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Overview

(1) CiC = Cuts in Categories = Cut based electron Identification
(2) kKNN= k-Nearest-Neighbour Technique
(3) Conversion Removal for Electron Fakes and Charge Misidentification

(4) Estimation of the fake electron background using Data-Driven techniques
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CiC (Cuts in Categories)

* Set of Cuts, optimized to select electrons from W/Z-> ee and reject fakes from
jets or conversions

* Split candidates into categories

* “We have found that many of the features of the electron ID problem in CMS
can be dealt with by dividing the problem into categories”

* deals with the large amount of radiation in tracker material and the significant
probability that the track will not be well measured

— The cleaner the sample, the higher the cost in efficiency

https://twiki.cern.ch/twiki/bin/viewauth/CMS/SWGuideCategoryBasedElectronlD

i EBYpLk[VMIatthias Stein — Energy Weighting for CMS-HCAL Upgrade



4 CiC (Cuts in Categories)
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The selection is performed with cuts on the following variables (one
cut-value for each category):

* Track match with ECAL: delta_phi_in, delta_eta in, e seed/p _in
* HCAL energy directly behind ECAL cluster: H/E
* Cluster Shape: sigma_ieta ieta

Pure ID cuts

* Conversion Rejection: number of missing hits near beginning of
track (also rejects really bad tracks)
* Track vertex: Impact Parameter w.r.t. reco vertex

* Isolation: Tracker Isolation (0.3), ECAL Isolation (jurasic 0.4),
HCAL Isolation (0.4)
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(2) Def. Of Brem-regions

* Low-Brem (green):
* Barrel: 0.9<E/pin<1.2; fbrem<0.12
* Endcap: 0.82 < E/pin<1.22; fborem <0.2
* fake-like region with high population from both real and fake electrons

* Bremming (blue):
* Barrel: 0.9 <E/pin<1.2; fbrem>0.12
* Endcap: 0.82 < E/pin < 1.22; fbrem > 0.2
* electrons-like region with little contamination from fakes

* Bad-Track (red):
° remaining regions
* region with not many real electrons, but too many just to cut out

* separates electrons with quite different measurement characteristics and with
very different S/B (signal to background ratios)
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-4 9 defined severity levels of cuts

* For ET > 20 GeV (because efficiency too low for ET < 20)

* E.g.: Loose cuts might be used for di-electrons from Z,
while HyperTight cuts might be appropriate for selecting
single electrons without much help from MET

* Each step decreases the fake rate by about a factor
of 2
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.4 Definitions

Fu ke Rate = signal leptons

looser —defined leptons
Efficiency ==

Purity ==
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Electron Efficiency / Fake Rate

Eff. vs. ET Eff. vs. n
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Fake rate vs. ET Féke rate vs. n

* Some small discontinuities at boundaries of different ET bins (12, 20, 30)
* AT low ET efficiency drops for the tighter cuts (worse S/B)
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Fake Rate vs. Efficiency
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* CiC is more complicated

* Gives a large performance improvement

* This electron ID should be generally useful for electrons from W, Z, and
top, in an ET range between 12 and perhaps 500 GeV.
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k-Nearest Neighbor Technique

CMS AN AN-09-131 |

* Access fake backgrounds in early measurements
* General Technique which can easily be extended to other fake
background and analysis

* Fakes result from processes that are difficult to model

* Estimate fake backgrounds by calculating empirical fake probabilities for
electron objects that pass the robust ID cuts

* Predict:
- real/fake electron composition of samples
 Kinematic distributions of samples

* Method is intuitive, easy to implement and should be relatively
insensitive to composition differences between control and data samples

* Principle: “like things look alike™

* Multivariate technique that is typically used for the purpose of
classification
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* k-nearest neighbors algorithm (k-NN) is a method for classifying objects
based on closest training examples in the feature space (Merkmal-Raum)

* An object is classified by a majority vote of its neighbors, with the object
being assigned to the class most common amongst its k nearest neighbors

Example:

k=1: light blue

k=5: deep blue

* Larger k reduce the effect of noise but make boundaries between classes less
distinct

* The special case where the class is predicted to be the class of the closest
training sample (i.e. when k = 1) is called the nearest neighbor algorithm
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* One does not need prior knowledge of the underlying probability distribution
functions

