross-checked against ZFITTER \rightarrow excellent agreement

Electroweak Fit – Latest Experimental Input

Ξ

0

 $\overline{\mathbf{O}}$

ш

SLC

 91.1875 ± 0.0021

 2.4952 ± 0.0023

 41.540 ± 0.037

 20.767 ± 0.025

 0.0171 ± 0.0010

1

$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018
A_c	0.670 ± 0.027
A_b	0.923 ± 0.020
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016
R_c^0	0.1721 ± 0.0030
R_b^0	0.21629 ± 0.00066
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012
M_H [GeV] ^(\circ)	Likelihood ratios
M_W [GeV]	80.399 ± 0.023
M_W [GeV] Γ_W [GeV]	$\begin{array}{c} 80.399 \pm 0.023 \\ 2.098 \pm 0.048 \end{array}$
M_W [GeV] Γ_W [GeV] \overline{m}_c [GeV]	$\begin{array}{c} 80.399 \pm 0.023 \\ 2.098 \pm 0.048 \\ 1.27 \substack{+0.07 \\ -0.11} \end{array}$
M_W [GeV] Γ_W [GeV] \overline{m}_c [GeV] \overline{m}_b [GeV]	$\begin{array}{c} 80.399 \pm 0.023 \\ 2.098 \pm 0.048 \\ 1.27 \substack{+0.07 \\ -0.11} \\ 4.20 \substack{+0.17 \\ -0.07} \end{array}$
$M_W [GeV]$ $\Gamma_W [GeV]$ $\overline{m}_c [GeV]$ $\overline{m}_b [GeV]$ $m_t [GeV]$	$\begin{array}{c} 80.399 \pm 0.023 \\ 2.098 \pm 0.048 \\ 1.27 \substack{+0.07 \\ -0.11} \\ 4.20 \substack{+0.17 \\ -0.07} \\ 173.3 \pm 1.1 \end{array}$
$ \begin{array}{c} M_W \ [\text{GeV}] \\ \hline \Gamma_W \ [\text{GeV}] \\ \hline \overline{m}_c \ [\text{GeV}] \\ \hline \overline{m}_b \ [\text{GeV}] \\ \hline m_t \ [\text{GeV}] \\ \Delta \alpha_{\rm had}^{(5)} (M_Z^2)^{(\dagger \bigtriangleup)} \end{array} $	$\begin{array}{c} 80.399 \pm 0.023 \\ 2.098 \pm 0.048 \\ 1.27 \substack{+0.07 \\ -0.11} \\ 4.20 \substack{+0.17 \\ -0.07} \\ 173.3 \pm 1.1 \\ 2769 \pm 22 \end{array}$

 M_{Z} [GeV]

 Γ_Z [GeV]

 $\sigma_{
m had}^0$ [nb]

 R^0_ℓ

 $A_{
m FB}^{0,\ell}$

Tevatron	
LEP &	
evatron	

Max Baak

The Electroweak Fit I – SM Fit Results

- Floating fit parameters
 - M_Z , $\Delta \alpha_{had}^{(5)}(M_Z^2)$, $\alpha_S(M_Z^2)$, $\overline{m_c}$, $\overline{m_b}$, m_t , M_H

Pull values of complete fit

- No individual value exceeds 3σ
- FB asymmetry of bottom quarks \rightarrow largest contribution to χ^2
- Small contributions from M_Z , $\Delta \alpha_{had}^{(5)}(M_Z^2)$, $\overline{m_c}$, $\overline{m_b}$: input accuracies exceed fit requirements
- Goodness of fit naïve p-value:
 - Excl. direct Higgs searches: χ^2_{min} =16.4 \rightarrow Prob(χ^2_{min} , 13) = 0.23
 - Incl. direct Higgs searches: χ^2_{min} =17.8 \rightarrow Prob(χ^2_{min} , 14) = 0.22
- No indication for new physics

The Electroweak Fit II – Higgs Mass Constraints

- M_H from fit including all data except results from direct Higgs searches at LEP, Tevatron:
 - Central value $\pm 1\sigma$: $M_{\rm H} = 80^{+30}_{-23} \text{ GeV}$
 - 2σ interval: [42,159] GeV

- M_H from fit including results from direct Higgs searches at LEP, Tevatron:
 - Resulting contributions added to χ^2 during fit
 - Stat. interpretation: 2-sided CL_{S+B}