* It can be useful to weight the contributions of the neighbors, so that the
nearer neighbors contribute more to the average than the more distant ones

* A common weighting scheme is to give each neighbor a weight of 1/d, where

d is the distance to the neighbor

Distance via metric, e.g. Euclidean metric

The training examples are vectors in a multidimensional feature space

The training phase of the algorithm consists only of storing the feature

vectors and class labels of the training samples
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kNN — application to particle physics

X = m-dimensional feature vector
w = class of object (true "nature of state”)

© = label of object

i = fake, real
d.. = m-dimensional distances

1)

A__= metric (simplest choice: Euclidean)

m,

* X[m] refers to measured values of individual ID variables
* Assign labels to objects X' — ; such that @; = w;

« Mapping by comparing an object's feature vector X
training sample, X

to those objects in the

test’

for which w are known

training’

2 2
ﬂ‘,-;}- = Z Amp - (Xi € training m] - Xj ¢ test nl)

1, iftm=mn
Am;n — {

m.nn

0, otherwise
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d  is sensitive to differences in the scales of the individual

variables considered in the calculation
Normalize with a factor AX

? (Xi e n-mmng[”!] — Xj ¢ test [”])2
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m,n mn

First calculate all di,j

Sort training/ test pairs by decreasing distance
Select the k training objects with the smallest d;;, — These are the k nearest

neighbors for the object represented by X __
The selected set of neighbors will include trgining objects from
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.

L ® &

A . -

® /N

r N

L - o -

[ “ - * A -




* For large training samples, the conditional probability that the test
object belongs to class w is estimated from the proportion of objects

of class w found amongst its k nearest neighbors

ki
P(w;|Xtest) = Zf”f/k
12;—A0)
w; = 1/d?

1 test

- The sum is over the k. objects of class w included among the k

nearest neighbors of the test object
* This factor allows closer neighbors to contribute with greater weight

to the sum k fake
p(m_}"ﬂh"}?} — Z E{I_}‘-ﬂh’/'k
1;—i)
P(wreal ‘E} = 1- P(wfﬂh’ Xr}
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P(w|X) are empirical posterior probabilities of class membership

These estimates are proven to converge to the true posteriors in the limit of
infinite training sample sizes

In practice, one works with finite training samples of equal size to prevent
biasing the probability estimates toward one or the other class

Too small value can lead to estimates that are overwhelmed by noise while too
large a value can result in a loss of sensitivity to local features in the data
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Data-Driven techniques

| cMS AN AN-10-043 |

* Fake Rate (FR) Method: Assigns a probability (or fake rate) that each jet
will fake an electron depending on different properties of the jet
* determine the probability that an event will contain a fake electron

* Isolation Extrapolation Method: Extrapolates from a region dominated by
fake electrons (poorly isolated electrons) to a region dominated by electrons

* Two sources of background:
- A jet faking an electron
* A heavy quark decaying to an electron
* Identify and estimate major backgrounds by separating into two scenarios:
 Events with exactly one electron
- Events with more electrons
* Different backgrounds dominate these two final states
* Events cuts differ, electron/ jet selection remain the same
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.9 Data-Driven techniques - Good objects

Electron:

o RECO GSF Electron, pt > 20 GeV
e |17| <25, and 5 not in ECAL gap (1.47 < |5| < 1.567)

e “robustLoose” identification [4]
1 iso dep

Z EE]_-rLAL _|_E§§LAL < 0.12
PETIE AR<0.4

e Rellso =

Jet:
o |2 (relative) and L3 (absolute) corrected RECO sisCone5 Jet [5]
o pr > 40GeV
e 171 <3.0
e Electromagnetic Fraction (EMF) < 0.9
e Jets within AR < 0.3 of an identified electron are not counted
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.4 Data-Driven techniques — Event selection

Our event selection for the single electron final state:

e Trigger: Passes single electron trigger HLT_Ele15_ W _LIR.
¢ Electron: Exactly one good electron.

e Jets: Four or more good jets.
o I1: Uncorrected E 1 > 150 GeV.