- green error band from including / excluding theoretical errors in fit
 - Theoretical errors included in χ^2 with "flat likelihood term"

The Electroweak Fit II – Higgs Mass Constraints

- M_H from fit including all data except results from direct Higgs searches at LEP, Tevatron:
 - Central value $\pm 1\sigma$: M_H = 80^{+30}_{-23} GeV
 - 2σ interval: [42,159] GeV

- M_H from fit including results from direct Higgs searches at LEP, Tevatron:
 - Central value $\pm 1\sigma$: M_H = 119.1^{+13.5}_{-4.0} GeV
 - 2σ interval: [114,157] GeV

- green error band from including / excluding theoretical errors in fit
 - Theoretical errors included in χ^2 with "flat likelihood term"

Constraints on New Physics Models

A Gfitter package for Oblique Corrections

- At low energies, BSM physics appears dominantly through vacuum polarization corrections
 - Aka, oblique corrections
- Oblique corrections reabsorbed into electroweak parameters
 - $\Delta \rho$, $\Delta \kappa$, Δr parameters, appearing in: M_W², sin² θ_{eff} , G_F, α , etc
- Electroweak fit sensitive to BSM physics through oblique corrections

 Oblique corrections from New Physics described through STU parametrization [Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]

 $O_{meas} = O_{SM,REF}(m_H,m_t) + c_SS + c_TT + c_UU$

- S: New Physics contributions to neutral currents
- T: Difference between neutral and charged current processes – sensitive to weak isospin violation
- U: (+S) New Physics contributions to charged currents. U only sensitive to W mass and width, usually very small in NP models (often: U=0)
- Also implemented: correction to Z→bb coupling, extended parameters (VWX)
 [Burgess et al., Phys. Lett. B326, 276 (1994)]
 [Burgess et al., Phys. Rev. D49, 6115 (1994)]

.

Fit to Oblique Parameters

- S,T,U obtained from fit to EW observables ⊢
 - SM_{ref} chosen at: M_H = 120 GeV and m_t = 173.1 GeV
 - This defines (S,T,U) = (0,0,0)

•	Results for STU:		S	т	U	
	$S = 0.02 \pm 0.11$	S	1	0.879	-0.469	
	$T = 0.05 \pm 0.12$	Т		1	-0.716	
	$U = 0.07 \pm 0.12$	U			1	

- S, T: logarithmically dependent on M_H
- Grey area: SM prediction
- Comparison of EW data w/ SM prediction:
 - Preference for small M_H
 - No indication for new physics

- S,T,U derived from fit to EW observables
 - SM_{ref} chosen at: M_H = 120 GeV and m_t = 173.1 GeV
 - This defines (S,T,U) = (0,0,0)
- Results for STU: S Т U $S = 0.02 \pm 0.11$ S 0.879 -0.469 $T = 0.05 \pm 0.12$ -0.716 Т 1 U 1 $U = 0.07 \pm 0.12$
- S, T: logarithmically dependent on M_H
- Grey area: SM prediction
- Comparison of EW data w/ SM prediction:
 - Preference for small M_H
 - No indication for new physics

- Many new physics models also compatible with the EW data:
- Variation of model parameters often allows for large area in ST-plane.
- Tested: UED, 4th fermion generation, Littlest Higgs, SUSY, etc.

Littlest Higgs Model with T-Parity

- LHM: solves hierarchy problem, possible explanation for EWSM
 - SM contributions to Higgs mass cancelled by new particles
- Non-linear sigma model, broken Global SU(5)/SO(5) symmetry
 - Higgs = lightest pseudo-Nambu-Goldstone boson
 - New SM-like fermions and gauge bosons at TeV scale
- T-parity = symmetry like susy R-parity (not time-invariance)
 - Symmetry forbids direct couplings of new gauge bosons (T-odd) to SM particles (T-even)
 - LHM provides natural dark matter candidate
- Two new top states: T-even m_{T+} and T-odd m_{T-}
- Dominant oblique corrections from weak isospin violation:

Global Fit of electroweak SM and beyond

Littlest Higgs with T-Parity

- STU predictions (oblique corrections) inserted for Littlest Higgs model [Hubisz et al., JHEP 0601:135 (2006)]
- Parameters of LH model
 - f : symmetry breaking scale (scale of new particles)
 - s_λ≅m_{T-} /m_{T+} : ratio of T-odd/-even masses in top sector
 - Order one-coefficient δ_c (value depends on detail of UV physics)
 - Treated as theory uncertainty in fit (Rfit) : δ_c = [-5,5]
- F: degree of fine-tuning
- LH model prefers large Higgs mass, with only small degree of fine-tuning

Littlest Higgs with T-Parity

- STU predictions (oblique corrections) inserted for Littlest Higgs model [Hubisz et al., JHEP 0601:135 (2006)]
- Parameters of LH model
 - f : symmetry breaking scale (scale of new particles)
 - s_λ≅m_{T-} /m_{T+} : ratio of T-odd/-even masses in top sector
 - Order one-coefficient δ_c (value depends on detail of UV physics)
 - Treated as theory uncertainty in fit (Rfit) : δ_c = [-5,5]
- F: degree of fine-tuning
- LH model prefers large Higgs mass, with only small degree of fine-tuning

Littlest Higgs with T-Parity

- STU predictions (oblique corrections) inserted for Littlest Higgs model [Hubisz et al., JHEP 0601:135 (2006)]
- Parameters of LH model
 - f : symmetry breaking scale (scale of new particles)
 - s_λ≅m_{T-} /m_{T+} : ratio of T-odd/-even masses in top sector
 - Order one-coefficient δ_c (value depends on detail of UV physics)
 - Treated as theory uncertainty in fit (Rfit) : δ_c = [-5,5]
- F: degree of fine-tuning
- LH model prefers large Higgs mass, with only small degree of fine-tuning

Universal Extra Dimensions

• UED:

[Appelquist et al., Phys. Rev. D67 055002 (2003)] [Gogoladze et al., Phys. Rev. D74 093012 (2006)]

- All SM particles can propagate into ED
- Compactification \rightarrow KK excitations
- Conservation of KK parity
 - Phenomenology similar to SUSY
 - Lightest stable KK state: DM candidate
- Model parameters:
 - d_{ED} : number of ED (fixed to d_{ED} =1)
 - R^{-1} : compactification scale ($m_{KK} \sim n/R$)
- Contribution to vac. polarisation (*STU*):
 - From KK-top/bottom and KK-Higgs loops
 - Dependent on R⁻¹, M_H (and m_t)

Results:

- Large R⁻¹: UED approaches SM (exp.)
 - Only small *M_H* allowed
- Small R^{-1} : UED contribution compensated by large M_H
- Excluded: R^{-1} < 300 GeV and M_H > 800 GeV

Warped Extra Dimensions (Randall-Sundrum)

[L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)] [M. Carena et al., Phys. Rev. D68, 035010 (2003)]

- Introduction of one extra dimension (ED) to solve the hierarchy problem
- RS model characterized by one warped ED, confined by two three-branes
 - Higgs localized on "IR" brane
 - Gauge and matter fields allowed to propagate in bulk region
- SM particles accompanied by towers of heavy KK modes.
- Model parameters:
 - L: inverse warp factor, function of compactification radius, explains hierarchy between EW an PI scale
 - *M_{KK}*: KK mass scale
- Results:
 - Excessive values of T possible
 - Large L forces large M_{KK} (several TeVs)
 - Some compensation if M_H is large

Warped Extra Dimensions w/ custodial symmetry

CERNY

- Goal: "cure" WED with large T values
- Introduction of so-called custodial isospin gauge symmetry in the bulk
- Extension of hypercharge group to SU(2)_R x U(1)_X
 - Bulk symmetry group: SU(3)_C x SU(2)_L x SU(2)_R x U(1)_X
- Broken to SM SU(3)_C x SU(2)_L x U(1)_Y on "UV" brane
- IR brane SU(2)_R symmetric
- Right-handed fermionic fields occur in doublets
- Results:
 - Almost completely ruled out
 - Only small M_H allowed

Max Baak

4th fermion generation

- Models with a fourth generation
 - No explanation for *n*=3 generations
 - Intr. new states for leptons and quarks
 - $\Psi_{L} = (\Psi_{1}, \Psi_{2})_{L}, \Psi_{1,R}, \Psi_{2,R}$
 - Free parameters: $m_{u_4}, m_{d_4}, m_{e_4}, m_{v_4}$
 - masses of new quarks and leptons
 - assume: no mixing of extra fermions