Our event selection for the two electron final state:

e Trigger: Passes single electron trigger HLT_Ele15_LW_LIR.
¢ Electron: Exactly two good electrons.

e Jets: Two or more good jets.
o E;: Uncorrected E 1 > 150 GeV.
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.4 Data-Driven techniques — Def. Fake Rate

AO = Analysis objects
FO = Fakeable objects: jets with loose cuts
F = Fake rate = assigns probability that a FO is reconstructed as a good electron

:AO(pT,r],...)
FO(p,,n,...)

jets(py, 77, .. .) - matched to good electron (AR < 0.4)
jets(pp,17,-. )

F(pT’ n) )

Flpp1,--.) =

* Any inefficiency in matching would result in an underestimation of the number
of fakes

* Using jets as fakeable objects has the advantage of increased statistics and
reduced contamination from electrons, but it suffers from increased
systematics introduced by varying jet properties that may not be correctly
captured in the fake rate (e.g. different fake rates for quark and gluon jets)
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Data-Driven techniques

* To measure the fake rate, one needs a fairly pure sample of fake electrons (look
at jet triggered events; prescale doesn't matter)

* [Trigger bias may be introduced by including the leading jet (that fires the trigger)
in the the fake rate calculation]

* There is a non-negligible contamination of the control sample due to electrons
from W and Z decays — Cleaning cuts:

o Remove events with > 2 good electron to reduce contamination from Z events

o Remove events with 1 good electron that have 65 GeV < Mt < 80 GeV to reduce
contamination from W events

* Like to parameterize the fake rate as a function of any jet variable that might be
important (e.g. pT, h, EMF, jet charge, etc.)

* But: The more parameters (or bins) that are used to separate the fake rate, the
more one limits the statistics that enter into the fake rate calculation
— focus on p_and n.

* Sd
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Figure 1: Fake rate as a function of the jet pt
when using all our MC samples combined
with cleaning cuts. Binning was chosen to
have reasonable statistics in each bin.
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Figure 2: Fake rate as a function of the jet
1 when using all our MC samples combined

with cleaning cuts. The plot illustrates that it
is reasonable to use the +# symmetry of the
fake rate to increase statistics.
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Data-Driven Techniques

* Thus far, the fake rate was defined as the probability to find a fake
electron per jet. The probability that an event (labelled as a) has one
fake electron is given by

ets

Niets
P, ke = Zl F (P‘%r ! ) [1 (1 —F (p%: ??")) (4)
j=

i#]

where the sum (and product) is defined over all jets (our FOs) in that event. Recall that we only
run over events without any fake electrons. Therefore, we need to normalize the probability of
(Eq. 4) by the probability that each event has no fakes

Nii."L'\-»

po fake _ H (1 _F (PJT ’i’j)) (5)
i—

From (Eq. 4) and (Eq. 5), we can construct an event weight

Pl fake

Al fake _ “a
11” T PV fake {6}
i1

which can be summed up to give an estimate of the number of events with 1 fake:

0 fake
Hi.'\.i.'l'lt‘-

Nl fake _ Z 14{:} fake . {?}
a=1

events =
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Data-Driven Techniques — Isolation Extrapol.

* Works by extrapolating from a region dominated by the background to the signal
region

* Use relative calorimeter isolation (Rellso) as a discriminator between
electrons and fakes

* By fitting the relative isolation distribution in a control region, (which we assume
is dominated by QCD (fakes)), we can get the full shape of this distribution and
use it to predict the contribution from the QCD background in the signal region

* Expect Rellso to be the combination of two shapes from two different sources:
electrons and fakes

* Electrons are expected to peak at low values of Rellso

* Focus on QCD events and require cuts 22000

* Best described by a Landau distribution 20000
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.4 Data-Driven Techniques — Isolation Extrapol.

* Parametrize Landau distribution by: Most probable value, width, normalization

* After fitting the Rellso shape to a Landau, extrapolate this fit to the signal
region (Rellso<0.1)

* Integrating our fit function in the signal region gives us the prediction on the
number of events with 1 fake electron

* The error on the prediction was found by propagating the error on each of the
fit parameters to the error on the fit function in the signal region

¢ Observed

A 4+ Predicted

=y
=
]