Contrib. to STU from new fermions

- Discrete shift in S from extra generation
- Sensitive to mass difference between up- and down-type fields. (not to absolute mass scale)

Results:

- With appropriate mass differences: 4th fermion model consistent with EW data
 - In particular a large M_H is allowed
- 5+ generations disfavored
- Data prefer a heavier charged lepton / up-type quark (which both reduce size of S)

[H. He et al., Phys. Rev. D 64, 053004 (2001)]

4th fermion generation

- Models with a fourth generation
 - No explanation for n=3 generations
 - Intr. new states for leptons and quarks
 - $\Psi_{L} = (\Psi_{1}, \Psi_{2})_{L}, \Psi_{1R}, \Psi_{2R}$
 - Free parameters: $m_{u_4}, m_{d_4}, m_{e_4}, m_{v_4}$
 - masses of new guarks and leptons
 - assume: no mixing of extra fermions

Contrib. to STU from new fermions

- Discrete shift in S from extra generation
- Sensitive to mass difference between up- and down-type fields. (not to absolute mass scale)

Results:

Max Baak

- With appropriate mass differences: 4th fermion model consistent with EW data
 - In particular a large M_{H} is allowed
- 5+ generations disfavored
- Data prefer a heavier charged lepton / up-type quark (which both reduce size of S)

4th Generation

preliminary

G fitter 🖁

m_M=200 GeV, m_=120 GeV, m_=400 GeV

_ m_,=360 GeV, M_=120 GeV m.,=450 GeV, M.=350 GeV

m.,=480 GeV, M =600 GeV

0.5

0.4

0.3

0.2

0.1

0

0.5

S

0.4

fitter

100

m_{u.} - m_{d.} [GeV]

[H. He et al., Phys. Rev. D 64, 053004 (2001)]

m_{I4},m_M ∈ [100, 1000] GeV

m_{u4},m₁ ∈ [200, 1000] GeV M_H ∈ [100, 1000] GeV

0.3

0.2

50

4th fermion generation

- Models with a fourth generation
 - No explanation for *n*=3 generations
 - Intr. new states for leptons and quarks
 - $\Psi_{L} = (\Psi_{1}, \Psi_{2})_{L}, \Psi_{1,R}, \Psi_{2,R}$
 - Free parameters: $m_{u_4}, m_{d_4}, m_{e_4}, m_{v_4}$
 - masses of new quarks and leptons
 - assume: no mixing of extra fermions

Contrib. to STU from new fermions

- Discrete shift in S from extra generation
- Sensitive to mass difference between up- and down-type fields. (not to absolute mass scale)

Results:

- With appropriate mass differences: 4th fermion model consistent with EW data
 - In particular a large M_H is allowed
- 5+ generations disfavored
- Data prefer a heavier charged lepton / up-type quark (which both reduce size of S)

[H. He et al., Phys. Rev. D 64, 053004 (2001)]

Minimal SuperGravity (preliminary)

[G. Weiglein: arXiv:hep-ph/9712226v1][S. Heinemeyer, W. Hollik, G. Weiglein: arXiv:hep-ph/0412214v1]

- Supersymmetry solves many shortcomings of SM: hierarchy problem, unification of coupling constants, DM candidate, ...
- mSUGRA: highly constrained breaking mechanism at GUT scale
 - SUSY breaking mediated by gravitational interaction
- mSUGRA determined by 5 parameters:
 - m_{1/2}: mass of fermions at GUT scale
 - m₀: mass of scalars at GUT scale
 - tanβ: ratio of two Higgs vacuum expectation values
 - A₀: trilinear coupling of the Higgs
 - sgn(μ): sign of Higgsino mass term

- Oblique corrections dominated by weak isospin violation between $m_{\tilde{b}1}$, $m_{\tilde{t}1}$, and $m_{\tilde{t}1}$, $m_{\tilde{t}2}$
 - $\delta M_W \leq 35$ MeV, $\delta sin^2 \theta_{eff}^{I} \leq 2x10^{-4}$
- By construction of the oblique parameters → T parameter has dominant contribution

Additional constraints on mSUGRA

В

SM

- Extra constraints on top of EW precision observables
 - G fitter LEP limits on Higgs mass, neutralinos, sleptons
 - Kaon-, B-physics
 - (g_u-2)

٠

- relic density
- Using theoretical predictions by:
 - microMegas ٠
 - FeynHiggs ٠
 - Superlso ٠
 - SoftSUSY •
- Dedicated C++ interfaces to Gfitter

Parameter	Input value	1	meas. error	theoretical error
Ωh^2	0.1131		0.0034	0.012
$a_{\mu}(\text{meas}) - a_{\mu}(\text{SM})$	20.5×10^{-10}	>	8.2×10^{-10}	2.0×10^{-10}
$\overline{\mathrm{BF}(B\to X_s\gamma)_{\mathrm{meas}}/\mathrm{BF}(B\to X_s\gamma)_{\mathrm{SM}}}$	1.117		0.076	0.096
$\Delta m_s(\text{meas})/\Delta m_s(\text{SM})$	1.015		0.122	
$BF(B_s \rightarrow \mu\mu)$	$< 4.7 \times 10^{-8}$			
$BF(B \to \tau \nu)_{meas}/BF(B \to \tau \nu)_{SM}$	2.16	$\mathbf{\zeta}$	+0.62 -0.53	
<i>Rl</i> ₂₃	1.004		0.007	
$BF(B \to D\tau\nu)/BF(B \to De\nu)$	0.42		0.13	
M_h [GeV]	> 114			3
M_{χ_0} [GeV]	> 50		orogo of	oto- and -
$M_{\chi_1^+}$ [GeV]	> 103		elaye of	
$M_{\tilde{e}_R}$ [GeV]	> 90	with scaled error		
$M_{\tilde{\mu}_R}$ [GeV]	> 90	arXiv:0908.4300v2, 0906.5443		
$M_{\tilde{ au}_R}$ [GeV]	> 90	L		

No exchange of Les Houches files ۲

SoftSUSY - [B.C. Allanach, Comp. Phys. Com. 143 (2002) 305-331], Feynhiggs - [M. Frank et al., JHEP0702:047, 2007], Superlso - [F. Mahmoudi, JHEP12 (2007), 026], microMegas - [G. B'elanger et al., IRFU-10-24, LAPTH-012-10]

mSUGRA: Parameter Scans

[G. Weiglein: arXiv:hep-ph/9712226v1][S. Heinemeyer, W. Hollik, G. Weiglein: arXiv:hep-ph/0412214v1]

- Low m₀ area excluded by requiring a non-charged LSP.
- Limits on m₀, m_{1/2}, tanβ, A₀ by including in the fit:
 - 1. Theoretically allowed region
 - 2. LEP limits in Higgs mass, neutralinos, sleptons
 - 3. Electroweak precision observables (STU)
 - 4. Constraints from K-, B-physics and $(g_{\mu}$ -2)
 - 5. From the relic density
- 95% CL contours of allowed regions are shown

mSUGRA: Parameter Scans

[G. Weiglein: arXiv:hep-ph/9712226v1][S. Heinemeyer, W. Hollik, G. Weiglein: arXiv:hep-ph/0412214v1]

- Low m₀ area excluded by requiring a non-charged LSP.
- Limits on m₀, m_{1/2}, tanβ, A₀ by including in the fit:
 - 1. Theoretically allowed region
 - 2. LEP limits in Higgs mass, neutralinos, sleptons
 - 3. Electroweak precision observables (STU)
 - 4. Constraints from K-, B-physics and $(g_{\mu}$ -2)
 - 5. From the relic density
- 95% CL contours of allowed regions are shown

mSUGRA: Fit Strategy

- Results sofar consistent with MasterCode and Fittino groups.
- Main challenge: finding global mSUGRA minimum in constrained fits
 - Eg. LSP mass-scan: χ^2_{min} when predicted M_{LSP} = 150 GeV?
- Solution: "brute force" fit strategy
 - 1 Fit takes ~15 mins
 - O(1000) Minuit iterations, dominated by calc. of SUSY particle spectrum
 - Parameter scans fully parallelized
- Need lots of computing power ...

minimum confirmed N times

Global Fit of electroweak SM and beyond

G fitter ^{2H}_{DM}

A Gfitter Package for 2HDM SM Extensions

Two Higgs Doublet Model (Type-II)

- SM extended by additional Higgs doublet (2HDM)
- One Higgs doublet couples to up-type fermions, other doublet couples to down-type fermions
- Five Higgs bosons: 3 neutral (A⁰, h⁰, H⁰), two charged (H[±])
- 6 Free parameters $\rightarrow M_{H\pm}$, M_{A0} , M_{H0} , M_h , $\tan\beta$, $|\alpha|$
- [Type-II 2HDM resembles Higgs sector in MSSM]