Events/100 pb™

L

10

1 =

0 20 40 60 80 100 120 140 160 180 200
MET

g

Figure 8: Comparing observed (from summing the histogram) and predicted (from the fit)
number of events with 1 fake electron and at least 4 good jets, as a function of ¥ T for the
MadGraph QCD sample. Overall, the method performs well.
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Data-Driven Techniques — Isolation Extrapol.
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Figure 9: Rellso distribution for all of our MC samples combined after requiring that the elec-
tron trigger fired, N, = 4, at most one electron passing our full selecion, and a E t cut of
0< ETt < 25GeV (top left), 25 < E 1 < 50 GeV (top right), 75 < E 1 < 100 GeV (bottom left),
and 100 < E 1t < 150 GeV (bottom right). We chose the signal region (purple wavy line region)
to be 0 << Rellso << 0.1 and the fit region (green cross-hatched region) to be 0.3 < Rellso < 1.0.
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Conversion Removal

* Photon conversion removal using a vertex fit with a 3D conversion constraint

- Conversion from: CMS AN AN-09-173 |
- Prompt photons

Can also be used to improve charge electron identification

Steps:

- Select collection of tracks

 Apply vertex fit to all pairs of tracks passing a preselection

- Make final selection of conversion candidates

* Veto any matching electron candidates

Standard CMS track reconstruction using a Combinatorial Kalman Fitter (CKF)
(which is mathematically equivalent to a global least-squares minimazation)
This “generalTracks” collection is the most inclusive available from the
reconstruction, in particular for lower p.. tracks which do not reach the ECal

Electron candidates use tracks reconstructed with a Gaussian Sum Filter (GSF)
fit, which employs a weighted sum of Gaussian components to model the non-
Gaussian energy loss distribution for electrons passing through the material
Merging genaralTracks, two Ecal seeded Track collection and GSF Electrons
results | ' '




.4 Conversion Removal

* Two (standard-)cuts in electron selection/ identification to highlight:
- d,<0.025 cm (transverse impact parameter cut on the track)

— already removes many fakes from conversion

- Charge identification requirement (charge (GSF electron) = charge(matching
CKEF track)
— reduces charge misidentification before conversion veto

* Preselection to all opposite-sign pairs of tracks:
* r>0.9 cm (r = point of closed approach)

* Now: CTVMFT fitter applied for vertex fit

— 3D fit: tracks are parallel at the vertex for both r-q— and r-z-planes

- Each fit which converges is stored as a conversion candidate

* Because track seeding for electron reconstruction requires hits in the pixel
detector or TID, photons which convert early in the detector (in the pixels or
inner-most layers of the tracker) are much more likely to fake electrons

* The remaining cases where real electrons are reconstructed as conversions
are mainly those where a bremsstrahlung photon converts early in the tracker
or pixel detector, and one of the conversion legs is incorrectly paired with the
prompt electron track to make a conversion candidate
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4 Conversion Removal

* Remove all electron candidates where the GSF track corresponds to one of the
selected conversion candidates

| Photon Pt (Normalized) | | Photon Eta (Normalized) |
1000 500,
5 = y+jet 5 = — y+Jet
&h =] - e
2 soof 2 aoof W->ev
5 = 03 =
= TOOF- = 350F
e - = =
G600 300
500F- 250F
40 u:E 200F
300F 150
2005 100E
1nu:E | 505 |
i L I L 1 1 I 1 1 1 I 1 1 1 I 1 1 1 n : i L I
Gﬂ 20 40 &0 a0 100 3 - - 3
Photon Pt {GeV) Photon n
(a) Conversion pr (b) Conversion 1

Figure 5: Kinematics of reconstructed conversion candidates, normalized to area.

Selection vHjets | W — e (all) | W — err (Wrong charge)
Fake Removal | 37% 1.0% 200
Charge 1D 405 8.3% TO%
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Conversion Removal

* The fraction of charge-misidentified electrons removed by the veto is 29%,
reducing the charge misidentification rate from 0.53% to 0.38%. This correlation
arises because a bremsstrahlung photon conversion close to the initial electron
can cause the track reconstruction to include hits from one of the conversion
legs, leading to a wrong charge assignment.

* We can minimize the electron charge misidentification rate by explicitly
attempting to remove events with conversions very close to the initial electron
where there is a higher probability of confusion in the track reconstruction

* In this case we remove 8.3% of the W electrons, but 70% of the wrong charge
cases, reducing the charge misidentification rate from 0.53% to 0.18%

* We also manage to remove 49% of the conversion fakes from the +jets sample
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