- Have looked at processes sensitive to charged Higgs interactions $\mathcal{L}_{H^{\pm}ff} = \frac{g}{2\sqrt{2}m_W} \left\{ H^+ \bar{U} \Big[M_U V_{CKM} \left(1 - \gamma_5\right) \underbrace{\cot\beta} + V_{CKM} M_D \left(1 + \gamma_5\right) \underbrace{\tan\beta} \Big] D + \text{h.c.} \right\}$
- Interaction has similar structure as W-boson
 - Left-handed coupling: 1/tanβ, right-handed coupling: tanβ
- Sensitive parameters $\rightarrow M_{H+}$, tan β
 - LEP limit: M_{H+} > 78.6 GeV (95%CL), for any value of tan β

	Observable	Input value	Exp. Ref.	Calculation
	R _b ⁰	0.21629 ± 0.00066	[ADLO, Phys. Rept. 427, 257 (2006)	[H. E. Haber and H. E. Logan, Phys. Rev. D62, 015011 (2000)]
Measurements	BR (Β->Χ _s γ)	(3.52±0.23±0.09)·10 ⁻⁴	[HFAG, latest update]	[M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007)]
of interest	BR (Β->τν)	(1.73±0.33)·10 ⁻⁴	[P.Chang, Talk at ICHEP 2008]	[W. S. Hou, Phys. Rev. D48, 2342 (1993)]
TOTT D-PHYSICS	BR (Β->μν)	(-5.7±6.8±7.1)·10 ⁻⁴	[E. Baracchini, Talk at ICHEP 2008]	[W. S. Hou, Phys Rev. D48, 2342 (1993)]
	BR (Κ->μν)/ BR(π->μν)	1.004±0.007	[FlaviaNet,, arXiv: 0801.1817]	[FlaviaNet, arXiv: 0801.1817]
	BR(B->Dτν)/ BR(B->Deν)	0.416±0.117±0.052	[Babar, Phys. Rev. Lett 100, 021801 (2008)]	[J. F. Kamenik and F. Mescia, arXiv:0802.3790]

of interest from **B**-phys

2HDM: Combined Fit

- Below: overlay of individual 95% CL excluded regions
- Combined exclusion area depends on assumption on number of dof.
 - ndof=1 : where single constraint dominates.
 - ndof=2 : several observables contribute.
- MC toy study to resolve exclusion area

- Combined limit not necessarily stronger than single constraint due to increasing n_{dof}
- Fit minimum: χ²=3.9 for M_H=858 GeV and tanβ=6.8
- Excluded at 95% CL
 - Small $tan\beta$
 - $M_{\rm H}$ < 240 GeV for all tan β
 - $M_H < 780$ GeV for tan $\beta = 70$

Global Fit of electroweak SM and beyond

Conclusion & Prospects

- **G** fitter is a powerful framework for HEP model fits
- Latest results/updates and new results always available at:
 - <u>http://cern.ch/Gfitter</u>
- Results obtained sofar
 - New and updated global fit of the electroweak SM
 - Higgs mass strongly constrained. Light Higgs preferred by SM.
 - Oblique parameters (still!) a powerful method to constrain BSM theories
 - Presented constraints on various BSM theories
 - Heavy Higgs boson allowed in various BSM models
 - Constraints on the Two-Higgs-Doublet-Model

• The future

- Maintain and extend existing fits.
 - Tevatron updates and of course LHC results
- More models in preparation for oblique parameters fit (STU)
- Expect SUSY fit results to come out soon!

A Generic Fitter Project for HEP Model Testing

Backup

Max Baak

Global Fit of electroweak SM and beyond

Statistical interpretation Higgs limits

Stat. interpretation in global fit: 2-sided CL_{S+B}

- Experiments measure test statistics: LLR = -2lnQ, where $Q=L_{S+B}/L_B$
- LLR is transformed by experiments into onesided CL_{S+B} using toy-MC experiments
 - Sensitive to too few Higgs-like events
- We transform 1-sided CL_{S+B} into 2-sided CL^{2s}_{S+B}
 - We measure deviations from the SM.
 - Eg. also interested in too many Higgs-like events.
- χ^2 contribution calculated via inverse error function, assuming symmetric pdf : $\delta\chi^2 = Erf^1(1 - CL^{2s}_{S+B})$
- Alternative treatments (thanks to fruitful discussion with Tevatron people):
 - Use one-sided CL_{S+B}: however, different interpretation – want SM Higgs (not any Higgs)
 - Directly use $\delta \chi^2 \approx$ LLR: Bayesian interpretation, lacks pseudo-MC information

Goodness of Global Fit

- determine p-value by using MC toy experiments
 - p-value: probability for wrongly rejecting the SM
 - p-value: probability for getting a $\chi^2_{min,toy}$ larger than the $\chi^2_{min,data}$ from data

 no significant requirement for new physics

- small p-values for large Higgs masses (M_H~280 GeV)
- usually unable to indicate signals for physics beyond SM
 - sensitive observables mixed with insensitive ones

Global Fit of electroweak SM and beyond

$b \rightarrow s\gamma$ and R^0_b

- Penguin dipole-moment of b→sγ allows combination of left- and right-handed Higgs couplings.
- Wilson coefficient:

$$C_7^H \approx -\frac{m_t^2}{2M_H^2} \left(\frac{7}{36} \frac{1}{\tan^2 \beta} + \frac{2}{3} \ln \frac{m_H^2}{m_t^2} + \frac{1}{2} \right)$$

•
$$B \rightarrow X_s \gamma$$
 : $M_H > 200$ GeV for $tan\beta > 1$

- Z vertex contribution suppressed by 1/tan²β
- R_b^0 sensitive to small tan β only

Global Fit of electroweak SM and beyond

(BRx10 ⁻⁴)	Oct '08	EPS '09	Reference
BR(B->τν) _{meas}	1.51 ± 0.33	1.73 ± 0.35	FPCP 2009
BR(B->τν) _{SM}	1.53 ± 0.49	1.12 ± 0.25	(Vub direct-measurements.)
V _{ub} (x10 ⁻³)	3.81 ± 0.47	3.70 ± 0.33	Gambino,Giordano, Ossola,Uraltsev
f _B (MeV)	216 ± 22	190 ± 13	HPQCD '09 using NRQCD, Davies at FPCP'09
BR(B->τν) _{CKM}	0.83 +0.27 -0.10	0.80 +0.15 -0.09	CKM Fitter '09, indirect Vub

- We use prediction based on direct measurements of V_{ub}.
- [2.4σ deviation between measurement and CKM-fitter prediction for BR(B->τν)]

Other measurements w/ tree-level contributions

Global Fit of electroweak SM and beyond

- LHC, ILC (+GigaZ)*
 - exp. improvement on M_W , m_t , $sin^2 \theta^l_{eff}$, R_l^0
 - in addition improved $\Delta \alpha_{had}^{(5)}(M_Z^2)$ [F. Jegerlehner, hep-ph/0105283]

	Expected uncertainty			
Quantity	Present	LHC	ILC	GigaZ (ILC)
$M_W \; [\; \mathrm{MeV}]$	25	15	15	6
$m_t \; [\; \text{GeV}]$	1.2	1.0	0.2	0.1
$\sin^2 \theta_{\rm eff}^{\ell} \ [10^{-5}]$	17	17	17	1.3
$R_{\ell}^0 \ [10^{-2}]$	2.5	2.5	2.5	0.4
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \ [10^{-5}]$	22(7)	22(7)	22(7)	22(7)
$\overline{M_H(=120 \text{ GeV}) [\text{GeV}]}$	$^{+56}_{-40} \begin{pmatrix} +52\\ -39 \end{pmatrix} \begin{bmatrix} +39\\ -31 \end{bmatrix}$	$^{+45}_{-35} \begin{pmatrix} +42\\ -33 \end{pmatrix} \begin{bmatrix} +30\\ -25 \end{bmatrix}$	$^{+42}_{-33} \begin{pmatrix} +39\\ -31 \end{pmatrix} \begin{bmatrix} +28\\ -23 \end{bmatrix}$	$^{+27}_{-23}$ $\binom{+20}{-18}$ $\begin{bmatrix} +8\\-7\end{bmatrix}$
$\alpha_s(M_Z^2) \ [10^{-4}]$	28	28	27	6

- assume M_H=120 GeV by adjusting central values of observables
- improvement of M_H prediction
 - to be confronted with direct measurement → goodness-of-fit
 - broad minima: Rfit treatment of theo. uncertainties
- GigaZ: significant improvement for M_H and $\alpha_S(M_Z^2)$

*[ATLAS, Physics TDR (1999)][CMS, Physics TDR (2006)][A. Djouadi et al., arXiv:0709.1893][I. Borjanovic, EPJ C39S2, 63 (2005)][S. Haywood et al., hepph/0003275][R. Hawkings, K. Mönig, EPJ direct C1, 8 (1999)][A. H. Hoang et al., EPJ direct C2, 1 (2000)][M. Winter, LC-PHSM-2001-016]

mSUGRA: Parameter Scans

[G. Weiglein: arXiv:hep-ph/9712226v1][S. Heinemeyer, W. Hollik, G. Weiglein: arXiv:hep-ph/0412214v1]

- Low m₀ area excluded by requiring a non-charged LSP.
- Limits on m₀, m_{1/2}, tanβ, A₀ by including in the fit:
 - 1. Theoretically allowed region
 - 2. LEP limits in Higgs mass, neutralinos, sleptons
 - 3. Electroweak precision observables (STU)
 - 4. Constraints from K-, B-physics and $(g_{\mu}$ -2)
 - 5. From the relic density
- 95% CL contours of allowed regions are shown

mSUGRA: Parameter Scans

[G. Weiglein: arXiv:hep-ph/9712226v1][S. Heinemeyer, W. Hollik, G. Weiglein: arXiv:hep-ph/0412214v1]

- Low m₀ area excluded by requiring a non-charged LSP.
- Limits on m_0 , $m_{1/2}$, $tan\beta$, A_0 by including in fit:
 - 1. Theoretically allowed region
 - 2. LEP limits in Higgs mass, neutralinos, sleptons
 - 3. Electroweak precision observables (STU)
 - 4. Constraints from K-, B-physics and (g_{μ} -2)
 - 5. From the relic density
- 95% CL contours of allowed regions are shown

Electroweak Fit – Latest Experimental Input

 91.1875 ± 0.0021

	Z-pole observables: results from LEP / SLC [ADLO+SLD, Phys. Rept. 427, 257 (2006)]
	M_W and Γ_W from LEP/Tevatron [ADLO,CFD+D0: arXiv:0908.1374v1]
í.	m _{top} latest Tevatron average [CDF&D0: new combination ICHEP'10]
	m _c , m _b world averages [PDG, J. Phys. G33,1 (2006)]
	$\Delta \alpha_{had}^{(5)}(M_Z^2)$ including α_S dependency [Hagiwara et al., PLB649,173,'07]
	Direct Higgs searches from LEP/Tevatron [ADLO: Phys. Lett. B565, 61 (2003)], [CDF+D0: arXiv:0911.3930] • LEP: Higgs strahlung (ee \rightarrow ZH, H \rightarrow bb, $\tau\tau$)
	• Tevatron: gg fusion w/ $H \rightarrow WW$, ass. prod., VBF
	Stat. interpretation in global fit: 2-sided CL _{S+B}
_	Not considered, sin ² () reculto from Nu To)(
•	(uncertainties from NLO and nucl. effects of

bound nucleon PDF) and APV and polarized

Möller scattering (exp. accuracy too low)

	01.1010 ± 0.000	Ω
Γ_Z [GeV]	2.4952 ± 0.0023	Щ
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	
R^0_ℓ	20.767 ± 0.025	
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	
$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018	
A_c	0.670 ± 0.027	SLO
A_b	0.923 ± 0.020	
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	٩
$A_{ m FB}^{ar 0,b}$	0.0992 ± 0.0016	۳.
R_c^0	0.1721 ± 0.0030	၂ပ
R_b^0	0.21629 ± 0.00066	ิ ไ
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	
M_H [GeV] $^{(\circ)}$	Likelihood ratios	tron
M_W [GeV]	80.399 ± 0.023	evat
Γ_W [GeV]	2.098 ± 0.048	⊢ oð
\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	С Ц
\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	
$m_t \; [\text{GeV}]$	173.3 ± 1.1	U O
$\overline{\Delta \alpha_{\rm had}^{(5)}(M_Z^2)}^{(\dagger \triangle)}$	2769 ± 22	atr
$\alpha_s(M_Z^2)$	_	e,

 M_Z [GeV]

Tevatron	
LEP &	
Tevatron	

Max Baak